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account, away from the collinear directions hi,2, by 
multiplying the fight-hand side by a cascading factor 
N~(lnEcM) for each gluon 3 and 4, where Ns( lnE ) 
is the mean multiplicity in a gluon jet at scale E and 
the prime denotes differentiation. Since 

Ns(In E)  ~exp  x/(16N¢/fl) l n E ,  (14) 

where fl= 11N¢- 2Nf, we have 

N ' ~ = x / 2 N o a s ( E ) / n N s [ l + O ( x / ~ s s ) ]  . (15) 
Thus the general energy-(multiplicity) ~ correlation 
of the form (10) or (13) will be of  the order of  
(x/~s Ng)nEcM. Since the leading effects of  cascad- 
ing factorize, they cancel in quantities such as C(~).  
As a result, at high energies C(~)  is determined en- 
tirely by soft gluon radiation and is asymptotically 
given by eq. (6): 

C(~) ~ Cq~ (0, 0 ) ,  (16) 

for a sufficiently narrow rapidity interval [ r/mi,, r/max]- 
We now discuss the most important finite energy 

corrections to this asymptotic expression. 
( 1 ) Three jet events. The factor ~ s  Ng from each 

gluon cascade implies that the contribution we have 
calculated, from qft plus two soft gluons in lowest or- 
der, is of the same order as a hard three-jet contribu- 
tion to the same quantity, when one of the jets de- 
fines the energy flow and the other two can both be 
recorded in the pseudorapidity interval [/~min,/~rnax ] .  

Such a three-jet contamination, which would con- 
tribute mainly around ~ = n and for negative rapidi- 
ties, can be eliminated by making it kinematically 
impossible for two jets in a three-jet event to enter 
the interval, for example by choosing ~min and/~max 
both positive. 

After this precaution has been taken to eliminate 
three-jet contributions, all remaining corrections to 
eq. (16) are of  relative order x/~s: 

(2) Incomplete parton shower factorization and 
cancellation. There are corrections due to incomplete 
cancellation ofparton showering in eq. (5), since the 
arguments of  the multiplicity factors in the numera- 
tor and denominator are not exactly the same. More 
precisely, each singularity a~  1 has an associated fac- 
tor of  N~ [ ½ In (EiEjaij) ]. From eq. (15) we see the 
resulting corrections will be of  relative order x/~s.  

(3) Non-soft contributions. Further corrections of 
order v /~s  arise when the pseudorapidity band 

[ ~/mi,, ~/max] contains a hard jet and a soft jet, or two 
soft jets with energies of the same order. 

To estimate the effects of  finite energy corrections 
and hadronization, we used the Monte Carlo pro- 
gram HERWlG [8 ], which contains the necessary 
features of  perturbative QCD together with a simple 
cluster hadronization model that obeys the local 
duality hypothesis. Fig. 1 shows the results of a sim- 
ulation of e+e - annihilation at EcM= 91 GeV. The 
pseudorapidity interval used was from /Tmin ~ -- 1 to 
r/max=2, to avoid three-jet contamination as dis- 
cussed above. The results shown are based on an un- 
biased sample of  l04 events, without any event or 
particle selection. The leading-order formula (6) is 
shown by the curves for various values of  ~/34. 

Destructive interference, that is, C(O)<  1 for 
½ z~ < ¢~< ~, is clearly seen in the Monte Carlo results 
at both the parton and hadron levels. According to 
the cluster model used in the program, the effects of  
hadronization are small at these energies. 

The difference between the Monte Carlo points and 
the leading-order curves for r/34 < 1 gives an estimate 
of the finite-energy corrections, which are seen to be 
significant. As discussed above, they are of  relative 
order x ~ s ,  where for some contributions the scale of  
as  is associated with the relatively soft emitted gluons 

z o ' ' '°x \\1 ' \ '  ' ' I . . . .  I ' ' 

o : \ \ x MC (partons) ~ I< <2 
\ \ o MC ( h a d r o n s )  I r/ 

9 \ \  - -  ~ :~=0  
1.5' - ° o  \ \ _ _ _ ~34 =1  

0 . 5  - 

o . o  , , , , I , , , I , , , , J , , 
0 5 0  I00 150 

~b (degrees) 

Fig. I. Hadronic flow correlation defined by eq. ( I I ) as a func- 
tion of the azimuthal angle ~ for a rapidity interval l < ~b,k< 2. 
The points are Monte Carlo predictions from the program 
HERWIG [ 8 ] at the parton and hadron levels, for c+e - annihi- 
lation at EcM = 91 GeV. The curves show the leading-order pre- 
diction (6) for various rapidity differences ~/34. 
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We propose a method for revealing the connection between observed hadronic distributions and the colour structure of an 
underlying hard process. The method does not require any special event selection or jet finding. It involves measuring a ratio of 
energy-multiplicity correlations which is especially sensitive to colour flows in jet formation. This quantity is infrared stable and 
can be calculated completely perturbatively. We discuss in detail the case of e+e- annihilation. 

The first data on hadronic Z ° decays from SLC [ 1 ] 
and LEP [ 2-5 ] appear to be in very good agreement 
with Monte Carlo simulations [ 6-8 ] based on a QCD 
parton shower mechanism of multihadron produc- 
tion in hard processes (see e.g. the reviews in refs. 
[ 9,10 ] and references therein). In this mechanism, 
hadron distributions are mainly determined by those 
of underlying parton cascades, whose properties can 
be calculated in detail using perturbative QCD. The 
conversion ofpartons into hadrons is supposed to oc- 
cur at a low virtuality scale, independent of the scale 
of the primary hard process, and to involve only low 
momentum transfers, leading to a close similarity or 
"local duality" (LPHD) [ 11 ] between parton and 
hadron distributions. Such local duality follows nat- 
urally from the pre-confinement property of QCD 
[121. 

A fundamental feature of the parton shower mech- 
anism is the connection between the colour flow in 
the hard process and the observed flow of hadron 
multiplicity [ 9,10,13 ]. 

This connection was beautifully illustrated in e +e-  

~r Research supported in part by the UK Science and Engineer- 
ing Research Council and in part by the Italian Ministero della 
Pubblica Istruzione. 

I Supported in part by the World Laboratory Eloisatron Project. 

annihilation at lower energies by the observation of 
the "string" or "drag" effect in three-jet final states. 
Here the colour flow gives rise to destructive interfer- 
ence in the "antenna pattern" of parton emission in 
the angular region between the quark and antiquark 
jets. The corresponding depletion of hadron flow into 
this region was confirmed both by comparison of 
hadron multiplicities between the jets [ 14 ] and by 
comparison ofqClg and qCl? final states [ 15 ]. It should 
be possible to provide further evidence for colour in- 
terference in three-jet events by the same type of 
analysis of the LEP data, with greatly increased sta- 
tistics, higher energy, and the possibility of identify- 
ing quark jets through the observation of heavy quark 
decays. 

As a demonstration of the connection between col- 
our and hadronic flows, the "string" analysis of three- 
jet events suffers from some inherent difficulties and 
weaknesses that one would prefer to avoid if possi- 
ble. First of all, the necessity of selecting a three-jet 
event sample reduces the statistics and may intro- 
duce biases into the observed hadron flow. The need 
to define jet directions introduces a dependence on 
the jet-finding algorithm. Discrimination between 
quark and gluon jets on the basis of their relative 
energies reduces the effect and prevents the use of 
symmetrical jet configurations. 
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(p2+kl+k2)2=(kl-.I-k2)2+oll+a2<y. (30 cont'd) 

Thus if the gluons are combined together, this two- 
gluon combination is resolved from the quark and 
antiquark giving us a three-jet configuration. 

The situation is slightly more complex in that the 
experimental algorithm is to take all possible pairs of  
particles and to combine those with the lowest mass 
less than ys. Thus in order to have a three-jet config- 
uration we must combine the gluons first, i.e. 

(kl +k2)2 < min{al ,f12} (31) 

or else one gluon will be combined with the quark, 
the other with the antiquark, and the configuration is 
two jet. 

If  we demand that o~2, fll > 2y then o~2fll > 4y 2. But 
we know o~lflE<y 2. Thus we would have (k l+k2)  2 
>y2. Again the neglected region y <  c~, f12> 2y does 
not contribute to leading logarithm. Thus if (k~ + k2 )2 
is to be smaller than oqfl2 we must necessarily have 
y>~l,fl2> y 2. 

Now either c~l >//2 orfl2> c~1. These two situations 
are symmetric, so by relabelling the variables we can 
write the integral over this region as 

v o~1 l 1 2~z 
2 I dOl~l f aft2 f d o L 2 f ~  1 ~ d~12 

: al  a ~ - 2  J a2 "2n " (32) V 2 V 2 y V 0 
If  0¢2//1 < f12( 1 -x /%)  2, then in the usual way 

( k l + k 2 ) 2 < l  ~x/~2~+ ~x//~j~zl2<//2<c~l, (33) 

and we have a three-jet contribution. Note that the 
lower limit for f12 is y2, giving us the constraint OL2fl l 
>y2. In order to maintain consistency of the limits, 
we can change the lower limit on//2 to y2/ (  1 - x/%) 2. 
This has no effect on the leading logarithm. If, how- 
ever, we demand that a2//l >//2( 1 +,v/y) 2 then 

(kl +k2)2> I ~/~2fll - ~N/~lfl212 > f12 (34) 

and we have a two-jet contribution. The intermedi- 
ate region//2 ( 1 - , ~ )  2 < c~2//1 <//2 ( 1 + v/y) 2 does not 
contribute to leading logarithm. Thus the condition 
c~2fll <//2 defines a region which contributes the same, 
at leading logarithm, to the three-jet fraction as the 
proper three-jet region. This allows us to perform the 
angular integration trivially. 

Since //1<//2/OL2, but also //I>Y, we must have 
f12/o~2 > Y ~  % <//2/Y, and the integral becomes 

y OLI fl2/y fl2/oQ 
2fd°~l ! d f l 2 y z  o~- ~ f dO/zy o~- f : l l n 4 y ' y  (35) 

The other configuration, where ¢<~2, fl~<Y and 
Y< f12, al  < 1 similarly contributes ~ ln4y to the three- 
jet fraction. The whole region where both of the gluons 
are unresolved with one or other of  the quark or an- 
tiquark contributes ln4y, leaving us with a contribu- 
tion of~ ln4y for the two-jet fraction. The imposition 
of the gluon-gluon invariant mass cut has reduced 
the coefficient I in eq. (20) from 1 to 3. This reduc- 
tion in the four-jet rate was also noticed in ref. [ 6 ] in 
the context of Sterman-Weinberg cuts. Putting this 
all together and replacing the colour factors and cou- 
pling constants we obtain 

1 ( C F C ~  2 ( 3 )  A = T., \ ~ - ]  ln"y , 

f3= CFOq lnZy+ 1 (CFas~ 2 ( 1 9 )  T 2 . 1 \ T j  ln4y - ~  ' 

2 
ZC 2.1 ln4y . (36) 

Note that f4 can be explicitly checked by integrating 
the appropriate four-parton matrix element over the 
region of phase space where all partons are resolved 
from each other. Numerical results agree with the 
calculation above. 

5. Discussion 

The first thing to notice is that these jet fractions 
disagree with the full calculation of Kramer and 
Lampe (KL).  In ref. [7] analytic results are only 
given for the two jet fractionf2. In fact two separate 
results for the leading logarithmic dependence off2 
are given, the difference arising from two distinct 
treatments of the phase space: 

where Arc= 3, the number ofcolours. The first result 
f 2 KL is closer in spirit to ours, in that only the most 
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singular parts of  the matr ix  element are integrated. 
We find it surprising that  there is any ambigui ty  at 

all. The JADE algori thm is entirely well defined, in 
that  any given final state at O ( a  2 ) is unambiguously  
ascribed to ei ther f2, f3 or f4. The different ways in 
which phase space is t reated for f ~r and f ~L, arises 
from the technical requirements  of  the calculation. 
Second, the term propor t ional  to CFNc i n f ~  L' is en- 
t irely unexpected as such a colour factor does not 
usually contr ibute at leading logarithm, and would 
presumably spoil any proposed summat ion  of  these 
logarithms. 

The difference between these results and ours lies, 
we believe, in an incomplete  appl icat ion of  the algo- 
r i thm f o r f ~  L a n d f ~  L'. There, if  a gluon was unre- 
solved from the quark or ant iquark,  their  momen ta  
were combined  to form a pseudo- three-body final 
state. However,  according to the algori thm, the cor- 
rect thing to do is to form a / / t h e  invar iant  masses 
and combine the pair  with the lowest. The only place 
where this would differ from the KL approach is in 
the calculation where two unresolved gluons coalesce 
and the resulting two gluon je t  is resolved from the 
quark and antiquark. According to KL, the two gluons 
would be combined  with the quark and ant iquark re- 
spectively and the configurat ion would be called two 
jet. I f  we did the same we would find that our f2 was 
identical  t o f ~  L. To compare  with experiment ,  how- 
ever, we must  use the experimental  algori thm which 
does not dist inguish whether a par t icular  par ton is a 
gluon or a quark. The configurat ion we have just  de- 
scribed is then unambiguously a three-jet one. 

It was, however, conjectured by Smilga [8 ] that the 
two-jet fraction would exponentiate:  

--exo(- (37) 

This is contradic ted by our result for f2. We do not 
see any compell ing reason why f2 should exponen- 
tiate. Usually the fact that such a series is exponent ial  
can be t raced to the fact that  when the gluons are suf- 
ficiently soft one can treat  them as independent  of  
each other. In the JADE algorithm, however, we have 
seen that it is possible for two unresolved soft gluons 
to coalesce, resulting in a three-jet configuration, and 
it is not therefore possible to treat  the gluons inde- 
pendent ly  in this case. 

Final ly we return to our original goal, which was to 
calculate the leading logari thmic contr ibut ion to all 
orders  so that  the large logari thms can be summed  
and theory and exper iment  can be compared  at 
smaller  values of  y. By an extension of  the methods  
out l ined in this paper,  it is possible - at least in prin-  
ciple - to calculate the leading contr ibut ion to fn at 
O(oL~ -2 ), e.g. for n=5, 6: 

3 

f s =  ~ , T J  m y ~ , 

1 {CFO~s'~4,8(51~O) f 6 =  ~ - )  ,n y . (38)  

Unfor tunate ly  there is no clear pat tern  in the coeffi- 
cients. Other  je t  fractions, however, seem intracta-  
ble. The reason is that  with more gluons we have to 
compare  different g luon-gluon invar iant  masses in 
order  to apply the algorithm. For  example,  at O (c~ 2 ) 
the s i tuat ion where two unresolved gluons coalesce 
to form a resolved gluon-gluon combinat ion  de- 
manded  that (kl + k2) 2 be the smallest invariant  mass. 
At O(o~ 3) and higher we would have to compare  
(kl + k2)2 with other g luon-gluon invar iant  masses, 
a problem which does not seem to have any simple 
t rea tment  in our formalism. 

The fact that  the large logari thmic contr ibut ions  to 
the jet  fractions at small y do not appear  to be under  
control  suggests that some caution should be excer- 
cised in using the data  at small y as part  of  a fit to 
measure AMS. Unti l  we unders tand how to resum 
these large logarithms, the safest approach is to re- 
strict the comparison to larger values of  y, even though 
this means a significant loss in statistical precision on 
the measurement  of  A. 
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We examine the leading double logarithm structure in the calculation of jet fractions using the JADE algorithm, based on a jet- 
jet mass cut ys. We find that there is no simple formula allowing us to explicitly sum these logarithms, a necessary procedure if we 
are to apply perturbation theory in the region y << l where these double logarithms are large. This casts doubt on the usefulness of 
such an algorithm for comparing the predictions of perturbative QCD with the experimental measurements at small y. 

1. Introduction 

In e+e - annihi la t ion  the product ion of  a qua rk -  
antiquark pair  leads to the characteristic signal of  two 
back-to-back jets  of  hadrons.  The accepted theory o f  
strong interactions,  QCD, predicts  that  these quarks 
can radiate  gluons leading to events with a mult i je t  
structure. Multi jet  events have been observed at PEP, 
PETRA, TRISTAN,  SLC and LEP, and serve as one 
of  the best exper imenta l  conf i rmat ions  o f  QCD. It is 
therefore of  interest  and impor tance  to quantify the 
mult i jet  predic t ions  o f  QCD. There are a variety of  
variables used to study hadronic  final states in e+e - 
annihi la t ion  - see for example ref. [ 1 ]. Here we con- 
centrate on the number of  jets  in the final state. This 
is commonly  calculated using the so-called " JADE 
algor i thm" [2] .  In this approach the invar iant  mass 
of  every pair  of  hadrons  in the final state is calcu- 
lated. I f  any are less than a certain fraction, y, of  the 
total centre of  mass energy, s, then the momen ta  of  
the pair  with the lowest invar iant  mass are added  to- 
gether. This combined  momenta  is considered to be 
that of  a single "par t ic le" .  The invar iant  masses are 
recalculated and the combining procedure  cont inued 
until none of  the invar iant  masses are less than ys. 

The number  o f "pa r t i c l e s "  left at the end of  this anal- 
ysis is defined to be the number  o f  jets. 

The theoretical  calculation, of  course, deals with 
quarks and gluons, not hadrons,  but  the same proce- 
dure can be appl ied  to them. An at t ract ive feature of  
the algori thm is that  the effects of  hadronisa t ion  on 
the par ton level predict ions  are bel ieved to be small  
[1 ]. The QCD predic t ion has been calculated to 
O(c~ 2) by Kramer  and Lampe [3] ,  and is in good 
agreement  with the exper imental  measurements ,  
par t icular ly  at larger values of  the invar iant  mass cut 
y ( > 0 . 0 5 )  [4] .  In fact the compar ison between the- 
ory and exper iment  leads to a rather  precise deter- 
mina t ion  of  the paramete r  A~s.  

At smaller  values of  the variable y we meet a prob-  
lem that  is well unders tood in analyses of  semi-hard 
processes in QCD. At each order  in per turba t ion  the- 
ory soft gluon emission gives rise to large logari thms 
of  y, a ma x i mum  of  two logari thms for each power of  
the coupling: 

(CFas /n )  n ln2~y, ( 1 ) 

where Cv= 4/3  is a colour factor. As y decreases, these 
double logarithms become large and invalidate the use 
of  a f ixed-order  per turbat ive  expansion: the expan- 
sion parameter  is effectively a = (Cvots/n) ln2y, rather 

0370-2693/90/$ 03.50 © 1990 - Elsevier Science Publishers B.V. ( North-Holland ) 657 
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• Parts of 2- and 4-jets were counted as 3-jets, 
when 3 and 4 form a phantom jet
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(p2+kl+k2)2=(kl-.I-k2)2+oll+a2<y. (30 cont'd) 

Thus if the gluons are combined together, this two- 
gluon combination is resolved from the quark and 
antiquark giving us a three-jet configuration. 

The situation is slightly more complex in that the 
experimental algorithm is to take all possible pairs of  
particles and to combine those with the lowest mass 
less than ys. Thus in order to have a three-jet config- 
uration we must combine the gluons first, i.e. 

(kl +k2)2 < min{al ,f12} (31) 

or else one gluon will be combined with the quark, 
the other with the antiquark, and the configuration is 
two jet. 

If  we demand that o~2, fll > 2y then o~2fll > 4y 2. But 
we know o~lflE<y 2. Thus we would have (k l+k2)  2 
>y2. Again the neglected region y <  c~, f12> 2y does 
not contribute to leading logarithm. Thus if (k~ + k2 )2 
is to be smaller than oqfl2 we must necessarily have 
y>~l,fl2> y 2. 

Now either c~l >//2 orfl2> c~1. These two situations 
are symmetric, so by relabelling the variables we can 
write the integral over this region as 

v o~1 l 1 2~z 
2 I dOl~l f aft2 f d o L 2 f ~  1 ~ d~12 

: al  a ~ - 2  J a2 "2n " (32) V 2 V 2 y V 0 
If  0¢2//1 < f12( 1 -x /%)  2, then in the usual way 

( k l + k 2 ) 2 < l  ~x/~2~+ ~x//~j~zl2<//2<c~l, (33) 

and we have a three-jet contribution. Note that the 
lower limit for f12 is y2, giving us the constraint OL2fl l 
>y2. In order to maintain consistency of the limits, 
we can change the lower limit on//2 to y2/ (  1 - x/%) 2. 
This has no effect on the leading logarithm. If, how- 
ever, we demand that a2//l >//2( 1 +,v/y) 2 then 

(kl +k2)2> I ~/~2fll - ~N/~lfl212 > f12 (34) 

and we have a two-jet contribution. The intermedi- 
ate region//2 ( 1 - , ~ )  2 < c~2//1 <//2 ( 1 + v/y) 2 does not 
contribute to leading logarithm. Thus the condition 
c~2fll <//2 defines a region which contributes the same, 
at leading logarithm, to the three-jet fraction as the 
proper three-jet region. This allows us to perform the 
angular integration trivially. 

Since //1<//2/OL2, but also //I>Y, we must have 
f12/o~2 > Y ~  % <//2/Y, and the integral becomes 

y OLI fl2/y fl2/oQ 
2fd°~l ! d f l 2 y z  o~- ~ f dO/zy o~- f : l l n 4 y ' y  (35) 

The other configuration, where ¢<~2, fl~<Y and 
Y< f12, al  < 1 similarly contributes ~ ln4y to the three- 
jet fraction. The whole region where both of the gluons 
are unresolved with one or other of  the quark or an- 
tiquark contributes ln4y, leaving us with a contribu- 
tion of~ ln4y for the two-jet fraction. The imposition 
of the gluon-gluon invariant mass cut has reduced 
the coefficient I in eq. (20) from 1 to 3. This reduc- 
tion in the four-jet rate was also noticed in ref. [ 6 ] in 
the context of Sterman-Weinberg cuts. Putting this 
all together and replacing the colour factors and cou- 
pling constants we obtain 

1 ( C F C ~  2 ( 3 )  A = T., \ ~ - ]  ln"y , 

f3= CFOq lnZy+ 1 (CFas~ 2 ( 1 9 )  T 2 . 1 \ T j  ln4y - ~  ' 

2 
ZC 2.1 ln4y . (36) 

Note that f4 can be explicitly checked by integrating 
the appropriate four-parton matrix element over the 
region of phase space where all partons are resolved 
from each other. Numerical results agree with the 
calculation above. 

5. Discussion 

The first thing to notice is that these jet fractions 
disagree with the full calculation of Kramer and 
Lampe (KL).  In ref. [7] analytic results are only 
given for the two jet fractionf2. In fact two separate 
results for the leading logarithmic dependence off2 
are given, the difference arising from two distinct 
treatments of the phase space: 

where Arc= 3, the number ofcolours. The first result 
f 2 KL is closer in spirit to ours, in that only the most 
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singular parts of  the matr ix  element are integrated. 
We find it surprising that  there is any ambigui ty  at 

all. The JADE algori thm is entirely well defined, in 
that  any given final state at O ( a  2 ) is unambiguously  
ascribed to ei ther f2, f3 or f4. The different ways in 
which phase space is t reated for f ~r and f ~L, arises 
from the technical requirements  of  the calculation. 
Second, the term propor t ional  to CFNc i n f ~  L' is en- 
t irely unexpected as such a colour factor does not 
usually contr ibute at leading logarithm, and would 
presumably spoil any proposed summat ion  of  these 
logarithms. 

The difference between these results and ours lies, 
we believe, in an incomplete  appl icat ion of  the algo- 
r i thm f o r f ~  L a n d f ~  L'. There, if  a gluon was unre- 
solved from the quark or ant iquark,  their  momen ta  
were combined  to form a pseudo- three-body final 
state. However,  according to the algori thm, the cor- 
rect thing to do is to form a / / t h e  invar iant  masses 
and combine the pair  with the lowest. The only place 
where this would differ from the KL approach is in 
the calculation where two unresolved gluons coalesce 
and the resulting two gluon je t  is resolved from the 
quark and antiquark. According to KL, the two gluons 
would be combined  with the quark and ant iquark re- 
spectively and the configurat ion would be called two 
jet. I f  we did the same we would find that our f2 was 
identical  t o f ~  L. To compare  with experiment ,  how- 
ever, we must  use the experimental  algori thm which 
does not dist inguish whether a par t icular  par ton is a 
gluon or a quark. The configurat ion we have just  de- 
scribed is then unambiguously a three-jet one. 

It was, however, conjectured by Smilga [8 ] that the 
two-jet fraction would exponentiate:  

--exo(- (37) 

This is contradic ted by our result for f2. We do not 
see any compell ing reason why f2 should exponen- 
tiate. Usually the fact that such a series is exponent ial  
can be t raced to the fact that  when the gluons are suf- 
ficiently soft one can treat  them as independent  of  
each other. In the JADE algorithm, however, we have 
seen that it is possible for two unresolved soft gluons 
to coalesce, resulting in a three-jet configuration, and 
it is not therefore possible to treat  the gluons inde- 
pendent ly  in this case. 

Final ly we return to our original goal, which was to 
calculate the leading logari thmic contr ibut ion to all 
orders  so that  the large logari thms can be summed  
and theory and exper iment  can be compared  at 
smaller  values of  y. By an extension of  the methods  
out l ined in this paper,  it is possible - at least in prin-  
ciple - to calculate the leading contr ibut ion to fn at 
O(oL~ -2 ), e.g. for n=5, 6: 

3 

f s =  ~ , T J  m y ~ , 

1 {CFO~s'~4,8(51~O) f 6 =  ~ - )  ,n y . (38)  

Unfor tunate ly  there is no clear pat tern  in the coeffi- 
cients. Other  je t  fractions, however, seem intracta-  
ble. The reason is that  with more gluons we have to 
compare  different g luon-gluon invar iant  masses in 
order  to apply the algorithm. For  example,  at O (c~ 2 ) 
the s i tuat ion where two unresolved gluons coalesce 
to form a resolved gluon-gluon combinat ion  de- 
manded  that (kl + k2) 2 be the smallest invariant  mass. 
At O(o~ 3) and higher we would have to compare  
(kl + k2)2 with other g luon-gluon invar iant  masses, 
a problem which does not seem to have any simple 
t rea tment  in our formalism. 

The fact that  the large logari thmic contr ibut ions  to 
the jet  fractions at small y do not appear  to be under  
control  suggests that some caution should be excer- 
cised in using the data  at small y as part  of  a fit to 
measure AMS. Unti l  we unders tand how to resum 
these large logarithms, the safest approach is to re- 
strict the comparison to larger values of  y, even though 
this means a significant loss in statistical precision on 
the measurement  of  A. 
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We examine the leading double logarithm structure in the calculation of jet fractions using the JADE algorithm, based on a jet- 
jet mass cut ys. We find that there is no simple formula allowing us to explicitly sum these logarithms, a necessary procedure if we 
are to apply perturbation theory in the region y << l where these double logarithms are large. This casts doubt on the usefulness of 
such an algorithm for comparing the predictions of perturbative QCD with the experimental measurements at small y. 

1. Introduction 

In e+e - annihi la t ion  the product ion of  a qua rk -  
antiquark pair  leads to the characteristic signal of  two 
back-to-back jets  of  hadrons.  The accepted theory o f  
strong interactions,  QCD, predicts  that  these quarks 
can radiate  gluons leading to events with a mult i je t  
structure. Multi jet  events have been observed at PEP, 
PETRA, TRISTAN,  SLC and LEP, and serve as one 
of  the best exper imenta l  conf i rmat ions  o f  QCD. It is 
therefore of  interest  and impor tance  to quantify the 
mult i jet  predic t ions  o f  QCD. There are a variety of  
variables used to study hadronic  final states in e+e - 
annihi la t ion  - see for example ref. [ 1 ]. Here we con- 
centrate on the number of  jets  in the final state. This 
is commonly  calculated using the so-called " JADE 
algor i thm" [2] .  In this approach the invar iant  mass 
of  every pair  of  hadrons  in the final state is calcu- 
lated. I f  any are less than a certain fraction, y, of  the 
total centre of  mass energy, s, then the momen ta  of  
the pair  with the lowest invar iant  mass are added  to- 
gether. This combined  momenta  is considered to be 
that of  a single "par t ic le" .  The invar iant  masses are 
recalculated and the combining procedure  cont inued 
until none of  the invar iant  masses are less than ys. 

The number  o f "pa r t i c l e s "  left at the end of  this anal- 
ysis is defined to be the number  o f  jets. 

The theoretical  calculation, of  course, deals with 
quarks and gluons, not hadrons,  but  the same proce- 
dure can be appl ied  to them. An at t ract ive feature of  
the algori thm is that  the effects of  hadronisa t ion  on 
the par ton level predict ions  are bel ieved to be small  
[1 ]. The QCD predic t ion has been calculated to 
O(c~ 2) by Kramer  and Lampe [3] ,  and is in good 
agreement  with the exper imental  measurements ,  
par t icular ly  at larger values of  the invar iant  mass cut 
y ( > 0 . 0 5 )  [4] .  In fact the compar ison between the- 
ory and exper iment  leads to a rather  precise deter- 
mina t ion  of  the paramete r  A~s.  

At smaller  values of  the variable y we meet a prob-  
lem that  is well unders tood in analyses of  semi-hard 
processes in QCD. At each order  in per turba t ion  the- 
ory soft gluon emission gives rise to large logari thms 
of  y, a ma x i mum  of  two logari thms for each power of  
the coupling: 

(CFas /n )  n ln2~y, ( 1 ) 

where Cv= 4/3  is a colour factor. As y decreases, these 
double logarithms become large and invalidate the use 
of  a f ixed-order  per turbat ive  expansion: the expan- 
sion parameter  is effectively a = (Cvots/n) ln2y, rather 
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(p2+kl+k2)2=(kl-.I-k2)2+oll+a2<y. (30 cont'd) 

Thus if the gluons are combined together, this two- 
gluon combination is resolved from the quark and 
antiquark giving us a three-jet configuration. 

The situation is slightly more complex in that the 
experimental algorithm is to take all possible pairs of  
particles and to combine those with the lowest mass 
less than ys. Thus in order to have a three-jet config- 
uration we must combine the gluons first, i.e. 

(kl +k2)2 < min{al ,f12} (31) 

or else one gluon will be combined with the quark, 
the other with the antiquark, and the configuration is 
two jet. 

If  we demand that o~2, fll > 2y then o~2fll > 4y 2. But 
we know o~lflE<y 2. Thus we would have (k l+k2)  2 
>y2. Again the neglected region y <  c~, f12> 2y does 
not contribute to leading logarithm. Thus if (k~ + k2 )2 
is to be smaller than oqfl2 we must necessarily have 
y>~l,fl2> y 2. 

Now either c~l >//2 orfl2> c~1. These two situations 
are symmetric, so by relabelling the variables we can 
write the integral over this region as 

v o~1 l 1 2~z 
2 I dOl~l f aft2 f d o L 2 f ~  1 ~ d~12 

: al  a ~ - 2  J a2 "2n " (32) V 2 V 2 y V 0 
If  0¢2//1 < f12( 1 -x /%)  2, then in the usual way 

( k l + k 2 ) 2 < l  ~x/~2~+ ~x//~j~zl2<//2<c~l, (33) 

and we have a three-jet contribution. Note that the 
lower limit for f12 is y2, giving us the constraint OL2fl l 
>y2. In order to maintain consistency of the limits, 
we can change the lower limit on//2 to y2/ (  1 - x/%) 2. 
This has no effect on the leading logarithm. If, how- 
ever, we demand that a2//l >//2( 1 +,v/y) 2 then 

(kl +k2)2> I ~/~2fll - ~N/~lfl212 > f12 (34) 

and we have a two-jet contribution. The intermedi- 
ate region//2 ( 1 - , ~ )  2 < c~2//1 <//2 ( 1 + v/y) 2 does not 
contribute to leading logarithm. Thus the condition 
c~2fll <//2 defines a region which contributes the same, 
at leading logarithm, to the three-jet fraction as the 
proper three-jet region. This allows us to perform the 
angular integration trivially. 

Since //1<//2/OL2, but also //I>Y, we must have 
f12/o~2 > Y ~  % <//2/Y, and the integral becomes 

y OLI fl2/y fl2/oQ 
2fd°~l ! d f l 2 y z  o~- ~ f dO/zy o~- f : l l n 4 y ' y  (35) 

The other configuration, where ¢<~2, fl~<Y and 
Y< f12, al  < 1 similarly contributes ~ ln4y to the three- 
jet fraction. The whole region where both of the gluons 
are unresolved with one or other of  the quark or an- 
tiquark contributes ln4y, leaving us with a contribu- 
tion of~ ln4y for the two-jet fraction. The imposition 
of the gluon-gluon invariant mass cut has reduced 
the coefficient I in eq. (20) from 1 to 3. This reduc- 
tion in the four-jet rate was also noticed in ref. [ 6 ] in 
the context of Sterman-Weinberg cuts. Putting this 
all together and replacing the colour factors and cou- 
pling constants we obtain 

1 ( C F C ~  2 ( 3 )  A = T., \ ~ - ]  ln"y , 

f3= CFOq lnZy+ 1 (CFas~ 2 ( 1 9 )  T 2 . 1 \ T j  ln4y - ~  ' 

2 
ZC 2.1 ln4y . (36) 

Note that f4 can be explicitly checked by integrating 
the appropriate four-parton matrix element over the 
region of phase space where all partons are resolved 
from each other. Numerical results agree with the 
calculation above. 

5. Discussion 

The first thing to notice is that these jet fractions 
disagree with the full calculation of Kramer and 
Lampe (KL).  In ref. [7] analytic results are only 
given for the two jet fractionf2. In fact two separate 
results for the leading logarithmic dependence off2 
are given, the difference arising from two distinct 
treatments of the phase space: 

where Arc= 3, the number ofcolours. The first result 
f 2 KL is closer in spirit to ours, in that only the most 

661 

kt (Durham) algorithm

• Leading logs exponentiate: resummation possible

15

Volume 252, number 4 PHYSICS LETTERS B 27 December 1990 

singular parts of  the matr ix  element are integrated. 
We find it surprising that  there is any ambigui ty  at 

all. The JADE algori thm is entirely well defined, in 
that  any given final state at O ( a  2 ) is unambiguously  
ascribed to ei ther f2, f3 or f4. The different ways in 
which phase space is t reated for f ~r and f ~L, arises 
from the technical requirements  of  the calculation. 
Second, the term propor t ional  to CFNc i n f ~  L' is en- 
t irely unexpected as such a colour factor does not 
usually contr ibute at leading logarithm, and would 
presumably spoil any proposed summat ion  of  these 
logarithms. 

The difference between these results and ours lies, 
we believe, in an incomplete  appl icat ion of  the algo- 
r i thm f o r f ~  L a n d f ~  L'. There, if  a gluon was unre- 
solved from the quark or ant iquark,  their  momen ta  
were combined  to form a pseudo- three-body final 
state. However,  according to the algori thm, the cor- 
rect thing to do is to form a / / t h e  invar iant  masses 
and combine the pair  with the lowest. The only place 
where this would differ from the KL approach is in 
the calculation where two unresolved gluons coalesce 
and the resulting two gluon je t  is resolved from the 
quark and antiquark. According to KL, the two gluons 
would be combined  with the quark and ant iquark re- 
spectively and the configurat ion would be called two 
jet. I f  we did the same we would find that our f2 was 
identical  t o f ~  L. To compare  with experiment ,  how- 
ever, we must  use the experimental  algori thm which 
does not dist inguish whether a par t icular  par ton is a 
gluon or a quark. The configurat ion we have just  de- 
scribed is then unambiguously a three-jet one. 

It was, however, conjectured by Smilga [8 ] that the 
two-jet fraction would exponentiate:  

--exo(- (37) 

This is contradic ted by our result for f2. We do not 
see any compell ing reason why f2 should exponen- 
tiate. Usually the fact that such a series is exponent ial  
can be t raced to the fact that  when the gluons are suf- 
ficiently soft one can treat  them as independent  of  
each other. In the JADE algorithm, however, we have 
seen that it is possible for two unresolved soft gluons 
to coalesce, resulting in a three-jet configuration, and 
it is not therefore possible to treat  the gluons inde- 
pendent ly  in this case. 

Final ly we return to our original goal, which was to 
calculate the leading logari thmic contr ibut ion to all 
orders  so that  the large logari thms can be summed  
and theory and exper iment  can be compared  at 
smaller  values of  y. By an extension of  the methods  
out l ined in this paper,  it is possible - at least in prin-  
ciple - to calculate the leading contr ibut ion to fn at 
O(oL~ -2 ), e.g. for n=5, 6: 

3 

f s =  ~ , T J  m y ~ , 

1 {CFO~s'~4,8(51~O) f 6 =  ~ - )  ,n y . (38)  

Unfor tunate ly  there is no clear pat tern  in the coeffi- 
cients. Other  je t  fractions, however, seem intracta-  
ble. The reason is that  with more gluons we have to 
compare  different g luon-gluon invar iant  masses in 
order  to apply the algorithm. For  example,  at O (c~ 2 ) 
the s i tuat ion where two unresolved gluons coalesce 
to form a resolved gluon-gluon combinat ion  de- 
manded  that (kl + k2) 2 be the smallest invariant  mass. 
At O(o~ 3) and higher we would have to compare  
(kl + k2)2 with other g luon-gluon invar iant  masses, 
a problem which does not seem to have any simple 
t rea tment  in our formalism. 

The fact that  the large logari thmic contr ibut ions  to 
the jet  fractions at small y do not appear  to be under  
control  suggests that some caution should be excer- 
cised in using the data  at small y as part  of  a fit to 
measure AMS. Unti l  we unders tand how to resum 
these large logarithms, the safest approach is to re- 
strict the comparison to larger values of  y, even though 
this means a significant loss in statistical precision on 
the measurement  of  A. 
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Cross sections for e+e- --, n-jets, as functions of the jet resolution parameter Y¢~t, are computed according to a new clustering 
algorithm. The jet multiplicity n is defined in such a way that jets i andj with energies Ei and Ej at relative angle 0 a are resolved if 
ya=2( 1 -cos 00) min(E~, E 2 )/s>Ycut, where s is the centre-of-mass energy squared. Using this algorithm, large higher-order 
corrections at small values of Ycu~ can easily be evaluated. Our calculations include resummation of leading and next-to-leading 
logarithms of Ycut to all orders in QCD perturbation theory. This enables us to predict the jet cross sections at small YCut for 
arbitrary n. Simple analytical results for n ~< 5 are presented. 

1. Introduction 

One of the areas of pr imary experimental  interest in e + e -  annihi la t ion at LEP energies [ 1 ] and below [ 2-5 ] 
has been the study of multi jet  cross sections, both as a test of  QCD and as a good means of determining the 
strong coupling constant  o~. These cross sections are defined in terms of (i) a dimensionless jet  resolution 
parameter  Ycut and (i i)  a jet recombinat ion scheme. The jet resolution parameter was originally taken to be of 
the general form Y c u t = M 2 / s  where Mj is the max i m um jet invar iant  mass and s is the centre-of-mass energy 
squared (the "JADE algorithm" [ 2 ] ), and several different recombination schemes have been introduced (JADE, 
E, Eo, P, Po schemes [2,6,7 ] ). Final-state particles are combined into clusters, which are in turn recombined, 
according to the prescribed algorithm, unti l  any further recombinat ion would yield clusters that exceed the 
resolution Ycut. The number  of remaining clusters is defined as the jet multiplicity. 

The introduct ion of a finite jet resolution Ycut makes the multi jet  cross sections defined in this way infrared 
and collinear safe, so that the experimental  data should be directly comparable with perturbative QCD calcula- 
tions at the parton level. So far this comparison has been performed with theoretical predictions [6-8]  based 
on the relevant QCD matrix elements evaluated to second order in the strong coupling as [ 9 ]. 

As long as the resolution parameter  Ycut is not small, the fixed-order perturbative calculations should be reli- 
able. At small Ycut values, however, there are terms in higher order that become enhanced by powers of In Your. In 
this kinematical  region the real expansion parameter  is the large effective coupling tx~ ln2Ycut and therefore any  
finite-order perturbative calculation cannot  give an accurate evaluation of the cross section. The logarithmic 
terms need to be identified and resummed to all orders in as before a reliable prediction can be made. 

Experimentally, it is found that the two-loop theoretical calculations are not able to fit the experimental data 
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Istruzione. 
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3.4 h ! gggg: next-to-leading logs

Here we use the generating function method, which reproduces the results
of parton showers as far as logarithmically-enhanced terms are concerned.
The relevant generating functions are those given in Refs. [1, 2, 3]:

�q(u,Q) = u�q(Q) exp

 Z Q

Q0

dq �q(Q, q)�g(u, q)

!

, (28)

�g(u,Q) = u�g(Q) exp

 Z Q

Q0

dq

"

�g(Q, q)�g(u, q) + �f (q)
�q(u, q)2

�g(u, q)

#!

(29)

where Q is the jet scale, Q0 = Q
p
ycut is the resolution scale, and

�q(Q, q) =
2CF

⇡

↵s(q2)

q

✓
ln

Q

q
� 3

4

◆
, (30)

�g(Q, q) =
2CA

⇡

↵s(q2)

q

✓
ln

Q

q
� 11

12

◆
, (31)

�f (q) =
nf

3⇡
. (32)

The Sudakov factors for no resolvable emission are

�q(Q) = exp

 

�
Z Q

Q0

dq �q(Q, q)

!

, (33)

�q(Q) = exp

 

�
Z Q

Q0

dq [�g(Q, q) + �f (q)]

!

. (34)

The generating function for Higgs decay to multijets via two hard gluons is
�h = �2

g. The h ! n-jet rate is then given by

Rh
n =

@n�h

@un

����
u=0

(35)

3.4.1 Fixed ↵s

For simplicity we first take ↵s/⇡ ⌘ a fixed. We denote the corresponding
h ! n-jet rates by R̄h

n. Using Mathematica, we find to O(a2)

R̄h
2 = 1 +

1

6
a(11CAL� 3CAL

2 � 2Lnf ) +
1

72
a2(121C2

AL
2 � 66C2

AL
3 + 9C2

AL
4

�44CAL
2nf + 12CAL

3nf + 4L2n2
f ), (36)

R̄h
3 =

1

6
a(�11CAL+ 3CAL

2 + 2Lnf ) +
1

144
a2(�605C2

AL
2 + 308C2

AL
3 � 39C2

AL
4

+176CAL
2nf + 36CFL

2nf � 48CAL
3nf � 8CFL

3nf � 12L2n2
f ), (37)

R̄h
4 =

1

144
a2(363C2

AL
2 � 176C2

AL
3 + 21C2

AL
4

�88CAL
2nf � 36CFL

2nf + 24CAL
3nf + 8CFL

3nf + 4L2n2
f ). (38)
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in the small-angle approximation, which is adequate for leading and next-to-leading logarithms, the O-function 
in eq. (3) enforces the resolution constraint Ybc > Ycut = Q~/Q2 where Q~ x/~ is the scale of the jet production 
process. The corresponding m-jet fraction of the total cross section is then obtained by differentiating m times 
at u=0: 

RI~)(y~ut=Q2°/Q2)= m! \Ou] 0n(Q, Qo; (5/ 

To next-to-leading order (i.e. neglecting terms that will be down by two powers oflogycm for every power of 
o~ after integration), eq. ( 3 ) gives for quark jets 

Q l d0 3) q)q(Q, Qo;u)=u+ f --~ f d z a ~ ( z 0 ) - ~ - k Z -  ~ [Og(zO, Qo;u)-l]Oq(O, Qo;u). (6) 
Qo Qo/O 

This equation has the solution 

fbq(Q, Qo;u)=2Cvce,(q)(log Q 3) q q - . ( 7 )  

For gluon jets the equation corresponding to (6) is 
Q ~ 
f dO f CA(2 l~)[Og(zO, Qo;u)_l]Og(O, Qo;u) Oq(Q, Qo; u ) = u +  ~-  dz o~,(z0) ~ -  - 
Oo Qo/O Q 

[0q(q, Qo; u)2-0g(0,  Qo; u) l  • (9) 
Qo 

Substituting the solution (7) for 0q and performing some manipulations, we obtain the convenient form 
o 

Og(Q, Qo; u)=u exp(!o dq {Fg(Q, q)[0g(q, Qo; u ) - l ] - F f ( q )  }) 

Q q 

×[l+ufdqFf(q)  exp(f  dq'{[2Fq(q,q')-Fg(q,q')][~g(q',Qo;u)-l]+Ff(q')})l, (10) 
Qo Oo 

where 

( Fg(Q,q)- 2Caus(q) log - ~  , 
q 

Nfas(q) 
Ff (q )=  3~ q 

(11) 

(12) 

3.2. All-orders expressions for e+ e- multijet fractions 

To the precision required for a next-to-leading logarithmic calculation, the generating function for e +e- an- 
nihilation is simply that for a pair of quark jets. Thus the corresponding multijet fractions are 

- - '  ° R~e+e-)(Ycut)= m! \Ou] [~q(Q' Qo; u) . (13) 
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• Z0 2,3,4-jet rates:

• ‘Data’=MG5 exact LO ME

• NNLL terms are helpful!
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4 Z0 ! multijets

4.1 Next-to-leading logs

The results for Z0 ! jets to O(↵s) at fixed ↵s, corresponding to (36-38), are

R̄Z
2 = 1 +

1

2
a(3CFL� CFL

2) +
1

8
a2(9C2

FL
2 � 6C2

FL
3 + C2

FL
4), (49)

R̄Z
3 =

1

2
a(�3CFL+ CFL

2) +
1

144
a2(�99CACFL

2 � 324C2
FL

2 + 40CACFL
3

+216C2
FL

3 � 3CACFL
4 � 36C2

FL
4 + 18CFL

2nf � 4CFL
3nf ), (50)

R̄Z
4 =

1

144
a2(99CACFL

2 + 162C2
FL

2 � 40CACFL
3 � 108C2

FL
3

+3CACFL
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Figure 4: Di↵erential distribution of L = ln(1/ycut) in Z0 ! dd̄+ 1 and
2 gluons. Points are MadGraph data using leading-order exact matrix ele-
ments. Dashed, dot-dashed and solid curves show the leading-log, NLL and
NNLL results, respectively.
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3.4.2 Running ↵s

Including the running coupling ↵s(q2) introduces NLO terms as
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To omit g ! qq̄ splittings, we set nf = 0 and then
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These results can be compared with those of exact h ! ng matrix element
calculations. Notice that they agree with those obtained by direct calcu-
lation in the previous sections. We do not expect the terms of order a2L2

to be reliable, as they are next-to-next-to-leading logs. However, they will
be present in the parton shower and hence need to be subtracted when
matching to fixed-order predictions.

3.5 Matrix element comparisons

MadGraph5 was used to generate the processes ⌧+⌧� ! h ! ng at c.m.
energy 1 TeV, at leading order in an e↵ective theory with a pointlike Higgs
coupling to gluons (i.e. the infinite top-mass limit). In these calculations,
the scale for the strong coupling was changed from the c.m. energy, Ecm

7

kt-jet rates: Higgs   jets
• Higgs 2,3,4-jet rates:

• ‘Data’=MG5 exact LO ME

• NNLL terms again helpful!

19

a = ↵S(Q
2
)/⇡ , L = log(1/ycut)

Rn =
�
aL2

�n�2 �
A+B/L+ C/L2

�

Figure 1: Di↵erential distribution of L = ln(1/ycut) in h ! 3 and 4 glu-
ons. Points are MadGraph data using leading-order exact matrix elements.
Dashed, dot-dashed and solid curves show the leading-log, NLL and NNLL
results, respectively.
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kt-type (pp) algorithms
• Compute list of {dij,diB}

✤ If dij is smallest, combine i & j

✤ If diB is smallest, i is a jet: remove it from list

✤ Repeat until list is empty

•          : kT algorithm (scale of running coupling)

•          : Cambridge/Aachen algorithm (angular ordering)

•          : anti-kT algorithm (cone jets, not QCD dynamics)

20

performed using SHERPA for e+e� and pp collisions, respectively. In Section 9 we

assess the ability for our analytic results to describe sub-jet multiplicities in boosted

events. In Section 10 we consider the implications for the scaling patterns of jet

multiplicities. Our conclusions are summarized in Section 11. Details of the deriva-

tion and properties of the partial di↵erential equation (PDE) for the average jet

multiplicity are relegated to appendices.

2. The inclusive generalized kt jet algorithms

We consider first the case of multijet production in e+e� annihilation, for which the

inclusive algorithms are defined as described in the FastJet user manual [6], Sect. 4.5.
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ti

> E
R

as resolved jets.
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kt-type (pp) algorithms
• Compute list of {dij,diB}

✤ If dij is smallest, combine i & j

✤ If diB is smallest, i is a jet: remove it from list

✤ Repeat until list is empty

•          : kT algorithm (scale of running coupling)

•          : Cambridge/Aachen algorithm (angular ordering)

•          : anti-kT algorithm (cone jets, not QCD dynamics)
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Jet algorithms: computation

• Computational geometry

How does anti-kt fare?
[Jets]

Timing v. particle multiplicity 2008
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kt

in critical region of N ∼ 2000− 4000

1000 times faster than previous attempts with similar jet algorithms

FastJet code available publicly at http://fastjet.fr/

G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 24 / 36

FastJet: Cacciari & Salam, Phys Lett B 641(2006)57 
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Jet algorithms: underlying event

23

Jet contours – visualised[1. Defining jets]

Gavin Salam (CERN/Princeton/Paris) Jets in SM and beyond PANIC, 28 July 2011 8 / 25

• Anti-kT is best for controlled UE subtraction

Cacciari, Salam, Soyez, JHEP04(2008)063 
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Power Corrections
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Jet hadronization
• Simple “tube” model describes many features
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Jet hadronization

26

• Algorithm should classify tube as 2-jet

✤           smallest is best 

• JADE: 

• LUCLUS, kT: 

• Cambridge/Aachen:

• Anti-kT: 

hy3�jeti

hy3�jeti ⇠ �/Q

hy3�jeti ⇠ (� lnQ/Q)2

hy3�jeti ⇠ (� ln lnQ/Q)2

hy3�jeti ⇠ (�/Q)2
(c)

(a) (b)

Figure 2: Resolving a third jet in the final state of the tube model: (a) JADE, (b)
Durham, (c) angular-ordered Durham algorithm.

The largest value of ycut at which this can be achieved occurs when one half of the tube
is divided axially into two half-cylinders, as illustrated in Fig. 2(b), giving

Pt ∼
∫ Y

0

∫

d2pt|ptx|ρ(pt) ∼
2

π
λY (2.6)

and hence

⟨y3⟩D ∼
(

2λ ln(Q/λ)

πQ

)2

. (2.7)

This is shown by the solid curve in Fig. 3, which agrees well enough with the Monte Carlo

tube model data (circles). We see the expected great improvement relative to the JADE
algorithm, due to the power-suppression factor of 1/Q2 rather than 1/Q. However, the

presence of the log-squared enhancement factor means that the coefficient of 1/Q2 is far
larger than O (λ2), the order of magnitude that one might hope to be achievable with an
optimal jet algorithm.

An alternative way of estimating non-perturbative contributions to ⟨y3⟩ has been

proposed in Ref. [15]. At lowest order in perturbation theory, for any infrared-safe jet
algorithm, this quantity is proportional to αS. In higher orders it is given by a power series

in αS(Q), where the argument of the coupling is set by the only available hard-scattering
scale Q = Ecm. Now although the perturbative predictions may be expressed in terms of

αS(Q), one cannot avoid sensitivity to the region of low momenta k ≪ Q inside integrals
that contribute to those predictions. This sensitivity makes the perturbation series in
αS(Q) strongly divergent at high orders, leading to power-behaved ambiguities.

In the ‘dispersive approach’ of Ref. [15] these so-called renormalon ambiguities are

resolved by assuming the existence of a universal low-energy effective strong coupling
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Dokshitzer, Leder, Moretti, BW, JHEP 08(1997)001 
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Jet algorithms: hadronization

• Anti-kT is best for small hadronization effect
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NP shift in Thrust 
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DMW 1995
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Dispersive approach to power-behaved 
--k contributions in QCD hard processes 
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Abstract 

We consider power-behaved contributions to hard processes in QCD arising from non-pertur- 
bative effects at low scales which can be described by introducing the notion of an infrared- 
finite effective coupling. Our method is based on a dispersive treatment which embodies running 
coupling effects in all orders. The resulting power behaviour is consistent with expectations based 
on the operator product expansion, but our approach is more widely applicable. The dispersively 
generated power contributions to different observables are given by (log-)moment integrals of 
a universal low-scale effective coupling, with process-dependent powers and coefficients. We 
analyze a wide variety of quark-dominated processes and observables, and show bow the power 
contributions are specified in lowest order by the behavioar of one-loop Feynman diagrams 
containing a gluon of small virtual mass. We discuss both collinearosafe observables (such as the 
e+e - total cross section and z hadronic width, DIS sum rules, e+e - event shape variables and 
the Drell-Yan K-factor) and collinear divergent quantities (such as DIS structure functions, e+e - 
fragmentation functions and the Drell-Yan cross section). 

1. Introduct ion 

Power -behaved  contr ibut ions to hard col l is ion observables  are by now widely  rec- 
ogn ized  both as a serious difficulty in improv ing  the precision o f  tests o f  perturbat ive 

* Research supported in part by the UK Particle Physics and Astronomy Research Council and by the EC 
Programme "Human Capital and Mobility", Network "Physics at High Energy Colliders", contract CHRX- 
CT93-0357 (DG 12 COMA). 

E On leave from St. Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188350, Russia. 

Elsevier Science B.V. 
PH S0550-3213(96)00155-  1 
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DMW 1995
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NLL thrust resummation

• Leading PT contribution from 

31
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Power correction to thrust

• Replace PT by NP for 

• For               , i.e.  
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Power corrections to event shapes

• 1/Q correction to T, absent in y3

33

Dasgupta & Salam, J Phys G (2004) R143
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Power corrections to event shapes

• 1/Q corrections to mean values

34

e+e- DIS
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Power corrections to event shapes

• 1/Q corrections to distributions
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e+e- DIS
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NNLO+NLL+NP fit to Thrust 

• Fit range:

36
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NP shift in Thrust 
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NP shift in Thrust 
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NP shift in Thrust 

39

 0.01

 0.1

 1

 10

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

1
/!

 d
!

/d
t

t

Q=55 GeV
"s=0.1259

Unshifted
Shifted

AMY (54.5 GeV)
L3 (55.3 GeV)

Q=55 GeV



Bryan Webber, Jetty Investigations Yuri Fest, Paris, 18/11/2016

NP shift in Thrust 
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NP shift in Thrust 
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NP shift in Thrust 
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NP shift in Thrust 
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NP shift in Thrust 
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NP shift in Thrust 
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NP shift in Thrust 
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NP shift in Thrust 
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NP shift in Thrust 
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Results of NNLO+NLL+NP fit
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6 R.A. Davison, B.R. Webber: Non-Perturbative Contribution to the Thrust Distribution in e+e� Annihilation

the boundary conditions are satisfied as L̃ (tmax) = 0. This
does introduce corrections to the expression for lnR (t)
but these are power-suppressed at small t:

L̃ (t) = ln

⇤
1

t
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+ ln
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1� t
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+ t

⌅

= L (t) +
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� 1

2
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+ . . . ,

(26)
and so L̃ (t) ⇤ L (t) in the important limit t ⇤ 0.

3 Results of NNLO+NLL matching

To perform the matching, the integrated perturbation se-
ries coe⇤cients are required as in Eq. (19). For R1 (t), the
analytic result is

R1 (t) =� 8
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where

Li2 (z) ⇥
⌥ 0

z
dx

ln (1� x)

x
(28)

is the dilogarithm function. R2 (t) and R3 (t) were ob-
tained by interpolating the di�erential results from EERAD3
and then numerically integrating them. For R3 (t), the
EERAD3 results were first smoothed by taking

dR3

dt
(ti) ⇤

1

3

⇧
dR3

dt
(ti+1) +

dR3

dt
(ti) +

dR3

dt
(ti�1)

⌃
,

(29)
repeatedly until a smooth curve was obtained. The peak
near t = 0 had to be reintroduced by hand, as this smooth-
ing technique always results in the peak value being re-
duced.

R (t) was computed to NNLO+NLL precision using
Eqs. (19) and (26) with tmax = 0.42 in L̃, as this is the
maximum value of t kinematically allowed in the five par-
ton limit. The di�erential cross section was then obtained
by numerically di�erentiating R(t). The results at a range
of energies are shown by the red/darker curves in Figs 1-3.
The values of �s (Q) were calculated as described earlier
for the unresummed NNLO (green/lighter) curves. The
shaded area around each line shows the renormalisation
scale uncertainty found by taking µ2

R ⌅
�
Q2/2, 2Q2

⇥
.

3.1 Comparison with experimental data

The matched, resummed di�erential thrust distribution
was compared with data from a wide range of experiments,
as listed in Table 1. The points in Figs. 1-3 show the data
at an illustrative selection of energies. The error bars rep-
resent the experimental statistical and systematic errors,
added in quadrature.

Experiment Q/GeV Ref. No. Pts. �2

TASSO 14.0 [14] 4 8.2
TASSO 22.0 [14] 6 2.8
TASSO 35.0 [14] 8 0.7
JADE 35.0 [15] 10 10.5
L3 41.4 [16] 8 3.4
JADE 44.0 [15] 10 3.8
TASSO 44.0 [14] 8 6.8
DELPHI 45.0 [17] 11 11.6
AMY 54.5 [18] 4 4.9
L3 55.3 [16] 8 3.2
L3 65.4 [16] 8 7.5
DELPHI 66.0 [17] 11 14.5
L3 75.7 [16] 8 1.9
DELPHI 76.0 [17] 11 10.3
L3 82.3 [16] 8 4.0
L3 85.1 [16] 8 3.6
OPAL 91.0 [19] 5 11.9
ALEPH 91.2 [20] 27 16.1
DELPHI 91.2 [17] 11 18.8
SLD 91.2 [21] 6 2.7
L3 130.1 [16] 10 14.6
ALEPH 133.0 [20] 6 7.2
OPAL 133.0 [19] 5 6.5
L3 136.1 [16] 10 37.3
ALEPH 161.0 [20] 6 5.5
L3 161.3 [16] 10 4.0
ALEPH 172.0 [20] 6 14.0
L3 172.3 [16] 10 2.1
OPAL 177.0 [19] 5 1.1
L3 182.8 [16] 10 2.7
ALEPH 183.0 [20] 6 4.0
DELPHI 183.0 [17] 13 33.1
L3 188.6 [16] 10 3.4
ALEPH 189.0 [20] 6 6.7
DELPHI 189.0 [17] 13 22.7
DELPHI 192.0 [17] 13 12.1
L3 194.4 [16] 10 1.2
DELPHI 196.0 [17] 13 39.7
OPAL 197.0 [19] 5 10.0
ALEPH 200.0 [20] 6 21.0
DELPHI 200.0 [17] 13 7.1
L3 200.0 [16] 9 6.5
DELPHI 202.0 [17] 13 14.9
DELPHI 205.0 [17] 13 12.6
ALEPH 206.0 [20] 6 7.0
L3 206.2 [16] 10 10.0
DELPHI 207.0 [17] 13 11.7
Total 430 466.0

Table 1. Data sets used and best-fit �2 contributions.

There are a few features common to the graphs at
all energies. Firstly, the resummed distribution and the
NNLO distribution are almost identical away from the
two-jet region. However, in this low-t limit the resummed
distribution peaks, in line with the experimental data,
whereas the NNLO distribution carries on increasing. Thus
resummation has significantly improved the theoretical
prediction in the two-jet limit, as we had expected.
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were obtained, with ⌃2/d.o.f. = 466.0/428 ⇤ 1.09. The
quoted errors correspond to one standard deviation, com-
puted as recommended by the Particle Data Group [9]: the
value of ⌃2 corresponding to the 1⇧ (68.3% C.L.) contour
was rescaled by the value of ⌃2/d.o.f., giving ⌃2 = 480.6,
i.e. �⌃2 = 14.6.

The contribution to ⌃2 from each data set is shown in
Table 1. It should be noted that the few data sets with
⌃2/no. pts. ⌅ 1 are not generally inconsistent with the
shifted distribution, but simply have a few outlying points
giving a large contribution.

The contour plot in Fig. 7 shows the ranges of ⇤0 and

⇥(5)

MS
which give fits within �⌃2 of the best-fit value of ⌃2,

and also demonstrates the correlation between these two
parameters.

Varying the renormalisation scale µ2
R ⇧

�
Q2/2, 2Q2

⇥

gave best fit values in the range ⇤0 (2 GeV) = 0.585,

⇥(5)

MS
= 0.173 GeV to ⇤0 (2 GeV) = 0.598, ⇥(5)

MS
= 0.210

GeV with no significant change in the quality of fit. Thus
we find

⇥(5)

MS
= 0.190+0.025+0.020

�0.022�0.017 GeV (39)

where the first error is the combined experimental statis-
tical and systematic error and the second is due to the
theoretical renormalisation scale uncertainty. The corre-
sponding strong coupling constant is

⇤s (91.2 GeV) = 0.1164+0.0022+0.0017
�0.0021�0.0016 , (40)

or, combining all the errors in quadrature,

⇤s (91.2 GeV) = 0.1164+0.0028
�0.0026 , (41)

in good agreement with the world average value of 0.1176 [9].
To assess the importance of the NNLO terms, the anal-

ysis was repeated with all those terms omitted, i.e. com-
bining NLO+NLL in perturbation theory with Eq. (36)
without the O(⇤3

s) contribution. The resulting best fit val-
ues were

⇤0 (2 GeV) = 0.51± 0.04 ,

⇥(5)

MS
= 0.214+0.032+0.034

�0.027�0.026 GeV ,

⇤s (91.2 GeV) = 0.1185+0.0025+0.0027
�0.0024�0.0023

(42)

with ⌃2/d.o.f. = 515.1/428 ⇤ 1.20. Thus the NLO and
NNLO results are consistent but the inclusion of NNLO
terms consistently in both the perturbative prediction and
the power correction improves the quality of the fit and
reduces the errors.

The most complete previous NLO study along similar
lines [24], combining NLO+NLL in perturbation theory
with the NLO equivalent of Eq. (36) and covering a variety
of event shapes but a slightly narrower range of energies
than that used here, obtained the overall best fit at

⇤s (91.2 GeV) = 0.1171+0.0032
�0.0020,

⇤0 (2 GeV) = 0.513+0.066
�0.045

(43)

in good agreement with our results. Their fit to the thrust
distribution alone gave

⇤s (91.2 GeV) = 0.1173+0.0063
�0.0051,

⇤0 (2 GeV) = 0.492+0.084
�0.070

(44)

also in good agreement.
In the recent NNLO analysis [25], a range of event

shapes at energies at and above 91.2 GeV were fitted
without resummation; non-perturbative e�ects were es-
timated using Monte Carlo event generators. The value
obtained for the strong coupling was ⇤s (91.2 GeV) =
0.1240± 0.0033.

To estimate the dependence of our results upon the
infra-red matching scale, a fit with µI = 3 GeV was made,

yielding ⇤0 (3 GeV) = 0.458±0.025 and ⇥(5)

MS
= 0.202+0.034

�0.027,

with ⌃2/d.o.f. ⇤ 1.09. Thus the fit remains good and the

value obtained for ⇥(5)

MS
is stable under variation of µI ,

while the value of ⇤0 decreases as expected for a running
e�ective coupling. Indeed, the implied mean value of ⇤e�

in the range 2-3 GeV,

⇤e� = 3⇤0 (3 GeV)� 2⇤0 (2 GeV) = 0.19± 0.10 (45)

is consistent with the perturbative value ⇤s (2.5 GeV) =
0.26.

4.4 Final comparison with experimental distributions

Figures 8-10 show the final (NNLO+NLL+shift) theoret-
ical distributions in comparison to the experimental ones,
with the best-fit values of ⇤0 and ⇤s assumed. The shaded
area around the unshifted distribution is the renormalisa-
tion scale uncertainty found by varying µ2

R ⇧
�
Q2/2, 2Q2

⇥
,

and the shaded area around the shifted distribution is
the corresponding error found by varying between the
best fit limits obtained previously (⇤0 (2 GeV) = 0.585,

⇥(5)

MS
= 0.173 GeV and ⇤0 (2 GeV) = 0.598, ⇥(5)

MS
= 0.210

GeV).
It is clearly seen that inclusion of the shift results in a

significantly more accurate distribution over the fit range,
particularly for the lower energies. As the best fit value of
⇤s is very close to the world average, the unshifted distri-
butions here are essentially the same as those in Figs. 1-3.
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Figure 6: Left: Quark versus gluon discrimination curves using C
(�)

1

for several values of � in

Herwig++ (directly comparable to Fig. 3b). Also plotted is the leading log approximation

for the discrimination curve, Eq. (3.8). Right: Gluon rejection rate for 50% quark e�ciency

as a function of �, for angularities, 1-subjettiness measured with respect to the broadening

axis, and C
(�)

1

in Herwig++ (directly comparable to Fig. 5b). We also tested Pythia 6.425

and Herwig 6.520, whose results lie in between Pythia 8 and Herwig++.

and � = 1 is jet broadening or girth. Among the angularities, Ref. [77] found that jet

broadening (� = 1) was the most powerful angularity for quark/gluon discrimination, and so

is a natural benchmark to compare to C
(�)

1

. When measured with respect to the broadening

axis, ⌧ (�)
1

is a recoil-free observable and is therefore expected to behave similarly to C
(�)

1

.

In Fig. 5a we plot the discrimination curves for angularities (i.e. 1-subjettiness measured

with respect to the jet axis) for several values of �, as well as the discrimination curve for

C
(0.2)

1

in Pythia. Indeed, for most of the range, the most discriminating angularity is � = 1,

but the performance of all angularities is roughly comparable to and only somewhat better

than the LL expectation. By contrast, C(0.2)

1

yields a quark to gluon e�ciency ratio that

is about twice as large as any of the angularities over much of the range. In Fig. 5b, we

highlight the importance of working with recoil-free variables, by plotting the gluon rejection

rate at a fixed 50% quark e�ciency. For � � 1, C(�)

1

and 1-subjettiness have essentially the

same performance. As � approaches 0, however, the discrimination power for the angularities

degrades, while the two recoil-free observables (C(�)

1

and 1-subjettiness with respect to the

broadening axis) have improved performance, as expected from the NLL analysis.18

To verify the claims made about the performance of C(�)

1

as a quark/gluon discriminator,

we also simulate quark and gluon dijet samples in Herwig++ 2.6.3 [89, 90]. We use the same

kinematic cuts and jet algorithm parameters as in the Pythia samples. As the same quali-

18The reason for the mismatch between C1 and ⌧1 with respect to the broadening axis at very small values

of � has not yet been determined.
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Figure 3: Left: Distribution of C(0.2)

1

for quark jets (purple) and gluon jets (orange) using

Pythia dijet samples. The sample consists of anti-k
T

jets with radius R = 0.6 and transverse

momentum in the range [400, 500] GeV. Right: Quark versus gluon discrimination curves

using C
(�)

1

for several values of � in Pythia. Also plotted is the leading log approximation

for the discrimination curve, Eq. (3.8).
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Figure 4: Gluon rejection rates at 50% quark e�ciency in Pythia, as a function of �.

Left: fixing the p
T

range to be [400, 500] GeV and sweeping the value of R
0

. Right: fixing

R
0

= 0.6 and sweeping the p
T

range. For all of these cases, small values of � yield the best

discrimination.

of R
0

= 0.4, 0.6, and 0.8. Because our broad conclusions hold for all samples generated, we

only show representative plots to illustrate the quark/gluon performance of C
1

.

In Fig. 3a, we plot the distribution of C(0.2)

1

for jets initiated by quarks and gluons with
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Figure 2: Left: Quark/gluon discrimination curves using C
(�)

1

, calculated at NLL order

matched to fixed order for various values of �. The �-independent LL prediction is shown

for comparison. Right: Gluon rejection rates at 50% quark e�ciency, as a function of �,

demonstrating that � ' 0.2 is optimal at NLL order (for smaller values of �, non-perturbative

e↵ects become important). Also shown is an analytic approximation from Eq. (3.22) (C
1

Approx.) that includes the most important physics that enters at NLL.

⌃
q

so as to determine the discrimination power of a cut on C
1

. In fact, we are most interested

in the exponent relating ⌃
g

to ⌃
q

(as in Eq. (3.7)), so we will actually relate the logarithms

of the two cumulative distributions to one another. We are interested in the regime where

ln 1/⌃ ⇠ 1, which, from Eq. (3.6), implies that ↵
s

L2 ⇠ 1. The logarithm of the cumulative

distribution has the schematic expansion

ln⌃ ⇠ ↵
s

L2 + ↵
s

L+ ↵
s

+ ↵2

s

L3 + ↵2

s

L2 + ↵2

s

L+ ↵2

s

+O(↵3

s

) . (3.12)

With the power counting of ↵
s

L2 ⇠ 1, we will consider all terms from Eq. (3.12) that scale

as ↵0

s

, ↵1/2

s

, or ↵1

s

. This corresponds to all terms at order ↵
s

from Eq. (3.12), as well as the

terms at ↵2

s

L3, ↵2

s

L2, and ↵3

s

L4. To illustrate this power counting, consider, for example, the

term ↵
s

L, which scales as ↵1/2

s

as one varies ↵
s

while keeping ↵
s

L2 fixed and of order 1.

In what follows we will pay special attention to the terms at order ↵
s

L and ↵2

s

L2, which

turn out to be the most relevant ones when establishing deviations from our LL analysis and

whose dominant contributions have clearly identifiable physical origins. The terms at order

↵2

s

L3 and ↵3

s

L4 are simply proportional to the LL color factor, multiplied by powers of the

�-function, and so do not significantly modify the LL analysis.

3.2.1 Subleading Terms in Splitting Functions

We first consider the e↵ect on the discrimination from the subleading terms in the splitting

functions. In the observable C
(�)

1

, � controls the weight given to collinear and wide-angle

– 15 –

• Leading-log (LL)               independent of b

• At NLL small b gives more q/g discrimination

✤ Pythia8, Herwig++ show same trend, but

✤ Pythia more, Herwig less than NLL
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1.   Introduction
I compare results concerned with the charged-track multiplicity from Herwig++ to those from PYTHIA6. I use Mihoko’s output ntdis-
_q.out and ntdis_g.out for Herwig++ and ntdis_py_q.out and ntdis_py_g.out for PYTHIA6. I fit distributions of multiplicity as refer-
ence to Bryan’s note like,

PqêgHnL = J kqêg nXn\qêg Nkqêg expI-kqêg nëXn\qêgM
n GHkqêgL ,

Xn\i = NiI1 + di a + di ' a2M ap expHc ê aL,
a = aSIpT2 M ë 6 p .

Some parameters are decided from QCD calculation, then, free parameters are Nq, dq, dq ', dg ', kq, and kg. In this note,  I fit two values 
as Nq = 0.1, dq = 0 for brevity. 

2.   Numerical results
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   Fig. 1 

Track multiplicity

• Compare Z+q, Z+g (R=0.4, min pTtk=1GeV)

• Again Pythia discriminates more than Herwig
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as Nq = 0.1, dq = 0 for brevity. 

2.   Numerical results
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Associated Jets

• Z+q vs Z+g (R=0.4)

• Gluons have more ‘nearby’ jets: 
DR<Ra=0.8, pT>pa=20 GeV 
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hard
process

associated jet

jet

�Rij < Ra

pti > pa

ptj > pti

Figure 1. A schematic illustration of associated jets, and the relevant variables which
determine the associated jet rate (see text for details).

The jet rates Ri
n = Ri

n(pj, ⇠) are functions of the trigger jet transverse momentum
pj, and the evolution scale for parton showering, which, for hadron-hadron collisions
is taken as ⇠ = �R2/2. This is equivalent to the evolution scale for coherent parton
showering, ⇠ ⌘ 1�cos ✓, with ✓ being the emission angle (�R2/2 ⇡ ✓2/2 ⇡ 1�cos ✓).
To be resolved, an emission must have ⇠ > ⇠j = R2/2 and pt > pa. Since the jet
rates Ri

n include the trigger jet j, the probability of n associated jets for a jet of type
i with transverse momentum pj is

P i
n = Ri

n+1

(pj, ⇠a) . (2.4)

Here, ⇠a = R2

a/2, with Ra being the association radius defined above.
The generating functions �i(u) were computed in the context of e+e� collisions

in Ref. [16], upto next-to-double logarithmic accuracy (NDLA). Here, leading double
and next-to-double logarithms refer to ↵n

S

log

2n and ↵n
S

log

2n�1, where the logarithms
are those of Ra/R and/or pj/pa. For pa sufficiently large, these terms are determined
by the timelike showering of final-state partons, while contributions from initial-state
showers and the underlying event can be avoided. Following the same methods as in
Ref. [16] for hadron hadron collisions, for ⇠ > ⇠j and pj > pa, we have the quark and
gluon generating functions to NDLA

�q(u, pj, ⇠) = u+

Z ⇠

⇠j

d⇠0

⇠0

Z
1

pa/pj

dz
↵
S

(k2

t )

2⇡
Pgq(z)�q(u, pj, ⇠

0
) [�g(u, zpj, ⇠

0
)� 1] ,

�g(u, pj, ⇠) = u+

Z ⇠

⇠j

d⇠0

⇠0

Z
1

pa/pj

dz
↵
S

(k2

t )

2⇡

�
Pgg(z)�g(u, pj, ⇠

0
) [�g(u, zpj, ⇠

0
)� 1]

+Pqg(z)
⇥{�q(u, pj, ⇠

0
)}2 � �g(u, pj, ⇠

0
)

⇤ 
. (2.5)

Here, the running coupling is evaluated at the transverse momentum scale of the
emission, k2

t = z2p2j⇠
0. Defining ↵

S

= ↵
S

(p2j⇠)/⇡, i.e. in terms of the coupling at the
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Figure 2. Comparison of the Herwig++ and Pythia8 MC predictions for associated jet
rates with the NDLA results, as a function of pT (js): for quark jets (left), and gluon jets
(right), with Ra = 0.8 and pa = 20 GeV. Here, pT (js) is the vector sum of the leading jet
and associated jet pT ’s.

pT (js), as it is closer to the transverse momentum of the parton that initiates the
final state shower.

We see that the functional behaviour with respect to the jet pT in the MC com-
putation 4 and the NDLA calculation are similar, although there are some differences
in the values of Pn. In particular, the MC prediction of P

1

for quark and gluon jets
is higher than the NDLA result, especially at higher pT (js), with Herwig++ giving
rise to a slightly larger P

1

compared to Pythia8. For a quark jet, the probability
of having at least one associated jet ranges from around 15% to 25% as we go from
pT (js) = 200 GeV to pT (js) = 500 GeV and at higher pT (js) the probability essen-
tially remains the same. For gluon jets, the corresponding probability ranges from
around 30% to 40% as we go from pT (js) = 200 GeV to pT (js) = 500 GeV. The larger
probability to have an associated jet around a gluon can thus be utilized to better
discriminate it from quarks, as we shall see in the next section.

The NDLA computation includes only the time-like showering of the final state
partons, and ignores some power-suppressed effects due to momentum conservation
and hadronization. On the other hand, the MC results shown above include momen-
tum conservation and hadronization as well as the effects of initial state radiation
(ISR) and multiple interaction (MPI). In order to quantify the effect of ISR and MPI,
we compare the predictions for Pn with and without ISR and MPI in Herwig++,

4For the associated jet rate calculations, we generated MC event samples with a statistics of
20,000 events each fixing the threshold for the minimum leading jet pT at 50 ⇥ (i + 1) GeV, for
i 2 [0, 19]. Only events with the leading jet pT (js) above the generation threshold are used in the
analysis. This ensures uniform MC statistics in the whole range of pT (js).

– 7 –

Bhattacherjee, Mukhopadhyay, Nojiri, 
Sakaki, BW, JHEP 1504 (2015) 131
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Multivariate Analysis
• Boosted Decision Tree analysis

✤ Method 1: ntrk, C1(b=0.2)

✤ Method 2: ntrk, C1(b=0.2), assoc

✤ Method 3: ntrk, C1(b=0.2), mJ/pTJ

✤ Method 4: ntrk, C1(b=0.2), mJ/pTJ, 

assoc

• Again Herwig < Pythia

✤ Note change of scale!
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column) we show the ratio of the quark and gluon tagging efficiencies, ✏q/✏g as a
function of ✏q, for 400 < pT (js) < 500 GeV, with the event samples generated with
all the three MC codes. Four different MVA methods are shown corresponding to
different choices for the discrimination variables:

• Method-1: Two variables, n
ch

and C
1

with � = 0.2.

• Method-2: Two variables, n
ch

and C
1

with � = 0.2, with two categories
determined in terms the number of associated jets (n = 0 or n � 1).

• Method-3: Three variables, n
ch

, C
1

with � = 0.2 and mJ/pT,J .

• Method-4: Three variables, n
ch

, C
1

with � = 0.2 and mJ/pT,J , with two
categories determined in terms the number of associated jets (n = 0 or n � 1).
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Figure 4. The ratio of the quark and gluon tagging efficiencies, ✏q/✏g as a function of ✏q,
for 400 < pT (js) < 500 GeV, as determined by MC simulations with Herwig++ (left column).
The different MVA methods, determined in terms of the input variables are explained in
the text. To quantify the improvement in quark gluon separation as we go to Methods 2,3
and 4, we show ✏g(Method-1)/✏g(Method-{2,3,4}) as a function of ✏q as well (right column).

We can quantify the improvement in quark-gluon separation using ✏g(Method-
1)/✏g(Method-{2,3,4}) as a function of ✏q, as shown in Figs. 4-6 (right). For e.g., for
an operating point of ✏q = 0.4, we can obtain an improvement of around 10%, 15%

and 20% using Methods-2,3 and 4 respectively, when compared to Method-1. The
differences between the improvement factors obtained using the three MC’s are found
to be small.
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Figure 5. Same as Fig. 4, with MC simulations using Pythia8.
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Figure 6. Same as Fig. 4, with MC simulations using Pythia6.

In order to estimate the change in tagger performance as we consider lower pT
jets, we show in Fig. 7 the same results as in Fig. 4, but now with 150 < pT (js) < 200

GeV. The improvement on adding associated jet rates is still appreciable, although
it is somewhat reduced compared to the higher pT range. The fluctuations in the ✏g
ratio for lower values of ✏q in Fig. 7 are due to low MC statistics.

– 12 –
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in the intermediate mass gap region, when we include the quark-gluon separation
information within the MVA analysis. Future availability of data-based templates
and improved MC tunes are expected to lead to more reliable predictions and a
reduction of the systematics in the application of quark-gluon discrimination.
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Figure 6. The 95% C.L. exclusion contours predicted by Pythia6 (solid lines) and
Herwig++ (dashed lines) using either only the jet substructure subset (blue curves) or the
full variable set (black curves). For reference, the exclusion contours based on ATLAS
cuts [24] are also shown (orange curves), and they are almost identical for Pythia6 and
Herwig++.

4 Summary and Outlook

Quark-gluon discrimination is becoming a topic of growing interest, both in the theo-
retical and Monte Carlo front with improved jet substructure based observables being
designed to capture the detailed pattern of QCD radiation, and on the experimental
front with the development of data-based templates for tagging observables as well
as validation of existing MC tunes. It is thus an ideal juncture when the importance
of quark-gluon jet separation methods in the search for physics beyond the stan-
dard model should be thoroughly explored. With this goal in mind, in this paper,
we studied the impact of including quark- and gluon-initiated jet discrimination in
the search for gluino pair production events at the LHC. As seen in Tab. 1, when
ordered according to their transverse momenta, the third and fourth jets are more
likely to be quark-initiated for the signal process, while for the dominant background
of Z/W+jets, they are more likely to be gluon-initiated. With the quark and gluon
separation variables of the number of charged tracks, energy correlation functions
C�

1

, and jet mass (mJ/pT,J) as inputs to a multivariate analysis, we first develop a
BDT-based quark-gluon discriminant across a large range of jet pT using the Z + q

– 15 –
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ATLAS q/g analysis

• Likelihood based on ntrk and track jet width
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Fig. 5 Gluon-jet efficiency as a function of quark-jet effi-
ciency calculated using jet properties extracted from data
(solid symbols) and from MC-labelled jets from the dijet
Pythia 6 (empty squares) and Herwig++ (empty diamonds)
samples. Jets with (a) 60 < pT < 80 GeV and (b) 210 <
pT < 260 GeV and |η| < 0.8 are reconstructed with the anti-
kt algorithm with R = 0.4. The shaded band shows the total
systematic uncertainty on the data. The bottom of the plot
shows the ratios of each MC simulation to the data. The error
bands on the performance in the data are drawn around 1.0.

Quark Efficiency
G

lu
on

 E
ffi

cie
nc

y

0.2

0.4

0.6

0.8
1

1.2 ATLAS
| < 0.8η R=0.4, |tanti-k

<80 GeV
T

60 GeV<p
 = 7 TeVs, -1 L dt = 4.7 fb∫

Pythia MC11 Simulation

Syst.
Data + Stat.
MC
Enriched Data

Quark Efficiency
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1O

th
er

/D
at

a

0.0
0.5
1.0
1.5
2.0

(a)

Quark Efficiency

G
lu

on
 E

ffi
cie

nc
y

0.2

0.4

0.6

0.8
1

1.2 ATLAS
| < 0.8η R=0.4, |tanti-k

<260 GeV
T

210 GeV<p
 = 7 TeVs, -1 L dt = 4.7 fb∫

Pythia MC11 Simulation

Syst.
Data + Stat.
MC
Enriched Data

Quark Efficiency
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1O

th
er

/D
at

a

0.0
0.5
1.0
1.5
2.0

(b)

Fig. 6 Gluon-jet efficiency as a function of quark-jet ef-
ficiency as calculated using jet properties extracted from
data (solid symbols), purified in data through kinematic cuts
(empty diamonds), and extracted from Pythia 6 MC simu-
lation (empty squares). Jets with (a) 60 < pT < 80 GeV and
(b) 210 < pT < 260 GeV and |η| < 0.8 are reconstructed with
the anti-kt algorithm with R = 0.4. The shaded band shows
the total systematic uncertainty on the data. The bottom of
the plot shows the ratio of Pythia 6 MC simulation or the
enriched data samples to the extracted data. The error bands
on the performance in the data are drawn around 1.0.
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Fig. 5 Gluon-jet efficiency as a function of quark-jet effi-
ciency calculated using jet properties extracted from data
(solid symbols) and from MC-labelled jets from the dijet
Pythia 6 (empty squares) and Herwig++ (empty diamonds)
samples. Jets with (a) 60 < pT < 80 GeV and (b) 210 <
pT < 260 GeV and |η| < 0.8 are reconstructed with the anti-
kt algorithm with R = 0.4. The shaded band shows the total
systematic uncertainty on the data. The bottom of the plot
shows the ratios of each MC simulation to the data. The error
bands on the performance in the data are drawn around 1.0.
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Fig. 6 Gluon-jet efficiency as a function of quark-jet ef-
ficiency as calculated using jet properties extracted from
data (solid symbols), purified in data through kinematic cuts
(empty diamonds), and extracted from Pythia 6 MC simu-
lation (empty squares). Jets with (a) 60 < pT < 80 GeV and
(b) 210 < pT < 260 GeV and |η| < 0.8 are reconstructed with
the anti-kt algorithm with R = 0.4. The shaded band shows
the total systematic uncertainty on the data. The bottom of
the plot shows the ratio of Pythia 6 MC simulation or the
enriched data samples to the extracted data. The error bands
on the performance in the data are drawn around 1.0.

6

colour factor associated with a gluon results in the pro-
duction of a larger number of particles and a softer
hadron pT spectrum after the shower. To define the op-
timal discriminant, several jet properties are examined
for their ability to distinguish the partonic origin of a
jet and for their stability against various experimental
effects, including pile-up. As these jet properties depend
on the jet kinematics, the analysis of the properties and
the resulting discriminant are separated into bins of jet
pT and η. The pT bin width is dictated by a combina-
tion of the jet resolution and the number of available
events in data, and the η bins coarsely follow the de-
tector features.

5.1 Discriminating variables

Useful discriminating variables, such as the number of
particles associated with a jet, may be estimated using
either the number of charged-particle tracks in the in-
ner detector or using the number of topological clusters
of energy inside the jet [40]. Although they are limited
to charged particles, and thus miss almost half of the
information in a typical jet, jet properties built from
tracks have three practical advantages over calorimeter-
based properties. First, they may include particles that
have sufficiently low pT that they are not measured
by the calorimeter, or which are in the regime where
the ID momentum measurement is more accurate than
the energy measurement of the calorimeter. Second,
charged particles bend in the magnetic field of the ID.
Additional particles from the underlying event brought
into the jet produce a background in the calorimeter,
and particles that are sufficiently bent are lost to the
calorimeter jet. However, both classes of particles can
be correctly assigned using their momenta calculated at
the interaction point. Third, tracks can be easily asso-
ciated with a specific vertex. This association dramati-
cally reduces the pile-up dependence of track-based ob-
servables. Similar arguments hold in the calculation of
jet shape variables.

The variables surveyed as potential inputs to the
quark/gluon tagging discriminant are:

– Number of reconstructed tracks (ntrk) in the jet.
– Calorimeter width:

w =

∑

i pT,i ×∆R(i, jet)
∑

i pT,i
,

where the sum runs over the calorimeter energy clus-
ters that are part of the jet.

– Track width, defined similarly to the calorimeter
width but with the sum running over associated
tracks.

– Track-based energy-energy-correlation (EEC) angu-
larity:

angEEC =

∑

i

∑

j pT,i × pT,j × (∆R(i, j))β

(
∑

i pT,i)2
,

where the index i runs over tracks associated with
the jet, j runs over tracks associated with the jet
while j > i, and β is a tunable parameter [52, 53].

The discriminating power (“separation”) of a vari-
able x is calculated as in Ref. [54] to investigate the
effectiveness of each variable in a quark/gluon tagger
in a sample with equal fractions of quarks and gluons:

s =
1

2

∫

(pq(x)− pg(x))2

pq(x) + pg(x)
dx =

1

2

∑

i

(pq,i − pg,i)2

pq,i + pg,i
,

where pq(x) and pg(x) are the normalised distributions
of the variables for quark- and gluon-jets, and where the
second expression applies to histograms, with the sum
running over the bins of the histogram. This definition
corresponds to the square of the statistical uncertainty
that one would get in a maximum-likelihood fit when
fitting for the fraction of quark- or gluon-jets using the
given variable, divided by the square of the uncertainty
in the case of perfect separation. While this is not a
variable that relates easily to quantities of interest for
tagging, its interpretation is independent of the shape
of the distributions, allowing for comparisons that are
independent of the tagging efficiency. Using this defi-
nition, Fig. 1 shows, for different variables, the sepa-
ration between quark-jets and gluon-jets as a function
of jet pT for jets built with the anti-kt algorithm with
R = 0.4 using the Pythia 6 dijet MC simulation. In
this simulation, the two most powerful variables are the
EEC angularity with β = 0.2 and the number of tracks
associated with the jet. The jet width built using the
associated tracks is the weakest discriminant and the
calorimeter-based width is somewhat stronger, and of
comparable power to that of the EEC angularity with
β = 1.0.

All track-based variables show excellent stability against
pile-up and significant discrimination power between
quark- and gluon-jets. The dependence of the mean
calorimeter width on the number of reconstructed ver-
tices is about five times stronger than the dependence
of any of the variables considered for the final discrim-
inant and at low jet pT is up to ≈ 1.5% per primary
vertex. At high jet pT, the dependence is negligible for
all variables. While it is possible to correct the inputs or
to use a pile-up-dependent selection to allow the use of
calorimeter-based variables without introducing a pile-
up dependence in the tagger, such an approach is not

60<pTJ<80 GeV 210<pTJ<260 GeV

• Data closer to Herwig++ (less discrimination than Pythia)
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Electroweak DGLAP

• High-scale PDFs evolve into all species (with double logs)

• Evolving MSTW2008LO from 100 GeV to 100 PeV ……
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Electroweak DGLAP
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Electroweak DGLAP
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Conclusions

• Yuri’s contributions to jet physics underpin a 
large part of present-day particle physics

✤ Not just QCD!

• Yuri’s low-scale effective aS describes a wide 
range of non-perturbative phenomena

• Quark-gluon discrimination: great interest for 
new physics searches

• DGLAP with electroweak: just starting!
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Backup
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Electroweak jets
• At super-high scales, leptons fragment into jets containing all 

species of particles
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Electroweak jets
• Contents of a 100 TeV neutrino jet
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Electroweak jets
• Contents of a 100 TeV L- or R-handed muon jet
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Real Cambridge Algorithm

• A = angular algorithm

• C= A + “soft jet freezing”

✤  prevents growth of 
“junk jets”

68

Figure 5: Mean number of particles in the third jet at ycut = y3 in the ‘tube’ hadronization

model, for the J (square symbols), D (circles), A (stars) and C (diamonds) jet clustering
schemes. The curve shows 0.22 times the total number of particles.

reduce the number of jets at a given value of ycut, relative to the D algorithm, because,

as remarked earlier, separating the ordering and test variables generally increases the
number of combinations attempted. This effect should become more pronounced as the

number of objects increases, i.e. with increasing energy and/or decreasing ycut. On the
other hand, the soft freezing step in the C algorithm tends to enhance the number of
jets, relative to the A algorithm, by forbidding combination with frozen jets. Again this

difference should be more pronounced for a larger number of objects.

It should be emphasised that neither the angular-ordering nor the soft freezing mod-

ifications affect the good properties of the Durham algorithm with respect to the resum-
mation of large logarithmic terms at small values of ycut. The leading and next-to-leading

logarithms of ycut come from kinematic regions where the sequence of clustering is not
affected by the extra steps in the modified algorithms. Thus the only adjustment to re-
summed predictions will be in the subleading ‘remainder’ terms, as will be discussed in

more detail in Sec. 4.

11

Figure 3: Mean values of the three-jet resolution in the ‘tube’ hadronization model, for the

J (square symbols), D (circles) and A, C (stars) jet clustering schemes. The corresponding
curves show the approximate formulae discussed in the text.

αeff(k) with sensible analyticity properties. This leads to genuine power-behaved non-
perturbative contributions, which may be parametrized in terms of moments of δαeff(k),

the discrepancy between the effective coupling and its perturbative expansion in terms of
αS(Q) (up to the order included in the perturbative contribution).

As was observed in Ref. [15], the expectation based on the dispersive approach is that

⟨y3⟩ should have a leading non-perturbative contribution proportional to 1/Q in the case
of the JADE algorithm and proportional to lnQ/Q2 for the Durham algorithm. Thus
the predicted power behaviour agrees in each case with that expected from the simple

tube model, although the logarithmic enhancement of the non-perturbative contribution
for the Durham algorithm is not as large as in the tube model.

In Sect. 4 we shall present the results of studies of hadronization effects in a more

realistic model.
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Subjets in jets

• Summing leading double logs:

• Agrees quite well with quark jets from Sherpa MC

69

Gerwick, Gripaios, Schumann, BW, arXiv:1212.5235
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Figure 5: Average sub-jet multiplicity for parton level SHERPA pp ! qq̄ sample com-

pared with the modified DLA result. Sub-jets, defined as k
t

-jets with radius R(sub-jet) =

(.2, .1, .05, .04), are counted inside a C/A fat-jet with radius R(fat) = 1.2.

the ratio of exclusive jet rates R
(n+1)/n

= �
n+1

/�
n

. In the Durham (exclusive k
t

)

algorithm, it was found that for low multiplicity n  hn
jets

i, emissions are essentially

Poisson-like so that R
(n+1)/n

⇠ (n + 1)�1. The tail of the multiplicity distribution

then produces dominantly staircase or geometric scaling where R
(n+1)/n

⇠ constant.

This regime is driven by the fractal nature of QCD radiation in the gluon dominated

limit.

We know from previous work that the expected scaling patterns of jets can de-

pend dramatically on the jet algorithm. One example of this is the JADE algorithm,

where the non-exponentiation of the primary emissions precludes the Poisson extrap-

olation even in the pseudo-abelian limit [23]. In this section we would like to address

scaling in the inclusive generalized k
t

class of algorithms. This extends the results

in [20] and strengthens the case for investigation at hadron colliders.

10.1 Poisson breaking components

With the leading logarithmic coe�cients from Eqs. (5.13)-(5.16) it is easy to make

some first statements about scaling in the generalized algorithm. It is clear from the

structure of the coe�cients that in the limit C
A

! 0 a perfect Poisson distribution

emerges. Now a simple comparison between the generalized and Durham algorithms

is the relative size of the Poisson breaking components in the lower multiplicity

rates, for example the 2-gluon correlated emission contribution to the 4-jet rate

(5.15). For the double-leading logarithmic coe�cients to the 4-jet rate, R
44

, we

find CDurham

44

⇠ 2C2

F

+ (1/3)C
A

C
F

and Cgeneralized

44

⇠ 2C2

F

+ (1/2)C
A

C
F

using the
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Subjets in jets

• Subjets at kt-resolution ycut

• Perturbatively calculable and 
less MC dependent than ntrk 

(for L=-ln(ycut)<6)

• L~6: min{pTi,pTk} DRik~10 GeV

• Not yet used for q/g tagging
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m(js)/pT,J leads to the same MVA performance, as shown in Fig. 8.
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Figure 8. Comparison of Method 4 which includes mJ/pT,J and the associated jet rates
as categories in the MVA, and the alternative method of including the associated jet rate
information by using the modified jet mass variable m(js)/pT,J . Both methods lead to the
same MVA performance.

5 Subjet rates in jets: analytical calculations

The number of charged tracks inside a jet cone, n
ch

(with each track having transverse
momentum above a threshold, usually taken to be around 1 GeV) is often used as a
good discriminating variable. However, as mentioned earlier, the MC predictions for
this observable are quite sensitive not only to the parton shower (PS) algorithm and
the related parameters, but also to the tuning of the hadronization and underlying
event models. On the otherhand, we find that the number of subjets of a primary jet
leads to a more uniform prediction across the MC’s, and thus can be better suited in
quark gluon separation studies. The number of subjets as a quark-gluon separation
variable was considered earlier in Ref. [1]. In this study, we compute the subjet rates
to NDLA accuracy, and show a detailed comparison with different MC’s.

We find the subjets of jet j with the exclusive kt algorithm, which applies the
dimensionless distance measure

yik = min{p2ti, p2tk}
�R2

ik

R2p2j
, (5.1)
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Bhattacherjee, Mukhopadhyay, Nojiri, 
Sakaki, BW, arXiv:1501.04794
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Figure 9. Subjet rates Rn with n = 1, 2, 3 and n > 3 as a function of L = �ln(y
cut

), for
quark jets (black) and gluon jets (red), with pT,J 2 [500, 600] GeV, R = 0.4. Curves are
Herwig++ (dashed), Pythia6 (dot-dashed), Pythia8 (dotted) and NDLA resummed (solid).

In conclusion, the fairly good agreement between the Monte Carlos and the
resummed 1-, 2- and 3-subjet rates for R = 0.4 and L not too large (L < 5, subjet
resolution above about 15 GeV) suggests that in this range those subjet rates can
be used for quark-gluon discrimination. At larger jet radii, the agreement remains
similar, as we have checked using R = 0.8.

7 Summary

To summarize our findings, we show that in studies of light quark and gluon jet
separation at the LHC, it is important to include the information on associated jet
rates around a primary hard jet. Associated jet rates are defined as the probability of
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