Parton Radiation and Fragmentation from LHC to FCC-ee WG5: QCD&YY

CERN, November 21-22 — 2016 Organisers: D. d'Enterria & P. Skands

Workshop Goals

Survey key QCD measurements at ee colliders & their uses: Properties of QCD (elucidate perturbative & non-perturbative phenomena) To inform EW, Higgs, and other precision measurements in ee To inform the physics modelling at hadron colliders (→FCC-hh) Identify unique opportunities opened by high luminosities (e.g., oku-W, Tera-Z) and energies (e.g., HZ, ttbar) accessible at FCC-ee

Workshop Goals

Survey key QCD measurements at ee colliders & their uses:

- Properties of QCD (elucidate perturbative & non-perturbative phenomena)
- To inform EW, Higgs, and other precision measurements in ee
- To inform the physics modelling at **hadron colliders** (→FCC-hh)
- **Identify unique opportunities** opened by high luminosities (e.g., oku-W, Tera-Z) and energies (e.g., HZ, ttbar) accessible at FCC-ee

Identify essential detector capabilities (& resolution targets)

- So that a complete set of measurements can be done, making good use of the available statistics.
 - → A definitive and complete set of final-state radiation & fragmentation measurements with very high precision
 - **Decisive demonstrations** of high-order / sub-leading perturbative phenomena, and exhaustive exploration of non-perturbative effects

Workshop Goals

Survey key QCD measurements at ee colliders & their uses:

- Properties of QCD (elucidate perturbative & non-perturbative phenomena)
- To inform EW, Higgs, and other precision measurements in ee
- To inform the physics modelling at **hadron colliders** (→FCC-hh)
- **Identify unique opportunities** opened by high luminosities (e.g., oku-W, Tera-Z) and energies (e.g., HZ, ttbar) accessible at FCC-ee

Identify essential detector capabilities (& resolution targets)

- So that a complete set of measurements can be done, making good use of the available statistics.
 - → A definitive and complete set of final-state radiation & fragmentation measurements with very high precision
 - **Decisive demonstrations** of high-order / sub-leading perturbative phenomena, and exhaustive exploration of non-perturbative effects

Provide input for the QCD section of the Conceptual Design Report (CDR) on the FCC-ee physics possibilities.

- Contributors are asked to provide **brief summaries** in a proceedings-style writeup to be submitted as a combined single document into arXiv.
 - Deadline ~ 1 month from end of workshop: before Christmas.

Organisation

Main venue: Filtration Plant (Bldg 222)

Note: Tuesday afternoon sessions in Council Chamber (CC)

Breaks / Refreshment:

Coffee (+ water/juice) Mornings & Afternoons (Thanks to the LHC Physics Centre at CERN)

This is an informal meeting; no official reception or dinner.

After the workshop program ends each day (~1740), you are welcome to join in R1 for refreshments and continued discussion

Organisation

	Main Topic(s)	Main Topic(s)
AM Session 1	Fragmentation Functions 1	Heavy Quarks
AM Session 2	Showers & Jets	Event Shapes & Resummations
PM Session 1	Jet Properties	Fragmentation Functions 2
PM Session 2	Particle Correlations	Jets, Showers, & Hadronisation

(+ a few overlaps; reallocations to accommodate constraints, etc)

Some Useful References

arXiv:1602.05043 — Physics at the FCC-ee

\sqrt{s} (GeV):	90 (Z)	125 (eeH)	160 (WW)	240 (HZ)	$350 \ (t\overline{t})$	$350 (WW \rightarrow H)$
$\mathscr{L}/\mathrm{IP}~(\mathrm{cm}^{-2}\mathrm{s}^{-1})$	$2.2 \cdot 10^{36}$	$1.1 \cdot 10^{36}$	$3.8 \cdot 10^{35}$	$8.7 \cdot 10^{34}$	$2.1 \cdot 10^{34}$	$2.1 \cdot 10^{34}$
$\mathscr{L}_{int} (ab^{-1}/yr/IP)$	22	11	3.8	0.87	0.21	0.21
Events/year (4 IPs)	$3.7 \cdot 10^{12}$	$1.2 \cdot 10^4$	$6.1 \cdot 10^{7}$	$7.0 \cdot 10^{5}$	$4.2 \cdot 10^{5}$	$2.5 \cdot 10^4$
Years needed (4 IPs)	2.5	1.5	1	3	0.5	3

Table 1: Target luminosities, events/year, and years needed to complete the W, Z, H and top-quark programs at FCC-ee. [Note that $\mathscr{L} = 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ corresponds to $\mathscr{L}_{int} = 1 \text{ ab}^{-1}/\text{yr}$ for 1 yr = 10⁷ s].

arXiv:1610.06254 — QCD & YY Studies at FCC-ee (ICHEP poster)

<u>arXiv:1512.05194</u> — Proceedings, High-Precision α_s Measurements from LHC to FCC-ee (Last year's WG5 workshop writeups)

See also talks from last week's YuriFest Nov 2016

EU HEP long-term perspectives (2040-2060)

In May 2013, European Strategy said (very similar statements from US)

- Perform R&D and design studies for high-energy frontier machines at CERN
 - HE-LHC, a programme for an energy increase to 33 TeV in the LHC tunnel
 - FCC, a 100-km circular ring with a pp collider long-term project at $\sqrt{s} = 100 \text{ TeV}$
 - CLIC, an e⁺e⁻ collider project with √s from 0.3 to 3 TeV

Similar circular projects (50 or 70km) in China pp collisions at √s ~ 50 or 70 TeV

Google earl Yifang Wang

EU HEP short-term perspectives (2020-2030)

In May 2013, European Strategy said (very similar statements from US)

- Exploit the full potential of the LHC until ~2030 as the highest priority
 - Get 75-100 fb⁻¹ at 13-14 TeV by 2018
 - Get ~300 fb⁻¹ at 14 TeV by 2022

- (LHC Run2: running) (LHC Run3: approved)
- Upgrade machine and detectors to get 3 ab⁻¹ at 14 TeV by 2035 (HL-LHC: project)
 - A first step towards both energy and precision frontier

EU HEP mid-term perspectives (2030-2040)

In May 2013, European Strategy said (very similar statements from US)

- Acknowledge the strong physics case of e^+e^- colliders with intermediate \sqrt{s}
 - \rightarrow Participate at ILC if Japan govt moves forward with the project.
 - → "Propose an ambitious post-LHC accelerator project. CERN should undertake design studies for accelerator projects with emphasis on p-p and e+e- high-energy frontier machines"

Note: CLIC can also run at √s ~ 350 GeV in ~2035-2040

Jets'16 Workshop, CERN, Nov 2016

FCC-ee CERN study project

■ Indirect BSM searches (through loops) in high-statistics (multi ab⁻¹) Z ($\sqrt{s}=91$ GeV), W ($\sqrt{s}=160$ GeV), H ($\sqrt{s}=240$ GeV), top ($\sqrt{s}=350$ GeV) high-precision studies (<<0.1% accuracy) in a 80-km circular e⁺e⁻ collider

$\sqrt{\mathrm{s}}$ (GeV):	90 (Z)	125 (eeH)	160 (WW)	240 (HZ)	$350~(t\bar{t})$	350 (WW \rightarrow H)
σ	43 nb	290 ab	4 pb	200 fb	0.5 pb	25 fb
$L/IP \ (cm^{-2} s^{-1})$	$4.3 \cdot 10^{36}$	$2.2 \cdot 10^{36}$	$7.6 \cdot 10^{35}$	$1.8 \cdot 10^{35}$	$5 \cdot 10^{34}$	$5 \cdot 10^{34}$
$\mathcal{L}_{int} (ab^{-1}/yr, 2 \text{ IPs})$	86	45	15	3.5	1.0	1.0
Events/year (2 IPs)	$3.7 \cdot 10^{12}$	$1.3 \cdot 10^4$	$6.1 \cdot 10^{7}$	$7.0.10^{5}$	5.10^{5}	$2.5{\cdot}10^4$
Years needed (2 IPs)	2.5	1.5	1	3	0.5	3

Enormous integrated luminosities, extremely "clean" environment with very low backgrounds: Unparalleled opportunities for high-accuracy QCD physics (α_s, jets radiation, jets fragmentation) with direct impact in all SM high-precision tests & BSM searches.

FCC-ee study project structure

Lepton studies – Coordinators A. Blondel, P. Janot (EXP) + J.Ellis, C.Grojean (TH)

Study the properties of the Higgs and other particles with unprecedented precision

Towards FCC-ee Conceptual Design Report

Dedicated physics workshops & associated writeups(*) for intermediate physics report in route towards FCC-ee CDR

(*) That's why we need your proceedings !

Jets'16 Workshop, CERN, Nov 2016

Backup Slides

Determination of the QCD coupling α_s

 $\alpha_s =$ Single free parameter in QCD (in the m_q \rightarrow 0 limit). Determined at a reference scale (Q=m_z). Decreases as ~ln(Q²/ Λ^2), with Λ ~0.2 GeV • Least precisely known of all couplings: $\delta \alpha \sim 3.10^{-10}, \ \delta G_{F} \sim 5.10^{-8}, \ \delta G \sim 10^{-5}, \ \delta \alpha_{s} \sim 5.10^{-3}$

- Impacts all LHC cross-sections.
- Key for SM precision fits (e.g. uncertainties b,c Yukawa).

BSM physics (GUT, vacuum stab.,...).

Determination of the QCD coupling α_s

- $\begin{aligned} \alpha_{s} &= \text{Single free parameter in QCD} & \alpha_{s}(Q) \\ & (\text{in the } m_{q} \rightarrow 0 \text{ limit}). \text{ Determined} \\ & \text{at a given ref. scale (e.g. } m_{Z}). \\ & \text{Decreases as } \sim \ln(Q^{2}/\Lambda^{2}), \\ & \text{with } \Lambda \sim 0.25 \text{ GeV}. \end{aligned}$
- Measured by comparing various experimental observables to different pQCD predictions:

1. Hadronic
$$\tau$$
 decays: $R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \bar{\nu}_e)} = S_{\text{EW}} N_C (1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_{\text{np}})$ (N³LO)

- **2.** Lattice QCD: Various short-distance quantities: $K^{NP} = K^{PT} = \sum_{i=0}^{n} c_i \alpha_s^i$ (NNLO)
- 3. <u>Hadronic</u> Z decays: $R_Z \equiv \frac{\Gamma(Z \to h)}{\Gamma(Z \to l)} = R_Z^{EW} N_C (1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_m + \delta_{np})$ (N³LO)
- 4. DIS had. observables: PDFs, $\sigma(jet)$: $\frac{\partial}{\partial \ln Q^2} D_i^h(x, Q^2) = \sum_j \int_x^1 \frac{dz}{z} \frac{\alpha_s}{4\pi} P_{ji}(\frac{x}{z}, Q^2) D_j^h(z, Q^2)$ (NLO,NNLO)
- 5. e⁺e⁻ had. <u>observables</u>: Event-shapes, jet rates: $\frac{1}{\sigma}\frac{d\sigma}{dY} = \frac{dA}{dY}\hat{\alpha}_{s}^{2} + \frac{dB}{dY}\hat{\alpha}_{s}^{2} + \frac{dC}{dY}\hat{\alpha}_{s}^{3}$ (NNLO)
- 6. Other hadronic observables: $\sigma(ttbar), \sigma(jets)$ in p-p, QQ rad. decays (NLO, NNLO)
- Direct way to reduce α_s world-average uncertainty: Add new independent extractions Jets'16 Workshop, CERN, Nov 2016 David d'Enterria (CERN)

Multi-prong determination of α_{s} coupling

Future determination of α_s coupling

Method	Current relative precision Snowmass'13, arXiv:1	310.5189 Future relative precision
e^+e^- evt shapes	$expt \sim 1\%$ (LEP)	< 1% possible (ILC/TLEP)
	thry \sim 1–3% (NNLO+up to N^3LL, n.p. signif.)	$\sim 1\%$ (control n.p. via $Q^2\text{-dep.})$
e^+e^- jet rates	$expt \sim 2\%$ (LEP)	<1% possible (ILC/TLEP)
	thry $\sim 1\%$ (NNLO, n.p. moderate)	$\sim 0.5\%$ (NLL missing)
precision EW	$expt \sim 3\% (R_Z, LEP)$	0.1% (TLEP 10]), 0.5% (ILC [11])
	thry $\sim 0.5\%$ (N ³ LO, n.p. small)	$\sim 0.3\%$ (N^4LO feasible, $\sim 10~{\rm yrs})$
τ decays	$expt \sim 0.5\%$ (LEP, B-factories)	<0.2% possible (ILC/TLEP)
	thry $\sim 2\%$ (N ³ LO, n.p. small)	$\sim 1\%~({\rm N}^4{\rm LO}$ feasible, $\sim 10~{\rm yrs})$