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.. from the previous lesson

What is an Field Programmable Gate Array (FPGA)?



.. from the previous lesson

What is an Field Programmable Gate Array (FPGA)?

FPGA - Wikipedia
https://en.wikipedia.org/wiki/Field-programmable_gate array

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.
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What is an Field Programmable Gate Array (FPGA)?

FPGA - Wikipedia
https://en.wikipedia.org/wiki/Field-programmable_gate array

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

...for Geeks
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.. from the previous lesson

 FPGA fabric (matrix like structure) made of: 5N NN EE B / Block

e |/0-cells to communicate with outside world 0 il
 Logic cells 1| | — =

O Look-Up-Table (LUT) to implement combinatarial logic " =™ JlIE— =
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o C[lock tree to distribute the clock signals ' i | ' | ' |
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.. from the previous lesson

o But it also features Hard Blocks:

Example of FPGA architecture

6.144-Gbps

: — HPS 11O
Transceivers
ALMs and
- ARM Cortex-A2
Distributed M
istributed Memory MPCaore HPS
PLLs — M10K Embedded
Memaory Blocks
6.144-Ghbps
Transceivers PCS Variable-Precision
Digital Signal Processing
(DSP) Hard IP Blocks
Hard |P Blocks for
PCle Gen 2 and — Up to 560 User /0 Pins
PCle Gen 1
Two CorelTransceiver
External Memaory —— Power Regulators

Interface Controllers Reaquired (1.1V 2.5V
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Key concepts about FPGA design

FPGA gateware design is NOT programming
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Key concepts about FPGA design

FPGA gateware design is NOT programming
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Programming
e [ode is written and translated into instructions
e [nstructions are executed sequentially by the CPU(s)
o Parallelism is achieved by running instructions on multiple threads/cores
 Processing structures and instructions sets are fixed by the architecture of the system

VS.
FPGA gateware design

 No fixed architecture, the system is built according to the task
e Building is done by describing/defining system elements and their relations
o Intrinsically parallel, sequential behaviour is achieved by registers and Finite-State-Machines (FSMs)

o Description done by schematics or a hardware description language (HDL)
11



Key concepts about HDL
HDL are used for describing HARDWARE
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Key concepts about HDL

HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

A\
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Key concepts about HDL
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

* |nprogramming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

A\

14



Key concepts about HDL
HDL are used for describing HARDWARE /&\

 Example of a WAIT statement (Programming Language VS. HDL)

* |nprogramming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

e InHDL (e.g. VHDL):

L\ S,VStemh
: . . y ell]()q
o Not synthesizable (only for simulation test benches) ~— & '\“%
wait for 5 sec; -- handy for TB clocks ‘Q)V\
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Key concepts about HDL
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

* |nprogramming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

e InHDL (e.g. VHDL):

o Not synthesizable (only for simulation test benches)
wait for 5 sec; -- handy for TB clocks

o Synthesizable (for simulation and/or FPGA implementation)

simple_delay counter : process (delay_rst, delay clk, delay _ena)
begin -- process
if delay rst = '1° then
5_count <= delay ld wvalue;
s delay done == '8°';
elsif rising edge(delay_clk) then
if delay ena = '1' then
if delay 1d = '1" then
s_count <= delay ld value;
else
s_count == s5_count - 1;
end if;
end if;
if s_count = 0@ then
s_delay done == '1°
else
s_delay done <= '8°';
end if;
end if;
end process;

16



Key concepts about HDL
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

* |nprogramming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

e InHDL (e.g. VHDL):

O Not synthesizable (only for simulation test benches)
wait for 5 sec; -- handy for TB clocks

o Synthesizable (for simulation and/or FPGA implementation)

simple delay counter : process (delay_rst, delay clk, delay _ena)
begin -- process
if delay rst = '1° then
5_count <= delay ld wvalue;
s delay done == '8°';
elsif rising edge(delay_clk) then
if delay ena = '1' then
if delay 1d = '1" then
s_count <= delay ld value;
else
s_count == s5_count - 1;
end if;
end if;
if s_count = 0@ then

| detay done <= 17 Register Transfer Level (RTL)
o -delay_done <= "o7; http://en.wikipedia.org/wiki/Register-transter_|evel
oot proteses A design abstraction which models a synchronous digital circuit in terms of

‘ HDL to RTL the flow of digital signals (data) between registers and logical operations

performed on those signals 17
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Key concepts about HDL
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

* |nprogramming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

e InHDL (e.g. VHDL):

o Not synthesizable (only for simulation test benches)

wait for 5 sec; -- handy for TB clocks

b}"Stemm
~___ 8

\Qx'\\“%

o Synthesizable (for simulation and/or FPGA implementation)

simple delay counter : process (delay_rst, delay clk, delay _ena)

begin -- process
if delay rst = '1° then
5_count <= delay ld wvalue; T - = -
s _delay done == '0°; E PFOJ'ECf ;ummary xp #IRTL Scrhe:rnatnc X @ Delay.vhd x Elaborated (RTL} Design
elsif rising edge(delay_clk) then 3 1sCels 13U0Ports Solg
if delay ena = '1' then A2 T minsOp i
if delay 1d = '1' then » ! :m':l oi7.0)
s_count <= delay ld value; Qs T sus
else Qg delay 1d [
s_count == 5_count - 1; Q.
end if; =
end if; .
if s count = @ then = delay_rst [ eqOp_i | s delay_done_reg
- LR, 0{7:0
s_delay done == '1°; el = ) p "
— — B delay_clk - . r | L o {"rdelay_done
else — 5_count_reg[ 7:0] 1 RTL_EQ
s_delay done <= '8°'; =l = HTL_REG_ASYNC
end lf, L] delayl_enaBH
. g+ | delay_ld_value|7:0] T .
end if; & s_countl i o~
end process; L | ST o2i i) : RTL_REG_ASYNC
X RTL_INV
HOL to RTL ’ .
@
counter control counter Flip-Flops registered output 18
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Key concepts about HDL
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

* |nprogramming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

e InHDL (e.g. VHDL): | et

o Not synthesizable (only for simulation test benches)
- handy for TB clocks

walt for 5 sec;

o Synthesizable (for simulation and/or FPGA implementation)

simple_delay counter : process (delay_rst, delay clk, delay _ena)
begin -- process £ fsimple_delay/delay_rst
if delay rst = '1° then £ [simple_delay/delay_clk
s_count <= delay_ld_value; . i e eyl e
- e ] i o imple_delay/delay Id
s _delay done == '0°; L Project Summary X “IRTL Schematic x @ .’SfmIJ
- e ! | 15 3 < fsimple_delay/delay_ld_val
elsif rising edge(delay_clk) then 3| 15Cels 13U0Ports E4N2 S e P
if delay ena = "1’ then \ A I [ & /smple delay/s count
if delay 1d = '1' then ! w_l-(‘ “otz.00 “_ fsimple delay/s delay done
s_count <= delay ld value; Qs ET/Lsua
else ;){ delay _Id [
s_count == s_count - 1; a,;
end if; K
end if; .
if 5s_count = @ 'therl'n . delay_rst [ . er{r:_i lLidPlay_done_reg
S_dEl.EI}'_dOI'IE == 1 i ¥ delay_clk — e = nL o ["rdelay_done
else - 5_count_reg[ 7:0] RTLEQ [ ||
s_delay done <= '8°'; = = HTL REG_ASYNC
end lf, >3 delaylenan
. .. | delay Id_valuel7:0]
end if; & s_countl |
end process; | ST o2i i) RTL_REG_ASYNC
HOL to RTL - -
_ﬂ ¢
counter control counter Flip-Flops registered output 19
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Key concepts about HDL
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

* |nprogramming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

e InHDL (e.g. VHDL):

o Not synthesizable (only for simulation test benches)
wait for 5 sec; -- handy for TB clocks

o Synthesizable (for simulation and/or FPGA implementation)

simple_delay_counter : process (delay_rst, delay_clk, delay_ena) < | msgs]
begin -- process £ fsimple_delay/delay_rst
if delay rst = '1° then £ [simple_delay/delay clk

4 fsimple_delay/delay_ena

5_count <= delay ld wvalue; !
L Project Summary X ] RTL Schematic % @ O £ [simple_delay/delay _Id

s delay done == '8°';

. A 5 Call 3| s 64 Net B+ /simple delay/de”
elsif rising edge(delay_clk) then 3 1sCels 13U0Ports Solg ¢js|edm :
if delay ena = '1' then * T — B /simple_delay/s ¢ :
if delay 1d = '1" then L 'K‘ Noizor [ “_ simple delay/s ¢ 1=
- 07:0 E
s_count <= delay ld value; Qs ET/Lsua
else \'\‘ delay _Id [
s_count == s_count - 1; a,;
end if; B
end if;
if s_count = 0@ then delay_rst [
s delay done == '1°"; - delay_clk >
else -
s_delay done <= '8°'; -
end lf, Z delay_ena [
) .. | delay_Id_value|7:0) C— T .
end lf,‘. ¢ ) s_cnqntli 5 countD_i__
end process; /| ar0i 0f7:d] . :
> RTL_INV
( HOL to RTL = _
®
counter control
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Key concepts about HDL

Timing in FPGA gateware design is critical
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Key concepts about HDL
Timing in FPGA gateware design is critical /&\

o Data propagates in the form of electrical signals through the FPGA

FPGA DEVICE
Board Board
Device internal Delay ~ peey Data Path Delay Regp  nternal Delay Device
DIN DoutT
b G D Q—O—DD Q—O—»ﬂ v
Input T,.u.;\.. _,-"Tm Tmu:‘.l;':Tm Output
{1 Delay T § Toas § Delay ,X(
A
Clock

22



Key concepts about HDL
Timing in FPGA gateware design is critical /m\

o Data propagates in the form of electrical signals through the FPGA

FPGA DEVICE
Board
Device REGA Data Path Delay Regp  Internal Delay 32:;:1
DoutT
D Q LI O—»ﬂ >4
1 Input e’ T s Output §™,
; Delay i ! Delay :
A A
C|0ck ---------------------------------------------------------------------------------

Synthesized RTL (Netlist) is implemented into FPGA
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Key concepts about HDL
Timing in FPGA gateware design is critical /m\

o Data propagates in the form of electrical signals through the FPGA

FPGA DEVICE
Board
Device REGA Data Path Delay Regp  Internal Delay 32:;:1
pouT
D Q LI O—»ﬂ >4
Input " the p Output
; Delay i ! Delay :
A X
C|0ck ---------------------------------------------------------------------------------

Synthesized RTL (Netlist) is implemented into FPGA

« If these signals do not arrive to their destination on time...

The consequences may be catastrophic!!! 2



Key concepts about HDL

When designing FPGA gateware you have to think
HARD..

a@@
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Key concepts about HDL

When designing FPGA gateware you have to think
HARDWARE
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FPGA gateware design work flow

Constraints
(Physical
o Timing)

<

Project
Specification

v

Design Entry

}

Synthesis

}

Implementation

}

Static Timing Analysis

}

Bitstream Generation
& FPGA Programming

l

BAY

|

Behavioural Simulation

Functional Simulations
(Post-Synthesis
or
Post-lmplementation)

Timing Simulation

In-System
Debugging




FPGA gateware design work flow

Project Specification

This [s the mest critical step.-

The rest of the design process is based on it!!!
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FPGA gateware design work flow

Project Specification

This [s the mest critical step.-

The rest of the design process is based on it!!!
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FPGA gateware design work flow

Project Specification

This [s the mest critical step.-

+ Gather requirements fromtheusers | N2 rest of the design process is based on it!!!
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FPGA gateware design work flow

Project Specification
This [is the most critical step.--

o [Gather requirements from the users ThE rest [If thE dESigI'I pProcess IS |JEISEE| an ItHI
 Specify:
 Target application (General purpose or Specific)

Example of General Purpose Gateware

32



FPGA gateware design work flow

Project Specification

This [s the mest critical step.-

+ Gather requirements fromtheusers | N2 rest of the design process is based on it!!!
 Specify:

o Target application (General purpose or Specific)

Example of Application Specific bateware

LEGEND

CLK 40MHz
CLK 160MHz

Upstream

GBT Serializer

Dptical E TIC E
transceiver {EOMbps E source E

Readom GBT Deserializer @ .........
V& Traﬁzll::iver ‘: GBTx
@) .
— FI.I. REEWEI‘Ed ABEhpS --------
CLK



FPGA gateware design work flow

Project Specification

This [s the mest critical step.-

+ Gather requirements fromtheusers | N2 rest of the design process is based on it!!!
 Specify:

e Target application (General purpose or Specific)
 Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

Example of FPGA Architecture”

G.144-Ghps

- — HPS IO
Transceivers
AlLMs and
. ARM Cortex-A2
Distributed M
istributed Memary MPCore HPS
FLls — M10K Embedded
Memary Blocks
6. 144-Gbps

Transceivers PCS Vanable-Precision

Digital Signal Processing
(DSP) Hard IP Blocks

Hard IF Blocks for
PCle Gen 2 and —— Up to 5680 User /0 Pins
PCle Gen 1

Two CorefTransceiver
External Memary Power Regulators 34
Interface Controllers Required (1.1V, 2.5V)



https://en.wikipedia.org/wiki/Field-programmable_gate_array

FPGA gateware design work flow
Project Specification

This [s the mest critical step.-

+ Gather requirements fromtheusers | N2 rest of the design process is based on it!!!
o Specify:

o Target application (General purpose or Specific)

* Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.) ilin

o FPGA vendor (e.q. Xilinx, Intel (Altera), Microsemi (Actel), Lattice, etc.) 2369.45
49%
v 1
A PJA
& XILINX /ATBrERYa\
ALL PROGRAMMABLEw now part Of |ntel
I QuickLogic
20.2
1%
AImEl O Microsemi
e« [licrosemi. \ 3,0033.49
= LATTICE g QuickLogic E‘gt?t'%e? Semi
. 6%
Small FPGA vendors may target specific markets ?'Igtgfém FPGA Market Share by 2010

(e.g. Microsemi offers high reliable FPGAs, etc..) 40% in Millions of USD 35



FPGA gateware design work flow
Project Specification

This [s the mest critical step.-

+ Gather requirements fromtheusers | N2 rest of the design process is based on it!!!
 Specify:
REELY Example of COTS board (Xiin: Devki)

 Target application (General purpose or Specific)
* Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

o [PGA vendor (e.g. Xilinx, Intel (Altera), Microsemi (Actel). Lattice, etc.) P
e Electronic board (Custom or COTS () =

;-:c- .i=ii !
= TS

- @

Example of Custom Board

(%) Commercial DFf-The-Shelf (COTS) ~°



FPGA gateware design work flow
Project Specification

This Is the mest critical sien--

+ Gather requirements from thewsers [ 112 rest of the design process is based on it!!!
o Specify:

o Target application (beneral purpose or Specific) Example of Commercial Tools
Main features (e.g. System bus, Sol, Multi-gigabit transceivers, etc.)

FPGA vendor (e.g. Xilin, Intel (Altera), Microsemi (Actel)., Lattice, etc.)
Electronic board (Custom or COTS (%))

Development tools (FPGA vendor or Commercial)

Example of FPGA Vendor Tools

(*) Commercial Off-The-Shelf (COTS) 37




FPGA gateware design work flow

Project Specification
This [s tihhe mest critical step.

+ Gather requirements from thewsers [ 112 rest of the design process is based on it!!!
o Specify:

o Target application (beneral purpose or Specific)

 Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

o FPGA vendor (e.q. Xilinx, Intel (Altera), Microsemi (Actel), Lattice, etc.)
e Electronic board (Custom or COTS (%))

e Development tools (FPGA vendor or Commercial)
o [ptimization (Speed, Area, Power or default)

(%) Commercial DFf-The-Shelf (COTS) °°



FPGA gateware design work flow

Project Specification
This [s tihhe mest critical step.

+ Gather requirements from thewsers [ 112 rest of the design process is based on it!!!
o Specify:

o Target application (beneral purpose or Specific)

 Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

o FPGA vendor (e.q. Xilinx, Intel (Altera), Microsemi (Actel), Lattice, etc.)

e Electronic board (Custom or COTS (%))

e Development tools (FPGA vendor or Commercial)

o [ptimization (Speed, Area, Power or default)

(%) Commercial Off-The-Shelf (COTS) °



FPGA gateware design work flow

Project Specification
T8 T8 Mot et Tie S30.

+ Gather requirements from thewsers [ 112 rest of the design process is based on it!!!
o Specify:

o Target application (beneral purpose or Specific)

 Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

o FPGA vendor (e.q. Xilinx, Intel (Altera), Microsemi (Actel), Lattice, etc.)

e Electronic board (Custom or COTS (%))

e Development tools (FPGA vendor or Commercial)

o [ptimization (Speed, Area, Power or default)

i i

i E

B

- 3

= 5
E i
] a
L

(%) Commercial DFf-The-Shelf (COTS) *°



FPGA gateware design work flow

Project Specification
T8 T8 Mot et Tie S30.

* bather requirements from the users The rest of the dESigI'I ProcESS
o Specify:
o Target application (beneral purpose or Specific)
 Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)
o FPGA vendor (e.q. Xilinx, Intel (Altera), Microsemi (Actel), Lattice, etc.)
e Electronic board (Custom or COTS (%))
e Development tools (FPGA vendor or Commercial)
o [ptimization (Speed, Area, Power or default)

(%) Commercial OFF-The-Shelf (COTS)



FPGA gateware design work flow

Project Specification
This [s tihhe mest critical step.

+ Gather requirements from thewsers [ 112 rest of the design process is based on it!!!

o Specify: Examples of Design Languages

o Target application (beneral purpose or Specific) —

 Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.) 34 ETP :
o FPGA vendor (e.g. Xilinx, Intel (Altera), Microsemi (Actel), Lattice, etc.) | = =

e Electronic board (Custom or COTS (%)) : 2203

e [Development tools (FPGA vendor or Commercial) s

o [ptimization (Speed, Area, Power or default)
e Design language (Schematics or HDL (e.g. VHDL, etc.)

HDL are the most popular for RTL design
but...
Schematics may be better in some cases
(e.g. SoC bus interconnect, etc..)

(%) Commercial OFF-The-Shelf (COTS)



FPGA gateware design work flow

Project Specification
T8 T8 Mot et Tie S30.

+ Gather requirements from thewsers [ 112 rest of the design process is based on it!!!

o Specify:

o Target application (beneral purpose or Specific)

 Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)
o FPGA vendor (e.q. Xilinx, Intel (Altera), Microsemi (Actel), Lattice, etc.)
e Electronic board (Custom or COTS (%))

e Development tools (FPGA vendor or Commercial)

o [ptimization (Speed, Area, Power or default)

e Design language (Schematics or HDL (e.g. VHDL, etc.)

 [oding convention Example of Coding Convention

description extension example
variable prefix v v_Buffer
YO u r CO d e alias prefix a a_Bit5
constant prefix ¢ ¢_Lenght
S h O u I d b e type definition prefix t t_MyType
re ad a b I e generics prefix g g_Width

(%) Commercial OFF-The-Shelf (COTS)




FPGA gateware design work flow
Project Specification

This Is the mest critical sien--

+ Gather requirements from thewsers [ 112 rest of the design process is based on it!!!

o Specify: Example of GUIs

o Target application (beneral purpose or Specific)
 Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.) |-
o FPGA vendor (e.q. Xilinx, Intel (Altera), Microsemi (Actel), Lattice, etc.)

o Electronic board (Custom or COTS (+)) e S I

e Development tools (FPGA vendor or Commercial) E

o (Optimization (Speed, Area, Power or default) e e =
e Design language (Schematics or HDL (e.g. VHDL, etc.)) - o
 [oding convention i

o JSoftware interface (GUI. Scripts or both) Fxample of TCL script _

EE e S s gt e e s s st E s s e sy XIlIﬂX |SE TEL ED”SD'E
FEEFEFAFAFASFA444444 Commands for Adding the Source Files of the GET-FPGR Core F##3##3#353834343484844

PR R R A R R R R AR A3 44 7347474747074 87482 Td Console
49 #% Comment: Adding Common files:
;_ puts "->"
52 puts "-> Adding common files of the GBT-FPGA Core to the ISE pr
puts "->"
xfile add £S0OURCE PATH/gbt bank/core sources/gbt rx/gbt rx.vhd
xfile add £50URCE FATH/gbt bank/core sources/gbt rx/gbt rx deco Command = | xtclzh gbt ﬁ:sga tel wiline virtex 7
xfile add SSOURCE FATH/gbt_bank/core_sources/gbt_rx/gbt_rx deco = '
||§] Console |® Errors | ﬁ Warnings | @ Td Console | (M Findin Files Results 44
-




FPGA gateware design work flow

Project Specification
This [s the most critical step.-

+ Gather requirements fromtheusers | N2 rest of the design process is based on it!!!
 Specify:

 Target application (General purpose or Specific)

* Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

o FPGA vendor (e.g. Xilinx, Intel (Altera), Microsemi (Actel), Lattice, etc.)
e Electronic board (Custom or COTS (*))

e [Development tools (FPGA vendor or Commercial) a Q

o [ptimization (Speed, Area, Power or default)

o Design language (Schematics or HOL (e.g. VHDL, etc.)) ST
 [oding convention RSio "

 Software interface (GUI, Scripts or both)

o lse of files repositary (SVN, GIT, etc.. or none)
(*) Commercial Off-The-Shelf ( EI]TS)




FPGA gateware design work flow

Project Specification
This [s tihhe mest critical step.

«  Block diagram of the system The rest of the design process is based on it!!!
e Include the FPGA logic...

e .. but also the on-board devices and related devices
e May combine different abstraction levels
Example of system block diagram

MTCA Crate

GBT Deserializaer

SFP+
Transceiver 86ty
Recovered
PLL
CLK 40MHz jj CLK

46



FPGA gateware design work flow

Project Specification

This [s the mest critical step.-

* Pin planning

Pin assignments are one type
of Location Constraints

Critical for
Custom Boards!!!

Example of Pin Planner GUI

The rest of the design process is based on it

Pin Planner - /home/adpl/CPREZ2EL/project/Project - Project

Groups L@
Named:[* vl
MNode Name Direction Location

==new group==

I [¥]

7
°

v
c
o
<

o

QX Ol
)

0

| bHORER
6

|Se-a|'cl'| altera.com

Top View - Wire Bond
Cyclone || - EPZCISFETICE

OOCO0000

lelnie ele (W0

OO CGCGENN

OOOOOOAL A G -
:?t?. Cltl'ﬂl'lﬂ'.l. (-H)
AT

AN O,
WO
AEALE,

i

Named{s v | Jeat| % | v

|.]: 1

[

Filter Pins: al
Node Name Direction Location VREF Group /O Standard Reserve
iE* Bit0D Input PIN_N25 5 B5_N1 3.3-V ...fault)
B Bitl Input PIN_N26 5 B5_N1 3.3-V ..fault)
B~ Bit2 Input FIN_P25 6 B&_NO 3.3-V ..fault)
¥ Bit3 Input PIN_AE14 7 B7_N1 3.3-V ..fault)
B Clear Input PIN_W2 1 B1_NO 3.3-V ..fault)
= Clock Input PIN_N2 2 B2 N1 3.3-V ..fault)
B+ Control Input PIN_C13 3 B3 _NO 3.3-V ..fault)
¥ Gn Input PIN_B13 4 B4 N1 3.3-V ..fault)
[ﬂ innuta Qo BIN 1 3 2 B2 N1 3 3-W . fault)

0% 00:00:00
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FPGA gateware design work flow
Design Entry

Input State ~---------,

PHASE 3
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FPGA gateware design work flow
Design Entry: Modularity & Reusability

Your system should be Modular

Design at RTL level (think hard...ware)

Well defined clocks and resets schemes
Separated Data & Control paths Clock
Multiple instantiations

Good example of Modular System

’

8-bit

p> O-bit Counter  pefeip
Increment  Reset
A
\ 4
Pattern Data Valid Flag N
Generator | ... 1B-bit
Reset

Your code should be Reusable Reset

 Add primitives (and modules) to the system by inference when possible

i

Address

RAM

2abx16-bit

Write Enable

Data

Reset

}

e lse parameters in your code (e.g. generics in VHDL, parameters in Verilog, etc.)

 [entralise parameters in external files (e.g. packages in VHDL, headers in Verilog, etc.)
e Use configurable modules interfaces when possible (e.g. parametrised vectors, records in VHDL, etc.)

o lse standard features (e.g. I2C, Wishbane, etc.)

e lse standard [P Cores (e.g. from www.OpenCores.org, etc.)

e Avoid vendor specific IP Cores when possible

e Talk with your colleagues and see what other FPGA designers are doing



http://www.opencores.org/

FPGA gateware design work flow
Uesign Entry: Coding for Synthesis

Synthesizable code Is intended for
FPGA implementation

 Use non-synthesizable HLD statements only in simulation test benches

A fundamental guiding principle when coding for synthesis is to minimize, if not eliminate, all structures
and directives that could potentially create a mismatch between simulation and synthesis.

From book “Advanced FPGA Design” by Steve Kilts (Copyright [ 2007 John Wiley & Sons, Inc.)

e The RTL synthesis tool is expecting a synchronous design...
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FPGA gateware design work flow
Design Entry: Goding for Synthesis

Synthesizable code Is intended for
FPGA implementation

 Use non-synthesizable HLD statements only in simulation test benches

A fundamental guiding principle when coding for synthesis is to minimize, if not eliminate, all structures
and directives that could potentially create a mismatch between simulation and synthesis.

From book “Advanced FPGA Design” by Steve Kilts (Copyright [ 2007 John Wiley & Sons, Inc.)

e The RTL synthesis tool is expecting a synchronous design...

But what is a synchronous design???
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FPGA gateware design work flow
Design Entry: Goding for Synthesis

Synthesizable code Is intended for
FPGA implementation

 Use non-synthesizable HLD statements only in simulation test benches

A fundamental guiding principle when coding for synthesis is to minimize, if not eliminate, all structures
and directives that could potentially create a mismatch between simulation and synthesis.

From book “Advanced FPGA Design” by Steve Kilts (Copyright [ 2007 John Wiley & Sons, Inc.)

o The RTL synthesis tool is expecting a synchronous design...

Synchronous design is the one compose by combinatorial logic (e.g. logic gates, multiplexors, etc..) and
sequential logic (registers that are triggered on the edge of a single clock),

Combinatorial Logic Sequential Logic Synchronous design

Rst + + RSt +
D R Q p R Qp—Out In

— Clk |—’Clk Clk—— Clk

— Out

e
+

T =)
Il

}
D
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https://en.wikipedia.org/wiki/Field-programmable_gate_array
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https://en.wikipedia.org/wiki/Field-programmable_gate_array

FPGA gateware design work flow
Design Entry: Goding for Synthesis

Synthesizable code Is intended for
FPGA implementation

 Use non-synthesizable HLD statements only in simulation test benches

A fundamental guiding principle when coding for synthesis is to minimize, if not eliminate, all structures
and directives that could potentially create a mismatch between simulation and synthesis.

From book “Advanced FPGA Design” by Steve Kilts (Copyright [ 2007 John Wiley & Sons, Inc.)

o The RTL synthesis tool is expecting a synchronous design...

Synchronous design is the one compose by combinatorial logic (e.g. logic gates, multiplexors, etc..) and
sequential logic (registers that are triggered on the edge of a single clock),

Combinatorial Logic Sequential Logic Synchronous design

Rst + + RSt +
D R Q p R Qp—Out In

— Clk |—’Clk Clk—— Clk

— Out

e
+

T =)
Il

}
D
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https://en.wikipedia.org/wiki/Field-programmable_gate_array

FPGA gateware design work flow
Uesign Entry: Coding for Synthesis

e [ombinatorial logic coding rules

o Sensitivity list must include ALL input signals
Not respecting this may lead to non responsive outputs under changes of input signals

o ALL output signals must be assigned under ALL possible input conditions
Not respecting this may |ead to undesired latches (asynchronous storage element)

 Nofeedback from output to input signals
Not respecting this may lead to unknown output states (metastability) & undesired latches

Good combinatorial coding for synthesis Bad combinatorial coding for synthesis
Typical
Tt Table Asynchronous Latch
A } CBA|Q
0000 —1s
8 Q oo1fo 0 1
C 010]0
D110 —qr @ . 0 1 0
1001 :
10110 S— 1 Metastable
110f0
1110
process (Input A, Input B, Input C) process (Ipfut R)
begin begin
Cutput nand <= Input A nand Input B; tput <= Input R nor CutdNE {Q n;
Cutput nor <= Input A nor Input B; Cutput Q n <= Input 5 nor JutputNQ:

nd process;
Cutput <= Cutput nand and Input C and Jutput nor;
end process;
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FPGA gateware design work flow
Uesign Entry: Coding for Synthesis

 Sequential logic coding rules

e [nly clock signal (and asynchronous set/reset signals when used) in sensitivity list
Not respecting this may produce undesired combinatorial logic

 All registers of the sequence must be triggered by the same clock edge (either Rising or Falling)
Not respecting this may |ead to metastability at the output of the registers

* Include all registers of the sequence in the same reset branch
Not respecting this may lead to undesired register values after reset

Good sequential coding for synthesis Bad sequential coding for synthesis

process (Clk,RE=st)

begin Rst E cess (Clk,Rst, Input_In)
if (Rst = '1') then X g =gt
tput <= 'Ot .
elsif rising edge(Clk) then —:dgf‘;igu:h;‘}
Cutput Out <= Output H - e
et put_Q Clk— Clk Clk = Input In;
Output Q <= Input In: . -

end if;
end process;
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FPGA gateware design work flow

Uesign Entry: Goding for Synthesis

e Synchronous design coding rules:

FULLY synchronous design
o No combinatorial feedback

o Noasynchronous latches
Not respecting this may lead to incorrect analysis from the FPGA design tool

Register ALL output signals (input signals also recommended)
Not respecting this may lead to uncontrolled length of combinatorial paths

Properly design of reset scheme (mentioned later)
Not respecting this may lead to undesired register values after reset

Properly design of clocking scheme (mentioned later)
Not respecting this may |ead to metastability at the output of the registers & Misuse of resources

Properly handle Clock Domain Crossings (COC) (mentioned later)
Not respecting this may |ead to metastability at the output of the registers

Rst + +
D Q D QpF—Out

In

Clk——’ Clk
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FPGA gateware design work flow

Design Entry: Goding for Synthesis

Finite State Machines (FSMs):

e Digital logic circuit with a finite number of internal states

o Widely used for system control

e Two variants of FSM

o Moore: Dutputs depends only on the current state of the FSM
o Mealy: Outputs depends only on the current state of the FSM as well as the current values of the inputs

o Modelled by State Transition Diagrams Button Not
Button Pressed pracced

Button Mot
Pressed

Button Pressed

o Many different FSM coding styles (But not all of the are good!!)

 FSM coding considerations:

O Synchronize inputs & outputs

o [lutputs may be assigned during states or state transitions
o Be careful with unreachable/illegal states
0

You can add counters to FSMs
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FPGA gateware design work flow

Design Entry: Reset Scheme A bad reset scheme may get you crazy!!

Used to initialize the output of the registers to a know state
It has a direct impact on:

* Performance
 Logic utilization
o Reliability
Different approaches:
O Asynchronous
Pros: No free running clock required, easier timing closure
Cons: skew, glitches, simulation mismatch, difficult to debug, extra constraints, etc.
O Synchronous
Pros: No Skew, No Glitches, No simulation mismatch, Easier to debug, No extra constraints, etc..
Cons: Free-running clock required, More difficult timing closure
o0 No Reset Scheme

Pros; Easier Routing, Less resources, Easiest timing closure
Cons: Only reset at power up (in some devices not even that...) <- In fact, reset is not always needed

o Hybrid: Usually in big designs (Avoid when possible!!!)
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FPGA gateware design work flow

Design Entry: Reset Scheme ) bad reset scheme may get you crazy!!

o Used to initialize the output of the registers to a know state
e |t has a direct impact on:

o Performance My advise is..

e Logic utilization YOU ShOUId use
e Reliability

o Different approaches: SYNCHRONOUS RESET
o Asynchronous by default

Pros: No free running clock required, easier timing closure
Cons: skew, glitches, simulation mismatch, difficult to debug, extra constraints, etc.
O JSynchronous
Pros: No Skew, No Glitches, No simulation mismatch, Easier to debug, No extra constraints, etc..
Cons: Free-running clock required, More difficult timing closure

o0 No Reset Scheme
Pros; Easier Routing, Less resources, Easiest timing closure
Cons: Only reset at power up (in some devices not even that...) <- In fact, reset is not always needed

o Hybrid: Usually in big designs (Avoid when possible!!l)
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FPGA gateware design work flow
Design Entry: Clocks Scheme

e C[Clock regions
e [lock trees (Global & Local)

o [Dther FPGA clocking resources

Clock capable pins
 [lock buffers

Clock Multiplexars
e PlLs&DCM

Clock Regions <

 Bad practices when designing your clocking scheme

CLK

Lated clocks

FF

Do not use these clocks
in your system!!!

|ocal clock tree _li

CLK

Derived clocks

cor

FF
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FPGA gateware design work flow
Design Entry: Timing

« Sampling In B Out

Sampling Clk Clk
Point

X oamaim; X o X

No Stable Data
(Metastable Area)
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FPGA gateware design work flow

Design Entry: Timing

Clock Domain Crossing (CDC)

See you on the other side...
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FPGA gateware design work flow
Uesign Entry: Timing

e Clock Domain Crossing (CDC)

See you on the other side...

T S A A e i v .1
~~ _© . ...or maybe not. ®¢&
e':‘ _: 2 '\ " ‘ . S r

)
S -

; O




FPGA gateware design work flow
Uesign Entry: Timing

e Clock Domain Crossing (COC): The problem...

e [lock Domain Crossing (CDC) : passing a signal from one clock domain to another (A to B)
o |fclocks are unrelated to each other (asynchronous) timing analysis is not possible
e Setup and Hold times of FlipFlop B are likely to be violated -> Metastability!!!

{:“‘A m

Aout Bout Aout
n

clkA clkB

Signal violates the setup-time of FlipFlop B clocked by Clk B
Bout becomes metastable and then settles at either at 'l or ‘0

Avold creating unnecessary clock domains

64



Design Entry: Timing

FPGA gateware design work flow

 Clock Domain Crossing: The workaround...

Rst

Synchronizers

v v
In Do D Rol—out
Clk——PClk I—’cm
amp| Din
— | WrEn  Asynchronous
—] Ful FIFO
—>| WrClk

Handshaking

BLOCK A

VALID i

f READY

DATA

—

Dout

RrEn
Empty | «—
Rd Clk je——

Be aware of FIFD overflow/underflowl!!

BLOCK B

DPRAM

—

lll

[0..]] ey
—

Din
Wr En

Wr Addr
Wr Clk

Dout

RrEn
Rd Addr
Rd Clk

lll

< []..0]
<_

Phase alignment
5 ¥ v __I . ___

S L NS B
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FPGA gateware design work flow
Design Entry: Primitives & IP Cores

Primitives: Basic components of the FPGA
 \endor (and device) specific

o Examples: Buffers (/0 & Clock), Registers, BRAMs, DSP blocks, Logic Gates (programed LUTs)

Hard IP Cores: Complex hardware blocks embedded into the FPGA

 \Vendor (and device) specific
o Fixed |/0 |ocation
 |nmany cases they may be set through GUI (Wizards)

 Examples: : PLLs, Multi-gigabit Transceivers, Ethernet MAC, Microprocessaors, etc..

Soft IP Cores: Complex (or simple) modules ready to be implemented

 They may be vendor specific or agnostic:

o Vendor Specific: Encrypted Code or Requires Hard IP Core

Instantiated FlipFlop
(for Microsemi ProAsicd)

DFN1Cl FlipFlop |
.D {Input D),
.CLE (Clk),

o Vendor Agnostic: Commercial or Open Source (www.OpenCores.org) CIR (Rst),

* |nmany cases they may be set through GUI (Wizards)
o Examples: : All kind of modules

Two ways of adding Primitives & IP Cores to your system:
e Instantiation: The module is EXPLICITLY added to the system

o Inference: The module is IMPLICITLY added to the system

.0 (Cutput Q)):;

Inferred FlipFlop (Verilog)

always @ (posedge Clk or posedge Rst)
begin
if (Rst)
Qutput_Q <= 0;
else
Output_Q <= Input D;
end



FPGA gateware design work flow
Design Entry: Primitives & IP Cores

Primitives: Basic components of the FPGA
 \endor (and device) specific

Add Primitiygs by Infergpgg

o Examples: Buffers (/0 & Clock), Registers, BRAMs, DSP blocks, Logic Gates (programed LUTs)
Hard IP Cores: Complex hardware blocks embedded into the FPGA

 \Vendor (and device) specific
o Fixed |/0 |ocation
 |nmany cases they may be set through GUI (Wizards)

 Examples: : PLLs, Multi-gigabit Transceivers, Ethernet MAC, Microprocessaors, etc..

Soft [P Cores: Complex (or simple) modules ready to be implemented Instantiated FlipFop
" . (for Microsemi ProAsicd)
 They may be vendor specific or agnostic: _
DFN1C1l FlaipFlop |
o Vendor Specific: Encrypted Code or Requires Hard IP Core D Umewe o),
o \Vendor Agnostic: Commercial or Open Source (www.OpenCores.org) .CIR (Rst),

* |nmany cases they may be set through GUI (Wizards)
o Examples: : All kind of modules

Two ways of adding Primitives & IP Cores to your system:
e Instantiation: The module is EXPLICITLY added to the system

o Inference: The module is IMPLICITLY added to the system

.0 (Cutput Q)):;

Inferred FlipFlop (Verilog)

always @ (posedge Clk or posedge Rst)
begin
if (Rst)
Qutput_Q <= 0;
else
Output_Q <= Input D; 67
end



FPGA gateware design work flow
Design Entry: Primitives & IP Cores

Primitives: Basic components of the FPGA
 \endor (and device) specific

Add Primitiygs by Infergpgg

o Examples: Buffers (/0 & Clock), Registers, BRAMs, DSP blocks, Logic Gates (programed LUTs)
Hard IP Cores: Complex hardware blocks embedded into the FPGA

 \Vendor (and device) specific
o Fixed |/0 |ocation
 |nmany cases they may be set through GUI (Wizards)

S

Add |p
L( y Cores by Instantiatiun7

and use the Wizarg jf Possihlg)

 Examples: : PLLs, Multi-gigabit Transceivers, Ethernet MAC, Microprocessaors, etc.. o

Soft [P Cores: Complex (or simple) modules ready to be implemented Instantiated FlipFop
" . (for Microsemi ProAsicd)
 They may be vendor specific or agnostic: _
DFN1C1l FlaipFlop |
o Vendor Specific: Encrypted Code or Requires Hard IP Core D Umewe o),
o \Vendor Agnostic: Commercial or Open Source (www.OpenCores.org) .CIR (Rst),

* |nmany cases they may be set through GUI (Wizards)
o Examples: : All kind of modules

Two ways of adding Primitives & IP Cores to your system:
e Instantiation: The module is EXPLICITLY added to the system

o Inference: The module is IMPLICITLY added to the system

.0 (Cutput Q)):;

Inferred FlipFlop (Verilog)

always @ (posedge Clk or posedge Rst)
begin
if (Rst)
Qutput_Q <= 0;
else
Output_Q <= Input D; 68
end



FPGA gateware design work flow
Synthesis

o What does it do?
o Translates the schematic or HDL code into elementary |ogic functions

o Defines the connection of these elementary functions
o lses Boolean Algebra and Karnaugh maps to optimize logic functions
 The FPGA design tool optimizes the design during synthesis
|t may do undesired changes to the system (e.g. remove modules, change signal names, etc.)!!!

o Always check the synthesis report Example of Synthesis Report
H I light leds.vhd™ line 208: acttribute on instance <:':'.'I? 18> overridesz gene]

* Warnlngs E EFPDFS I L__1-1_:':!_?'"'_2_:__;1-:,—:-1bute on inatance <INIT_1C> overrides g;:'_er;n:_."para:r.et.er ol

. .- . s xhd™ line 208: attribute on instance <INIT 1D> owerrides generic/parameter of

¢ EStlmEtEd PESUUFEE Utlllzatlnn ,[ g™ line JO0B: actribute on instcance i‘I‘.‘iIT:'.E} overrides EE.".'E':".C.-"iE.IaT!’-EIEI =1

. . . --.-.-:ll 1 I s W1 = - = = o = TAT T a = 3 T rl

o [ptimizations N [ re—pr e e e

e And more...

 And also check the RTL/Technology viewers i

+
5 court regll] €
= c
-, L =
7 1 =t 9
3 [ A
A FOCE
by T
®
—L if -

|||||

Fxample of RTL Schematic — R




FPGA gateware design work flow
Constraints: Timing

e For a reliable system, the timing requirements for all paths must be provided to the FPGA design toal.
Provided through constraint files (e.g. Xilinx .XDC, etc..) or GUI (that creates/writes constraint files).
The most common types of path categories include:

 |nput paths Example of timing constraint (Xilinx .ucf)
 [utput paths FPGA
e Register-to-register paths (combinatorial paths) S I DTSUf T!
o Path specific exceptions (e.q. false path, multi-cycle paths, etc.) T .
 To efficiently specify these constraints: $ ok
[)  Begin with global constraints (in many cases with this is enough) ~— Skext [F e

2)  Add path specific exceptions as needed

e Over constraining will difficult the routing i“— OFFSETIN —"i |
L. i

1 VALID Data i

| |

l«—— VALID Duration ——!

TIMEGRP DATA_ IN OFFSET = IN 1 VALID 3 BEFORE CLK RISING;



FPGA gateware design work flow
Constraints: Physical

 Pin planning

Synthesized Design - netlist_2 - synth_2 ' constrs_2 | xc7k70tfbg484-2 make active
[4] netlist_1-synth_1 | constrs_2 | xc7k70tfbg484-2 = | [] netlist_2 - synth_2 | constrs_2 | xc7k70tfbg484-2 x Close

Netiist N I Ea i Package X | @ Device X
= =

3 bft

s Nets (1913

#-1= Primitives (335

@-[&] amd1 :

#-[3] amd2 (round_2

+-[@] armd3 (ro

#-{@] amd4 (round_4

+-[@] egressLoop[0].egressFifo (FifoBuffer_NO9

) [0] egressLoop[1].egressFifo (FifoE

+-{1] egressioop[2].egressFifo (FifoBuffer NO3_egressloop 2 eg
+-{2] egressLoop[3].egressfifo (FifoBuffer_NO&_egressloop

+{1] egressLoop[4].egressFifo (FifoBuffer_NC

. [T mnrecel annlS] snreccFifn (Ffrf) of

8 9 10 11 12 I3

As previously mentioned...
You should do Pin Planning
during Specification Stage

* Floorplanning
 Tryto place logic close to their related /0 pins
 Try to avoid routing across the chip
 Place the Hard IP cores, the related |ogic will follow
 You can separate the logic by areas (e.q. Xilinx Pblocks)

Floorplanning may improve routing times and allow

faster system speeds... but too much will difficult the routing!!!
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FPGA gateware design work flow

|mplementation
o  The FPGA design tool:

[) Translates the Timing and Physical constraints in order to quide the implementation
[ ||

Z2) Maps the synthesized netlist:
O Logic elements to FPGA logic cells

o Hard IP Cores to FPGA hard blocks _ &
o Verifies that the design can fit the target device Logic ki

Block
3) Places and Routes (PGR) the mapped netlist:
O Physical placement of the FPGA logic cells

O Physical placement of the FPGA hard blocks a— +

o Routing of the signals through the interconnect network & clock tree

| nterc_c;r_i ;1:91;1_ Bl_cé_k_
 The FPGA design tool may be set for different optimizations (Speed, Area, Power or default)
* Physical Placement & Timing change after re-implementing (use constraints to minimize these changes)

* You should always check the different reports generated during implementation



FPGA gateware design work flow
Static Timing Analysis

 The FPGA design tool analyses the signals propagation delays and clock relationships after PGR
A timing report is generated, including the paths that did not meet the timing requirements
 Rule of thumb for timing violations:

\?/ e Setup violations: Too long combinatorial paths

Hold violations: [ssue with CDC and/or Path specific exceptions
o The timing closure flow:
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FPGA gateware design work flow
Static Timing Analysis

 The FPGA design tool analyses the signals propagation delays and clock relationships after PGR

A timing report is generated, including the paths that did not meet the timing requirements

 Rule of thumb for timing violations:
y/ o Setup violations: Too long combinatorial paths & Implementation

Hold violations: [ssue with CDC and/or Path specific exceptions
o The timing closure flow:

Design meets timing?

v | v v

Timing constraint Physical constraints Desian chanaes
changes (floorplanning) changes 9 g

FPGA design tool options
changes

v

P Re-implementation




FPGA gateware design work flow
Bitstream Generation & FPGA Programming

o Bitstream:
o Binary file containing the FPGA configuration data
o Each FPGA vendor has its own bitstream file extension (e.g. .bit (Xilinx), .sof (Altera) )
* FPGA programming:
o Bitstream is loaded into the FPGA through JTAG
e [Configuration data may be stored in on-board FLASH and loaded by the FPGA at power up
 Remote programming (e.g. through Ethernet)
 Multiboot/Safe FPGA configuration
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FPGA gateware design work flow

Bitstream Generation & FPGA Programming

 Bitstream:

Binary file containing the FPGA configuration data

Each FPGA vendor has its own bitstream file extension (e.q. .bit (Xilinx), .sof (Altera) )

* FPGA programming:

Bitstream is loaded into the FPGA through JTAG
Configuration data may be stored in on-board FLASH and loaded by the FPGA at power up

Remote programming (e.g. through Ethernet)
Multiboot/Safe FPGA configuration

Golden image User image

(bitstream 1) (bitstream 2)

‘TFFFFFh

liser Image

Manual Trigge:

(bitstream 2)
400000k $ FPGA Power cycle (INCORRECT)

Golden image
(bitstream 1)

/ Fallback (nunﬂwrm)\

User image
(bitstream 2)

00DO00K Golden image

Multiboot/Safe FPGA configuration diagrams

(bitstream 1) CORRUPTED

or
INCORRECT

Manual Trigger



FPGA gateware design work flow
Simulation

 Event-based simulation to recreate the parallel nature of digital designs
o Verification of HDL modules and/or full systems
 HDL simulators:

 Most popular: Modelsim

o [ther simulators: Vivado Simulator (Xilinx), lcarus Verilog (Open-source), etc.

 Different levels of simulation

o Behavioural: simulates only the behaviour of the design Fast
e Functional: uses realistic functional models for the target technology

o Timing: most accurate. Uses Implemented design after timing analysis Very Slow

Example of simulator wave window

4 jsimple_delay/delay_rst
£ [simple_delay/delay_clk

Test Bench < Jsimple_delay/delay_ena
4 [simple_delay/delay_Id

B< [simple_delay/delay_Id_value

I
Device Under Test e E e
-) (DUT) #  fsimple_delay/s_delay_done




FPGA gateware design work flow

In-System Analysers & Virtual |/0s

Your design is up... and also running?
Most FPGA vendors provide in-system analyzers & virtual |/0s
Can be embedded into the design and controlled by JTAG

Allow monitoring but also control of the FPGA signals
Minimize interfering with the your system by:

Placing extra registers between the monitored signals and the In-System Analyser

|t is useful to spy inside the FPGA... but the issue may come form the rest of the board!!!

([ ]
 Remember... it is HARDOWARE : "
Example of Virtual 1/0s (Xilinx VID)
E | f | - S A | Al S 1 |T | | VIO Console - DEV:0 MyDevice0 (XC7K325T) UNIT:0 MyVIOO (VIO} o
xample of In-System Analyser (Altera SignalTap Il)
LATENCY-OPTIMIZED GBI LINK (LOW WHEN STANDARD GBT) )
PLL LOCKED (*']
o . MGT READY [*]
bg m click lc insert hn’: bar RX_WORDCLK ALIGNED (RALIGNED TO TX WORDCLK) (LOW WHEN STANDARD GBT 0
'rm ms |!"l|_2 _;1 ‘IJ 1I 2I :Ii 1_ ‘? BI ?I RX_FRAMECLK ALIGNED (RLIGNED TO TX_FRAMECLK) (LOW WHEN STANDARD GBT ‘
: * )
& i D13h b 012h i 00
a ; "0' -» TX FRAMECIK | '1" -> TX WORDCLE)
CK ('0' -> NORMAL | '2' -> PMA LOOPBACK) (XILINX UG366 PAGE 124)
L | | GENERAL RESET
@ | ©- ENCODING SELECTOR ('0' -> GBT FRAME | '1l' -> WIDE-BUS)
h - : o PATTERN SELECT ('1' -> COUNTER | '2' -> STATIC | others —> NO DATA ERROR DETECTION)
a [ 8CECh )?[ DOECh )( 00ash ){ CEBON X RESET RX GBT READY LOST FLAG
o ] RX GBT READY LOST FLAG
@ | | :RESET DATR ERROR SEEN FF’,E
P
==
€
@ b
i £ ! FFFFh




FPGA gateware design work flow
Debugging Techniques
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FPGA gateware design work flow
Debugging Techniques

CLOCK SYNTH.
NTTER CLEANER
(CDCEG2005)

LK EC CLK BuFER

MGT REFCLKs  FABRICCLKs FPGAOUT  TCLKB|

SEC CLK

VOLTAGE
SUPERVISOR
& RESET IC
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FCLKA
> AUX CLK. CLK OUTs i
CLOCK SYNTH.
JITTER CLEANER @
FIMICL_CLKO_M2C (CDCE62005)
FMIC2_CLKO_M2C

» PRI CLK
5)

SEC CLK
YNC CTRL

Y
MGT REFCLKs  FABRICCLKs FPGAOUT  TCLKB|

SYNTH I&Bt ]
ax SEC CLK |

PP [1: 4] MGT
FMC DP[0: 3] MGT [t

v

PRI CLK

CDCE_CLKO_GTXE1 [5FP)

GBT PHASE

| MONITORING CDCE_CIK3_GTXEL [FMC1) b
|
! WB_sLv[o:n]
ve_LED[3] } AMCP[ 2: 3]
| AMC P[12:15] [
} 1PB_SLV[0:N] (MLVDS) AMC P[17:20] {3
|
0 | SYS_USER_PCle
|
==71r SYS_SERIAL_PCle_xA-«-- [AMC PLa: 7] MGTH
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— — —p [ Amc pfz:11] mGT)

AMEC_P1
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B RESET IC - FMCL CLKs (e
P & MAC Addr FMCL CTRL

FABRIC P
> Pu l CLKs {(‘;i‘.":’m e - praca 105l
R— FMC2 CLKs o
SYSTEM CORE USER_LOGIC __ MGT REFCLKs FMC2 CTRLSE 3
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Divide & Conquer L
8-bit
Clock P 8-bit Counter g | Address
Increment Reset
Y RAM
v 756x16-bit
Pattern Data Valid Flag Write Encble
Generator

Data I6-bit
Reset Data Reset
/ Reset — j
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Debugging Techniques Fallow the chain
Divide & Conquer L

8-bit
Clock P 8-bit Counter g | Address

} RAM
23bx16-bit

Data Valid Flag Write Enabl
rite tnable

@ Data I6-bit -
/ Reset 1
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Debugging Techniques Fallow the chain
Divide & Conquer L

8-bit
Clock P 8-bit Counter g | Address

} RAM
23bx16-bit

Write Enable

Data Valid Fla
@ Data 2 . st
/ Reset 1
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Debugging Techniques Fallow the chain
Divide & Conquer L
Clock b@—g-}l—“} Address
et RAM

23bx16-bit

Write Enable

Data Valid Fla
@ Data 2 . st
/ Reset 1
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Divide & Conquer

Follow the chain

>
Inc t

Data Valid Fla

Data

A

Z
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Divide & Conquer

Clock

Follow the chain

a-bit
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Divide & Conquer

Clock
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Divide & Conquer

Clock
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Divide & Conquer

Follow the chain

Clock

| Data Valid Flag

Reset

- ke

oo R

v

Address

Wr

Data

Reset

Asl 1

B W[5 ) AL A L 8

R
. L

ﬂm«.nuuw-(tu‘auuwm
L L THAATH R L

delay/delay_rst
delay/delay _clk

e

{
ne
T
4 - . delay_done
Twe o [ o |
CPd Cursor 1 |5 sec
Cras Cursor 3 |5 sec |
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Divide & Conquer

v

Clock Address

Wr

Data Reset

We are debugging HARDWARE!! 2
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FPGA gateware design work flow

After debugging...

e Documentation

9]

EEEEEEEEEE

GBT-IPGA

aaaaaaaaa
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After debugging...

Documentation

Maintenance

9]

CERN PH-ESE

F ]

F ]

swn_test

branch

tags
gbt_fpga_0_1_0_beta
gbt_fpga_3 0.0
ght_fpga_3_01
gbt_fpga_3 0.2
ghbt_fpga_ 310
ght_fpga 311

GBT-FPGA user manual

version 1.01
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FPGA gateware design work flow
After debugging...

e Documentation @g‘ CERN PH.ESE

GBT-FPGA user manual

4 swn_test
branch
 Maintenance s )l tags
' gbt_fpga_0_1_0_beta
gbt_fpga_3 0.0
ght_fpga_3_01
gbt_fpga_3 0.2
ghbt_fpga_ 310

version 1.01

ght_fpga 311

Re: GLIB: question on GBT

Mon 22/07/2013 17:56
Manoel Barros Marin

e ...and maybe User Support

Manoel,
ves, I would love to be included in the GBT-FPGA-users mailing list.

And thanks for the tip about using the GBT-FPGA reference design.

best regards,
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Summary

FPGA - Wikipedia

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by

a customer or a designer after manufacturing - hence "field-programmable”.

...for Geeks
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Summary
o FPGA - Wikipedia

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

 Key concepts about FPGA design

 FPGA gateware design is NOT programming
 HDL are used for describing HARDWARE
e Timing in FPGA gateware design is critical
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summary

FPGA - Wikipedia
A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

Key concepts about FPGA design

FPGA gateware design is NOT programming
HDL are used for describing HARDWARE

Timing in FPGA gateware design is critical

FPGA gateware design flow

Plan, plan and plan again

Modular and reusable system

Coding for synthesis

Take care of your resets and clocks schemes
Clock Domain Crossing is tricky

You must properly constraint your design

Constraints
(Physical
& Timing)

N

Project
Specification

¥

Design Entry

}

Synthesis

|

Implementation

|

Static Timing Analysis

Bitstream Generation
& FPGA Programming

Optimize in your code but also with constraints and FPGA design tool options

Read the reports (Synthesis, Implementation & Static Timing Analysis)

Try to be methodic when debugging & use all tools available

|

!

1.

A running system is not the end of the road... (Documentation, Maintenance. User Support)

Behavioural Simulation

Functional Simulations
(Post-Synthesis
or
Post-Implementation)

Timing Simulation

In-System
Debugging
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summary

FPGA - Wikipedia
A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

Key concepts about FPGA design

FPGA gateware design is NOT programming
HDL are used for describing HARDWARE

Timing in FPGA gateware design is critical

FPGA gateware design flow

Plan, plan and plan again

Modular and reusable system

Coding for synthesis

Take care of your resets and clocks schemes
Clock Domain Crossing is tricky

You must properly constraint your design

Constraints
(Physical
& Timing)

N

Project
Specification

¥

Design Entry

}

Synthesis

|

Implementation

|

Static Timing Analysis

Bitstream Generation
& FPGA Programming

Optimize in your code but also with constraints and FPGA design tool options

Read the reports (Synthesis, Implementation & Static Timing Analysis)

Try to be methodic when debugging & use all tools available

|

!

1.

A running system is not the end of the road... (Documentation, Maintenance. User Support)

\ But it works ©

Behavioural Simulation

Functional Simulations
(Post-Synthesis
or
Post-Implementation)

Timing Simulation

In-System
Debugging
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Summary
FPGA - Wikipedia

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

Key concepts about FPGA design

o FPGA gateware design is NOT programming
 HDL are used for describing HARDWARE

e Timing in FPGA gateware design is critical Where do | find more info about this??
FPEA gateware design flow There are nice papers & books but...
e Plan, plan and plan again FPGA vendors provide very good

* Modular and reusable system documentation about all topics

*  Loding for synthesis mentioned in this lecture

o Take care of your resets and clocks schemes

e [lock Domain Crossing is tricky

 You must properly constraint your design

o [ptimize in your code but also with constraints and FPGA design tool options
o Read the reports (Synthesis, Implementation & Static Timing Analysis)

e Try to be methodic when debugging & use all tools available

A running system is not the end of the road... (Documentation, Maintenance. User Support)
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Any
Uuestion?
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