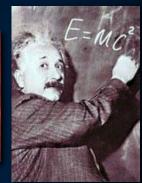

CERN and
High Luminosity
LHC project

Frédérick Bordry 31 October 2016


The Mission of CERN

Research

Push back the frontiers of knowledge

E.g. the secrets of the Big Bang ...what was the matter like within the first moments of the Universe's existence?



 Develop new technologies for accelerators and detectors

Information technology - the Web and the GRID Medicine - diagnosis and therapy

Train scientists and engineers of tomorrow

Unite people from different countries and cultures

CERN: founded in 1954: 12 European States "Science for Peace"
Today: 22 Member States

- ~ 2300 staff
- ~ 1600 other paid personnel
- ~ 12700 scientific users

Budget (2016) ~1000 MCHF

Associate Member States: Pakistan, Turkey

States in accession to Membership: Cyprus, Serbia

Applications for Membership or Associate Membership:

Brazil, Croatia, India, Lithuania, Russia, Slovenia, Ukraine

Observers to Council: India, Japan, Russia, United States of America; European Union, JINR and UNESCO

Portugal and CERN

□ Portugal joined CERN as a Member State in 1986

The Laboratório de Instrumentação e Física Experimental de Partículas
 (LIP) was created at the same time to carry out all activities related to

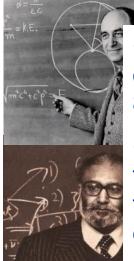
experimental particle physic universities as well as LIP's

 Strong participation in LHC ISOLDE, nTOF) programme an

Strong participation in R&D PET consortium)

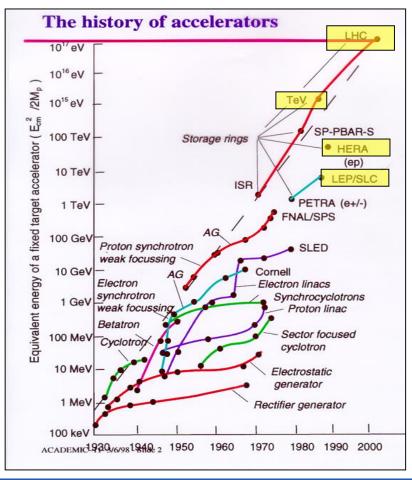
□ Training/Education:

- Excellent example of engineer
- Very successful teacher trainin
- Very balanced approach be at home and very good indu



High Energy physics is international

By nature: science has no national borders



 sustained exponential development for more than 80 years

 progress achieved through repeated jumps from saturating to emerging technologies

 superconductivity, key technology of high-energy machines since the 1980s

By necessity: pooling resources to afford large instruments

LHC (Large Hadron Collider)

14 TeV proton-proton accelerator-collider built in the LEP tunnel

Lead-Lead (Lead-proton) collisions

1983 : First studies for the LHC project1988 : First magnet model (feasibility)

1994 : Approval of the LHC by the CERN Council

1996-1999 : Series production industrialisation

1998 : Declaration of Public Utility & Start of civil

engineering

1998-2000 : Placement of the main production contracts

2004 : Start of the LHC installation

2005-2007 : Magnets Installation in the tunnel

2006-2008 : Hardware commissioning

2008-2009 : Beam commissioning and repair

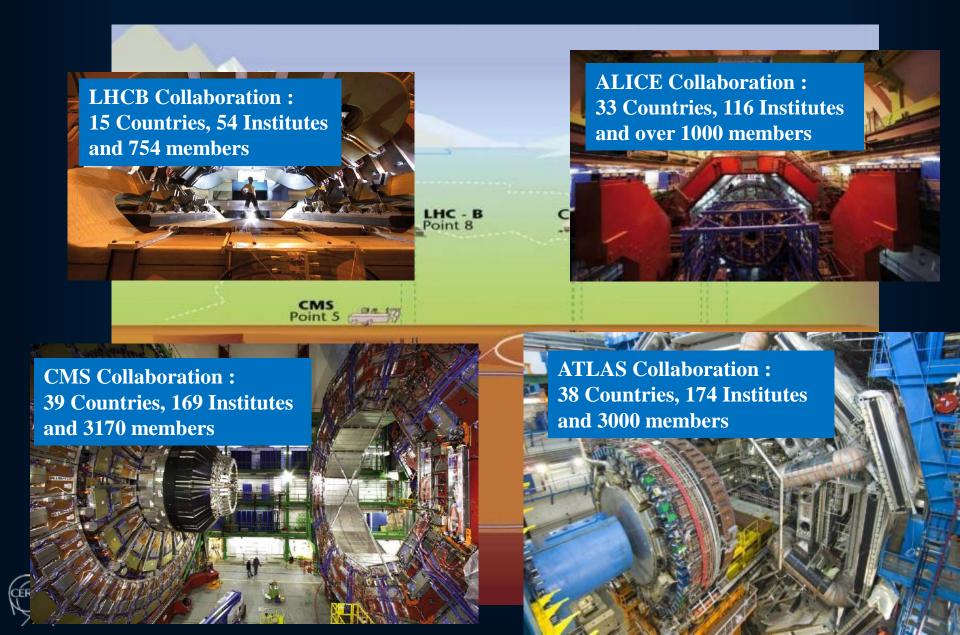
2010-2035: Physics exploitation

2010 - 2012 : Run 1 ;7 and 8 TeV

2015 – 2018 : Run 2 ; 13 TeV

2019 - 2020 : LIU installation

2021 - 2023 : Run 3

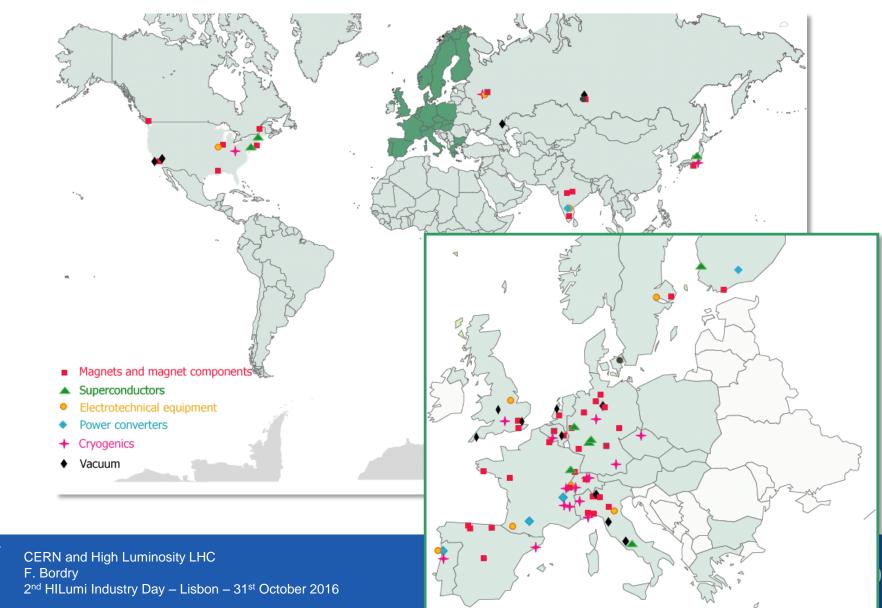

2024 – 2025 : HL-LHC installation

2026 - 2035... : HL-LHC operation

Eblu: experior betain the 7000 petition

LHC: technological challenges

The specifications of many systems were over the state of the art.


Long R&D programs with many institutes and industries worldwide.

- •The highest field accelerator magnets: 8.3 T (1232 dipole magnets of 15 m)
- •The largest superconducting magnet system (~10'000 magnets)
- •The largest 1.9 K cryogenics installation (superfluid helium, 150 tons of LHe to cool down 37'000 tons)
- •Ultra-high cryogenic vacuum for the particle beams (10⁻¹³ atm, ten times lower than on the Moon)
- •The highest currents controlled with high precision (up to 13 kA)
- •The highest precision ever demanded from the power converters (ppm level)
- •A sophisticated and ultra-reliable magnet quench protection system (Energy stored in the magnet system: ~10 Gjoule, in the beams > 700 MJ)

LHC engineering & technology are also international 100 major high-tech industrial contracts

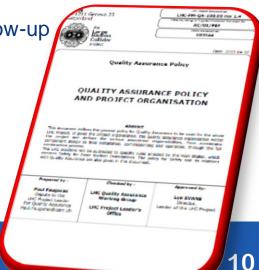
Industrial procurement

Strategy, constraints, management

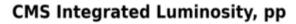
- Legal/regulatory framework

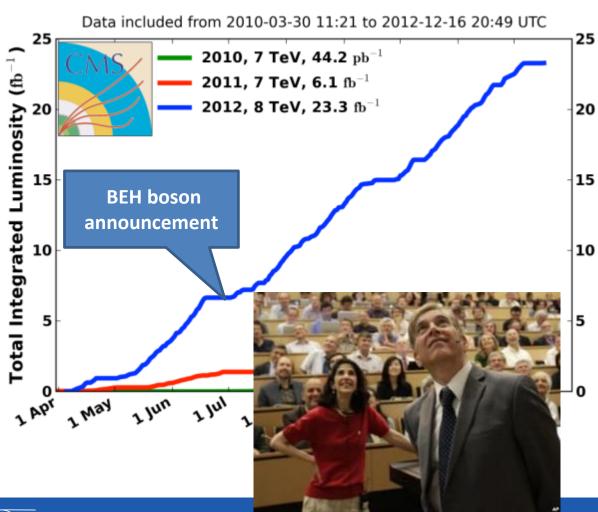
- CERN purchasing rules
- Seeking « fair return » among CERN Member States
- Handling special « in-kind» contributions

- Call for tenders


- Selecting the right companies
- Building know-how & maintaining interest through prototyping, preseries and series
- Technical specification: functional & interface versus build-to-print; Identify what can be done by the industry and what needs to be done by CERN (costs and risks: breakdown, assembly, performance responsibility, ...)

- Industrial Contracts


 Split: security of supply & balanced return versus additional follow-up (multiple contracts; n+1 strategy: prototype and series)


- Intermediate supply & logistics (to ensure the supply of sensitive components)
- JIT (Just In Time) versus production buffer & sorting
- Industrialization, production ramp and de-ramp
- Quality and inspection (a shared QAP is essential)

LHC 2010-2012: a rich harvest of collisions

 $\Sigma \sim 30 \text{ fb}^{-1}$ $\sim 2 \cdot 10^{15} \text{ collisions}$

2010: **0.04** fb⁻¹
7 TeV CoM
Commissioning
2011: **6.1** fb⁻¹
7 TeV CoM
... exploring limits
2012: **23.3** fb⁻¹

8 TeV CoM ... production

7 TeV in 2010-2011 and 8 TeV in 2012

Discovery 2012, Nobel Prize in Physics 2013

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider".

From individual theoretical physicist idea....

VOLUME 13. NUMBER 16

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

stone theorem.2 symmetry unde contain zero-m

the conserved o ternal group ar purpose of the p as a consequent quanta of some the longitudinal ticles (which we zero) go over i coupling tends the relativistic non to which Ar that the scalar conducting new nal plasmon m is charged. The simplest

havior is a gau used by Goldsto fields φ_1, φ_2 an through the Lag

e is a dimension metric is taken simultaneous g kind on $\varphi_1 \pm i \varphi_2$ Let us suppose Consider the e treating $\Delta \omega_{**}$. governing the p PHYSICAL REVIEW LETTERS

about the "vacuum" solution $\varphi_1(x) = 0$, $\varphi_2(x) =$ In a recent note1 it was shown that the Gold

31 August 1964

"Work supported in part by the U. S. Atomic Energy Commission and in part by the Graduate School from funds supplied by the Wisconsin Alumni Research

R. Feynman and M. Gell-Mann, Phys. Rev. 109, 13 (1958). ²T. D. Lee and C. N. Yang, Phys. Rev. <u>119</u>, 1410 (1960); S. B. Treiman, Nuovo Cimento 15, 916 (1960).

⁵S. Okubo and R. E. Marshak, Nuovo Cimento 28, 66 (1963); Y. Ne'eman, Nuovo Cimento <u>27</u>, 922 (1963). ⁴Estimates of the rate for K⁺ → π⁺ + ε⁺ + ε⁻ due to induced neutral currents have been calculated by several authors. For a list of previous references see Mirza A. Baqi Bég, Phys. Rev. 132, 426 (1963).

⁵M. Baker and S. Glashow, Nuovo Cimento 25, 857

(1962). They predict a branching ratio for decay mode (1) of ~10-6

⁶N. P. Samios, Phys. Rev. <u>121</u>, 275 (1961). ⁵The best previously reported estimate comes from the limit on $K_1^0 \rightarrow \mu^+ + \mu^-$. The 90% confidence level is $|g_{\mu\mu}|^2 < 10^{-9} |g_{\mu\nu}|^2$: M. Barton, K. Lande, L. M. Lederman, and William Chinowsky, Ann. Phys. (N.Y.) \S_s 156 (1958). The absence of the decay mode $\mu^+ \rightarrow e^+ + e^+$ *e" is not a good test for the existence of neutral currents since this decay mode may be absolutely forbidden by conservation of muon number: G. Feinberg and L. M. Lederman, Ann. Rev. Nucl. Sci. 13, 465

S. N. Biswas and S. K. Bose, Phys. Rev. Letters

BROKEN SYMMETRY AND THE MASS OF GAUGE VECTOR MESONS*

PHYSICAL REVIEW LETTERS

F. Englert and R. Brout

Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium (Received 26 June 1964)

It is of interest to inquire whether gauge vector mesons acquire mass through interaction!: by a gauge vector meson we mean a Vang-Mills field² associated with the extension of a Lie group from global to local symmetry. The importance of this problem resides in the possibility that strong-interaction physics originates from massive gauge fields related to a system of conserved currents.5 In this note. we shall show that in certain cases vector mesons do indeed acquire mass when the vacuum is degenerate with respect to a compact Lie group.

Theories with degenerate vacuum (broken symmetry) have been the subject of intensive study since their inception by Nambu.4-5 A characteristic feature of such theories is the possible existence of zero-mass bosons which tend to restore the symmetry. 7,0 We shall show that it is precisely these singularities which maintain the gauge invariance of the theory, despite the fact that the vector meson acquires mass.

We shall first treat the case where the original fields are a set of bosons φ_A which transform as a basis for a representation of a compact Lie group. This example should be considered as a rather general phenomenological model. As such, we shall not study the particular mechanism by which the symmetry is broken but simply assume that such a mechanism exists. A calculation performed in lowest order perturbation theory indicates that

those vector mesons which are coupled to currents that "rotate" the original vacuum are the ones which acquire mass [see Eq. (6)].

We shall then examine a particular model based on chirality invariance which may have a more fundamental significance. Here we begin with a chirality-invariant Lagrangian and introduce both vector and pseudovector gauge fields. thereby guaranteeing invariance under both local phase and local y,-phase transformations. In this model the gauge fields themselves may break the v. invariance leading to a mass for the original Fermi field. We shall show in this case that the pseudovector field acquires mass.

In the last paragraph we sketch a simple argument which renders these results reason-

(1) Lest the simplicity of the argument be shrouded in a cloud of indices, we first consider a one-parameter Abelian group, representing, for example, the phase transformation of a charged boson; we then present the generalization to an arbitrary compact Lie group, The interaction between the ϕ and the A.

$$H_{\text{int}} = ieA_{\mu} \varphi^{*} \overline{\delta}_{\mu} \varphi - e^{2} \varphi^{*} \varphi A_{\mu}^{A} A_{\mu}^{,}$$
 (1)

where $\varphi = (\varphi_1 + i\varphi_2)/\sqrt{2}$. We shall break the symmetry by fixing $\langle \varphi \rangle \neq 0$ in the vacuum, with the phase chosen for convenience such that $\langle \varphi \rangle = \langle \varphi \bullet \rangle = \langle \varphi_1 \rangle / \sqrt{2}$.

We shall assume that the application of the

...to collective innovation

1964

The Standard Model Quarks **Forces** E&M Strong Leptons Weak

Standard Model:
Only 4% is ordinary (visible) matter

The DARK Universe (96%): 73% Dark Energy 23% Dark Matter

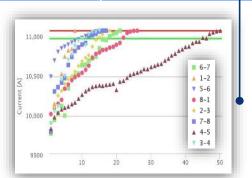
DARK MATTERS!

2013 - 2015

April '13 to Sep. '14

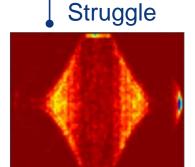
5th April

3rd June First Stable Beams

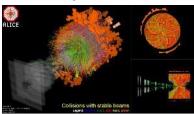

28th October Physics with record number of bunches Peak luminosity 5 x 10³³ cm⁻²s⁻¹

13-14

Aug 14-Apr

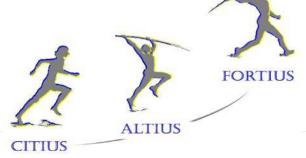


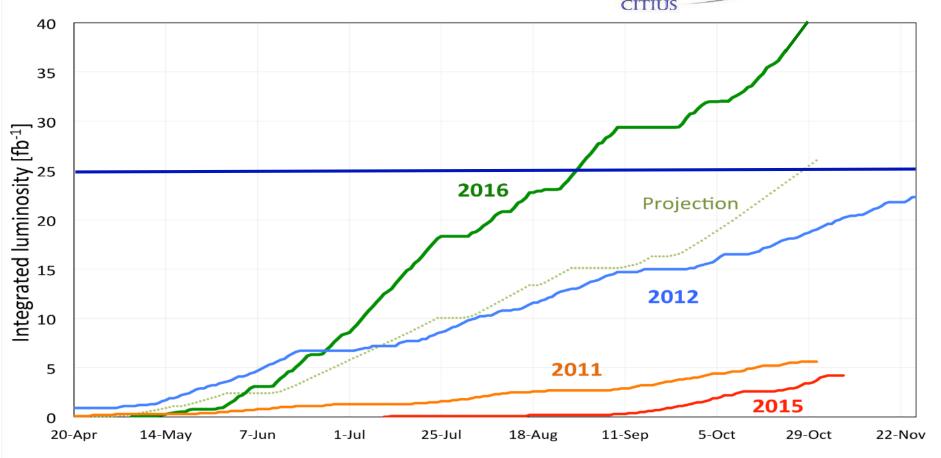
Dipole training campaign


2015

10th April Beam at 6.5 TeV

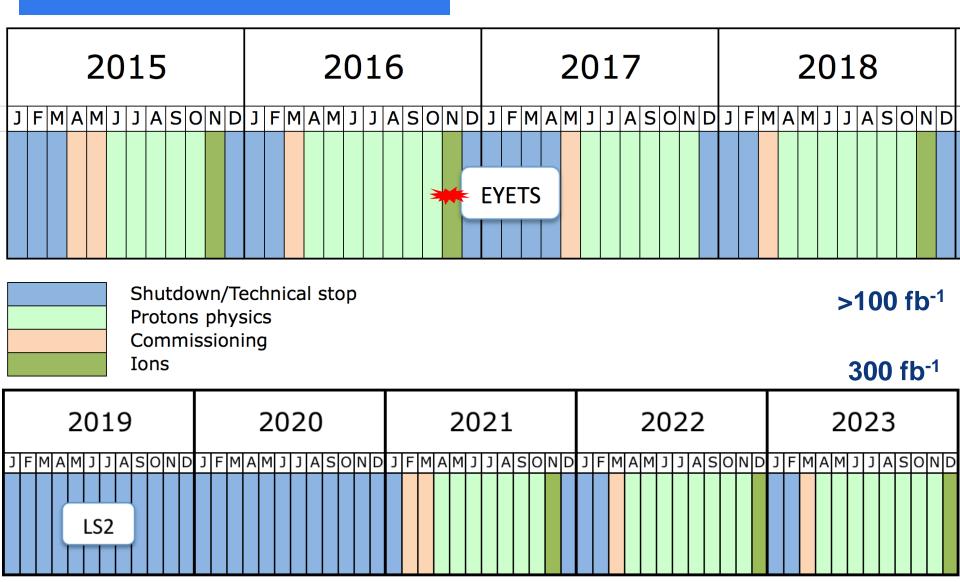
IONS

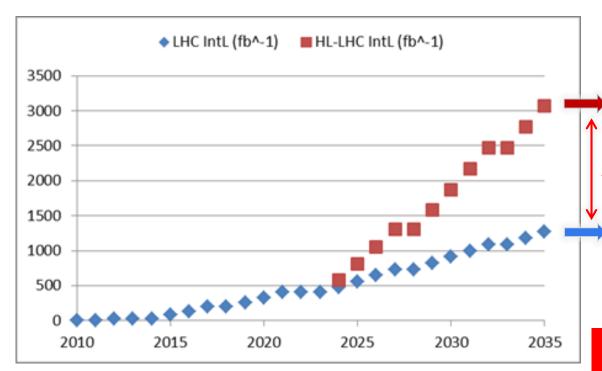



Pb-Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

2016 goals

Peak luminosity > $1.4 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$


OVER 25 fb⁻¹ in both ATLAS and CMS


Run 2 and Run 3

Why High-Luminosity LHC?

By implementing HL-LHC

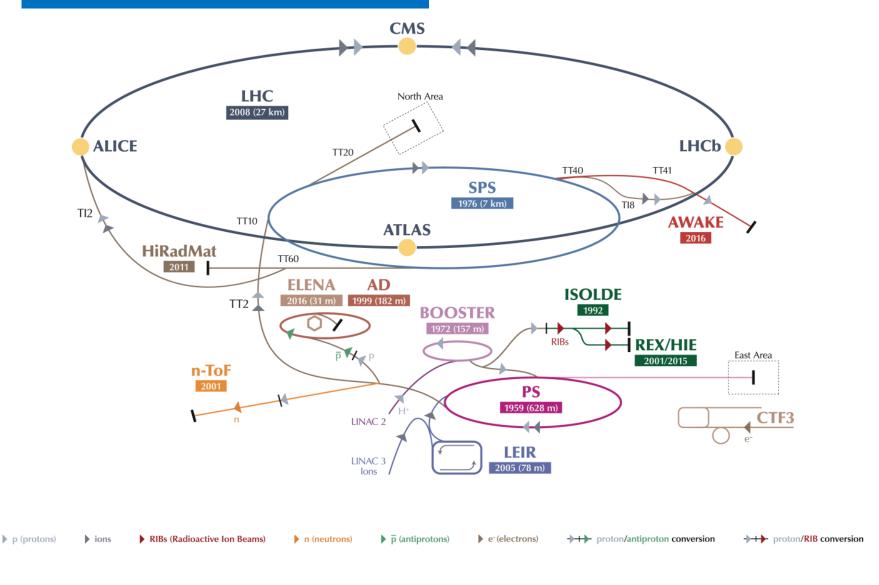
Almost a factor 3

By continuous performance improvement and consolidation

Around 300 fb⁻¹ the present Inner Triplet magnets reach the end of their useful life (due to radiation damage) and must be replaced.

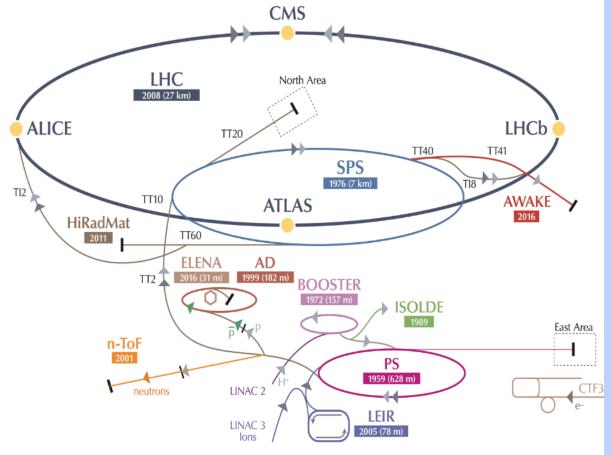
Goal of HL-LHC project:

- 250 300 fb⁻¹ per year
- 3000 fb⁻¹ in about 10 years


The European Strategy for Particle Physics Update 2013

Europe's top priority should be the **exploitation of the full potential of the LHC**, including the high-luminosity upgrade of the machine and detectors with a view to collecting **ten times more data than in the initial design, by around 2030**. This upgrade programme will also provide further exciting opportunities for the study of flavour physics and the quark-gluon plasma.

HL-LHC from a study to a PROJECT $300 \text{ fb}^{-1} \rightarrow 3000 \text{ fb}^{-1}$


including LHC injectors upgrade LIU (Linac 4, Booster 2GeV, PS and SPS upgrade)

CERN accelerators

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron AD Antiproton Decelerator CTF3 Clic Test Facility

CERN's scientific diversity programme

~20 experiments, > 1200 physicists

AD: Antiproton Decelerator for antimatter studies

AWAKE: proton-induced plasma wakefield acceleration

CAST, OSQAR: axions

CLOUD: impact of cosmic rays on aeorosols and clouds → implications on climate

COMPASS: hadron structure and spectroscopy

ISOLDE: radioactive nuclei facility

NA61/Shine: heavy ions and neutrino targets

NA62: rare kaon decays

NA63: radiation processes in strong EM fields

NA64: search for dark photons

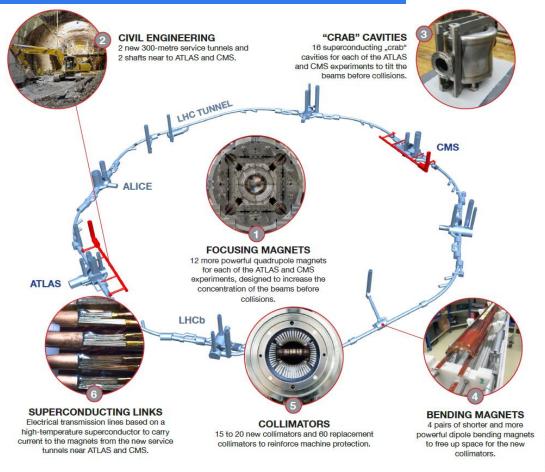
Neutrino Platform: ν detectors R&D for experiments in US, Japan

n-TOF: n-induced cross-sections

UA9: crystal collimation

Goals and means of the LHC Injectors Upgrade: LIU project

Increase injector reliability and lifetime to cover HL-LHC run (until ~2035) closely related to **CONSOlidation program**


- ⇒ Upgrade/replace ageing equipment (power supplies, magnets, RF…)
- ⇒ Improve radioprotection measures (shielding, ventilation…)

Increase intensity/brightness in the injectors to match HL-LHC requirements

- ⇒ Enable Linac4/PSB/PS/SPS to accelerate and manipulate higher intensity beams (efficient production, space charge & electron cloud mitigation, impedance reduction, feedbacks, etc.)
- ⇒ Upgrade the injectors of the ion chain (Linac3, LEIR, PS, SPS) to produce beam parameters at the LHC injection that can meet the luminosity goal

The HL-LHC Project

- New IR-quads Nb₃Sn (inner triplets)
- New 11 T Nb₃Sn (short) dipoles
- Collimation upgrade
- Cryogenics upgrade
- Crab Cavities
- Cold powering
- Machine protection

Major intervention on more than 1.2 km of the LHC

HL-LHC project: formal approval by CERN Council (June 2016)

140,000 120,000 120,000 100,000 100,000 100,000 40,000 20,000 20,000 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

Cost to Completion

Material: 950 MCHF

Personnel: 1600 FTE-years

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

The High-Luminosity LHC Project

Abstract

The scientific case for a luminosity upgrade of the Large Hadron Collider (High-Luminosity LHC, HL-LHC) is presented. It includes measurements of the Higgs boson properties with unprecedented precision and increased potential in the search for new physics. Construction is expected to be completed by the mid-twenties, and by the mid-thirties the HL-LHC should have provided a tenfold increase in the integrated luminosities recorded by the experiments. Main upgrade components include new-technology supercoducting magnets and current leads. The cost of the collider upgrade, which will be realised within a constant CERN Budget, is estimated to be 950 MCHF. The main technical challenges, as well as the ongoing R&D work and the main milestones of the implementation plan are described.

HL-LHC PRELIMINARY DESIGN REPORT

EU Deliverable D1-10

Editors: A. Apollinari I. Béjar Alonso O. Brüning

M. Lamont

CERN-ACC-2015-XXX

GENEVA

High-Luminosity Large Hadron Collider (HL-LHC)
Technical Design Report V0

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN and High Luminosity LHC F. Bordry 2nd HlLumi Industry Day – Lisbon – 31st October 2016

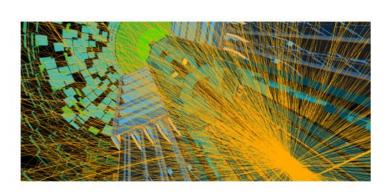
HL-LHC – ESFRI Landmark – Roadmap 2016

An upgrade of the highestenergy particle collider in the world for exploring new physics

HL-LHC

High-Luminosity Large Hadron Collider

TYPE: single-sited


COORDINATING ENTITY: CERN

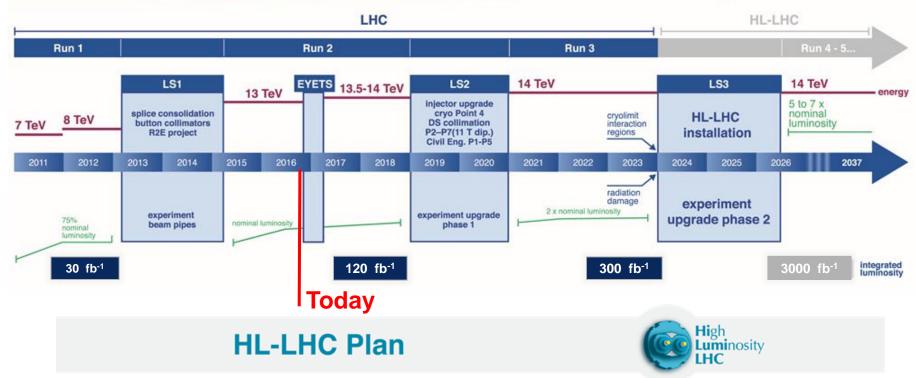
MEMBER COUNTRIES: AT, BE, BG,
CH, CZ, DE, DK, EL, ES, FI, FR, HU, IL,
IT, NL, NO, PK, PL, PT, RO, RS, SE,
SK, TR, UK

PARTICIPANTS: See
ACCELERATOR COLLABORATION
ATLAS COLLABORATION
CMS COLLABORATION

TIMELINE

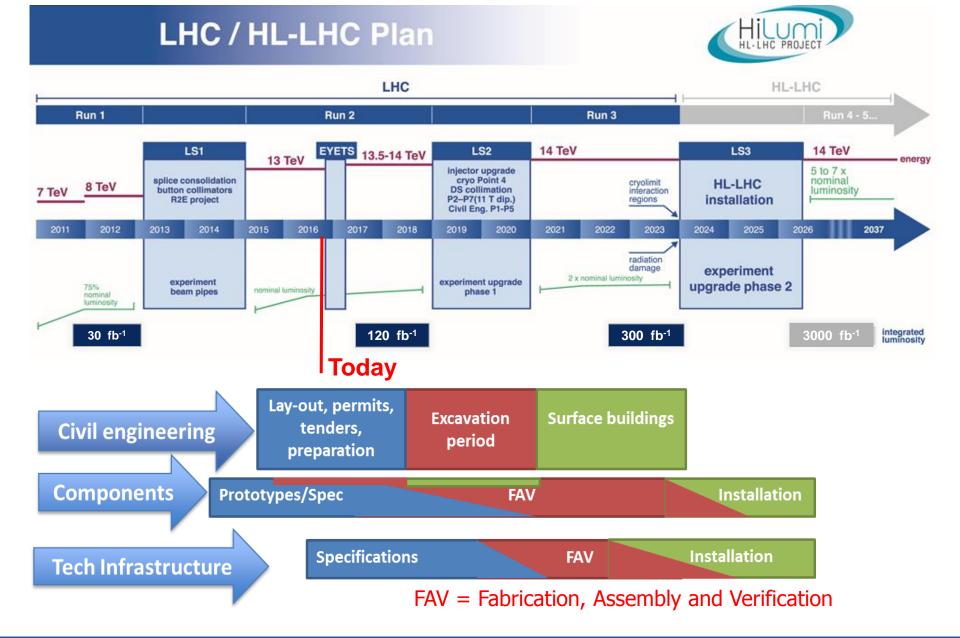
- · ESFRI Roadmap entry: 2016
- Preparation phase: 2014-2017
- Construction phase: 2017-2025

Description


The Large Hadron Collider (LHC) at CERN is the highest-energy particle collider in the world. The ATLAS and CMS experiments at the LHC have provided the breakthrough discovery of the so-called Higgs boson. This discovery is the start of a

The 29 ESFRI Landmarks which have now reached the implementation phase are pan-European hubs of scientific excellence, generating new ideas and pushing the boundaries of science and technology. They are important pillars of European research and innovation for the next decades and they will require continuous support to fulfil their mission and ensure their long-term sustainability.

ESFRI 2016


LHC / HL-LHC Plan

HL-LHC and industries

- The High Luminosity project seeks industrial suppliers and collaborations to start the construction phase and make the High Luminosity upgrade.
- CERN aims at fostering R&D collaborations and knowledge exchange also with SMEs, a perfect opportunity to match their capacity with the requirements of HL-LHC
- Next 4 years there will be intensive prototyping and the production of some of the first series of components.
- For CERN: understanding industry capabilities and the know how that could come from industry is the best way to specify equipment that can be built by industry
- For industries: understanding CERN needs are crucial to tender successfully.

HL-LHC and industries

Provide timely information of what CERN requires and for when

Clear list of what CERN will need, their main characteristics and when the tendering process will start with easy access to the documents

https://project-hl-lhc-industry.web.cern.ch

HL-LHC Industry

https://project-hl-lhc-industry.web.cern.ch

Industry Relations and Procurement Website for the HI -I HC project

HL-LHC Industry

Industry Relations and Procurement Website for the HL-LHC project

General Info

Home General Info

TENDERING FOR HL-LHC

Calls for tenders for HL-LHC

The HL-LHC Industry V ambitious project. We w to accomplish this major

Building th

The industry will have a main source to provide t upgrade of the LHC.

The HL-LHC will collaborate with many types of industrie technology to be developed during the HL-LHC project will i

The Large Hadron Collider (LHC) at CERN & at the Francinstrument ever designed and built for scientific research. since 2010, attracting a global user-community of more than

After only a little more than one year of operation, on 4th 3 could announce the first major discovery: the long-sought

> F. Bordry 2nd HILumi Industry Day – Lisbon

HL-LHC Industry

Industry Relations and Procurement Website for the HL-LHC project

General Info Proc

Procurement Overview

ndering

Acquisition Timeline

Events

Conta

WORK PACKAGES & PROCUREMENT INFO

WP1 - Project Management & Technical Coordination

WP2 - Acceleratos Physics and Performance

WP3 - Insertion Regions Magnets

WP4 - Crab Cavities & RF

WP5 - Collimation

WP6A - Cold Powering

WP6B - Warm Powering

WP7 - Machine Protection

WP8 - Collider-Experiment Interface

WP9 - Cryogenics

WP10 - Energy Deposition & Absorber Coordination

WP11 - 11T Dipole

WP12 - Vacuum

WP13 - Beam Diagnostics

WP14 - Beam Transfer & Kickers

WP15 - Integration & (De-)Installation

WP16 - Hardware Commissioning

WP17 - Infrastructure, Logistics and Civil Engineering

WP9 - Cryogenics

WP Leader: Serge Claudet ₽

Main WP Engineers: Daniel Berkowitz €, Krzyztof Brodzinski €, Laurent Delprat €, Gerard Ferlin €, Lionel Herblin €. Rob Van Weelderen €

Herblin €, Rob Van Weelderen €

Technologies: Cryogenics systems for HL-LHC, Electronic, electrical equipment and instrumentation for accelerators

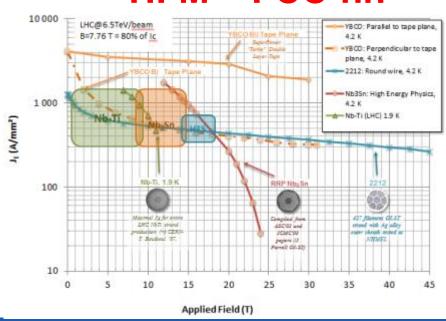
Main materials:

Key external factors: Radiation, 1.9 K

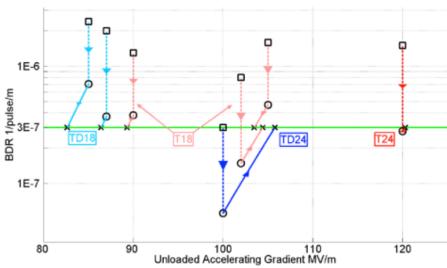
WP9 in a nutshell @ (Please note that info provided in this document is subject to be changed. Mentioned quantities, materials, parameters, etc. may change along the design and/or manufacturing process of the equipment)

WP9 Main Activities ₽

Next 18 months procurements needs @ (Access restricted to ILOs)

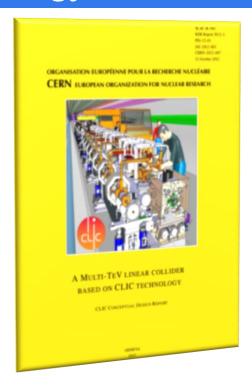


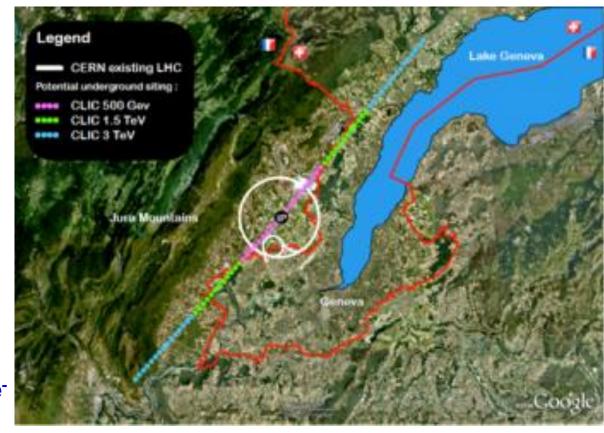
Search


"to propose an ambitious **post-LHC accelerator project at**CERN by the time of the next Strategy update"

d) CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines. These design studies should be coupled to a vigorous accelerator R&D programme, including high-field magnets and high-gradient accelerating structures, in collaboration with national institutes, laboratories and universities worldwide.

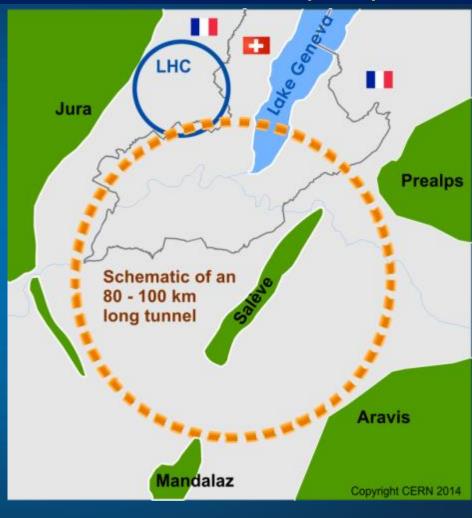
HFM - FCC-hh



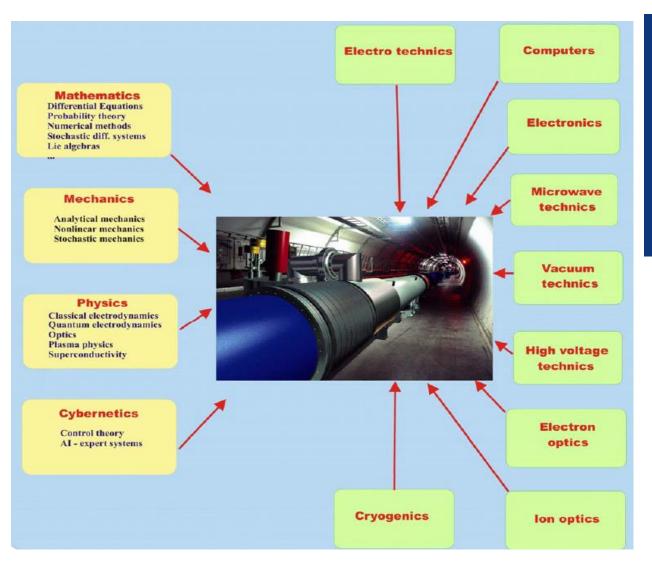

And also R&D on Proton-Driven Plasma Wakefield Acceleration (AWAKE Expt at CERN)

"CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron- positron high-energy frontier machines."

Highest possible energy e⁺e⁻ with CLIC (CDR 2012)


Multi-lateral collaboration

Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2019)


Forming an international collaboration to study:

- pp-collider (FCC-hh)
- → defining infrastructure requirements
- ~16 T \Rightarrow 100 TeV pp in 100 km
- ~20 T \Rightarrow 100 TeV pp in 80 km
- e+e- collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option
- HE-LHC pp ~ 30 TeV in LHC

FCC: 80-100 km infrastructure in Geneva area

List of Technologies needed for building and exploiting Accelerators

Electrical engineering
Electronics
Mechanical engineering
Beam-materials science
Computer engineering
Civil Engineering
Large scale simulations
.....

A multidisciplinary domain!

Conclusions

Cooperation with industry is essential from early stages of the project in order to achieve success within business constraints

- Develop and maintain interest in a one-off, technically risky supply
- Series production of innovative items at market prices
- Competition with other products/markets

The industry will have a crucial role and will be heavily involved within the HL-LHC Project since it will be the main source to provide the technologies and equipment that are required to successfully achieve the goals of this upgrade of the LHC.

https://project-hl-lhc-industry.web.cern.ch

Obrigado pela sua atenção

"A função mais básica do ser humano, é criar o futuro" Paul Valéry

