Gluon and Quark Fragmentation from LEP to FCC-ee

Klaus Hamacher Bergische Universität Wuppertal

Results from

Aleph, Delphi, L3, Opal

Klaus Hamacher, Gluon and Quark Fragmentation from LEP to FCC-ee

FCC-ee Workshop . . . , CERN , 21.& 22.11.2016 1

Outline

- Basic Techniques at LEP Intrinsic Limitations for Gluon/Quark Comparisons
- Expectations and Basic Results
- Colour Coherence
- Fragmentation Functions from 3-Jet Events
- (Sub-)Jet-Rates, Splitting Kernels
- The Multiplicity in 3-Jet Events & 2 Gluon-Systems
- Identified Particles and Leading Systems
- What Can/Should be Done @ FCC-ee?

Comparing Gluons and Quarks in e^+e^- 3 Jet Events

- assign jets ↔ partons at tree level
- identify g,q using E-ordering and/or displaced vertices (heavy q's)
- compare g to mix of q & g jets form light quark events
- unfold light-, b-quark, g-contribution by inverting purity matrix
- initially for symm. events (Y, Mercedes) generalised to all topologies → allows kinematical (topological) studies

- assignment of particles to jets requires algorithms
- determine parton kinematics from event topology
- dynamical studies require Lorentz invariant scales → transverse momentum type scales:

$$\kappa = Q = E_{jet} \cdot \sin \frac{\theta_{ij}}{2} \ \ (\widehat{=} \frac{\sqrt{s}}{2})$$

Intrinsic Limits of g and q Comparison

- 3 Jet events not $q\bar{q}$ or gg systems
- Coherent emission from $q\bar{q}g$ system
- Parton ↔ jet identification (tree level);
 bias and smearing of parton properties due to hadronisation
- Finite energy; mass/valence particle effects stronger for gluons
- Overlap between jets \rightarrow dependence on algorithm & on implicit cuts

Minimise/measure difficulties by

- analysing only 3-jet event multiplicity
- use fully symmetric situation (may require boosting)
- analyse mainly fast hadrons (high x fragmentation)
- study energy-dependence

Expectations and Basic Results

Expect: hadrons (mainly) come from radiated soft gluons

Cleo	$E_{\rm Jet} < 3.5 {\rm GeV}$	$r_n = 1.04 \pm 0.02 \pm 0.05$
HRS	$E_{\rm Jet} = 9.7 {\rm GeV}$	$r_n = 1.29 \pm 0.2 (\text{stat.})^{+0.21}_{-0.20} (\text{syst.})$
Tasso	$E_{\rm Jet} = 11 {\rm GeV}$	$r_n \simeq 1.$
Opal	$E_{\rm Jet} = 24.5 {\rm GeV}$	$r_n = 1.02 \pm 0.04^{+0.06}_{-0.00}$
Opal	$E_{\rm Jet} = 24 {\rm GeV}$	$r_n = 1.25 \pm 0.02 \pm 0.03$
Aleph	$E_{\rm Jet} = 24 {\rm GeV}$	$r_n = 1.249 \pm 0.084 \pm 0.022$
Delphi	$\overline{E_{\rm Jet}} = 24 {\rm GeV}$	$r_n = 1.241 \pm 0.015 \pm 0.025$
Opal	$E_{\rm Jet} = 40 {\rm GeV}$	$r_n = 1.552 \pm 0.041 \pm 0.061$

Observe increase of r_n with energy.

Klaus Hamacher, Gluon and Quark Fragmentation from LEP to FCC-ee: Multiplicity and Momentum SpectraFCC-ee Workshop . . . , CERN , 21.& 22.11.2016

What is going on?

OPAL data:

g in one hemisphere recoils wrt 2 b-jets ($E_g=40\,{\rm GeV}$, $\kappa\sim37\,{\rm GeV}$)

compare to **q** from "2-jet" event $(E_q = \kappa = 45.6 \text{ GeV})$

- small yhadrons produced first in time; $r = R \lesssim 2$; very close to expectation deviation due to
 - difference in scale (?),
 - coherent emission (?)
- y > 3; R < 1 more hadrons from q than g; diminishes overall ratio.
 - due to valence quarks/finite energy!

Coherent Particle Production at Large Angles

- Measure soft gluons/hadrons at large angles: Large wave-length \rightarrow small resolution \rightarrow coherent emission
- Compare gluon radiation \perp to $q\bar{q}g$ plane $\leftrightarrow \perp$ to $q\bar{q}$ axis. Effective colour-charge depends on event topology

$$\frac{N_{\perp}^{q\bar{q}g}}{N_{\perp}^{q\bar{q}}} = \frac{C_A}{C_F} \cdot r_t = \underbrace{\frac{C_A}{C_F}}_{\text{colour factor}} \cdot \frac{1}{4} \left[\widehat{q \ g} + \widehat{\bar{q} \ g} - \underbrace{\frac{1}{N_C^2} \widehat{q \ q}}_{\text{destr. interf.}} \right]$$

Emitter is $q\bar{q}$ -like for $r_t \sim 0.5$, gg-like for $r_t \rightarrow 1$.

Ratio \propto to C_A/C_F in LO! NO parameters, absolute prediction!

• Experimentally identify partons with k_t -jets (at fixed y_{cut}): defines 2 and 3-jet events, excludes \geq 4-jet events \leftrightarrow LO

Compare multiplicity \perp to 3-jet plane to the one \perp 2-jet axis Systematics: variation of $y_{\rm cut}$, $\theta_{\rm cone}$ and cluster algorithms

$$\widehat{i \ j} = 2\sin^2\frac{\Theta_{ij}}{2}$$

Colour coherence & destruct. interference observed!

Homogenous straight line fit to symmetric & general topologies:

$$C_A/C_F = 2.211 \pm 0.014_{(\text{stat.})} \pm 0.045_{(\text{sys.})}$$

Quark Fragm. Funct. in 3 Jet Events

Extract scale dependent fragmentation functions of quarks (and gluons) from 3 jet events.

Compare flavour-inclusive

- FF from e^+e^- at different $\sqrt{s}/2$
- FF from quark jets in 3 jet events

$$\kappa = E_{jet} \cdot \sin \frac{\theta_{ij}}{2} \qquad \text{quark}$$

$$p_{\perp} = \frac{1}{2} \sqrt{\frac{s_{qg} s_{\bar{q}g}}{s}} \qquad \text{gluon}$$

to theoretical parameterisations (KKP –, Kr - -, BFGW ...)

Reasonable agreement for quarks!

Gluon Fragm. Funct. in 3 Jet Events

Compare

- OPAL's "inclusive" and "boosted" analyses
- older DELPHI 3 jet analysis (parameterised –, different x bins)

to theoretical parameterisations (KKP –, Kr - -, BFGW ...)

Agreement OK

Ratio g/q-energy slopes consistent with $C_A/C_F=9/4$

But:

g-slope at high $x \ {\rm stronger}$ than expected from theory

Klaus Hamacher, Gluon and Quark Fragmentation from LEP to FCC-ee: Gluon Fragmentation Function FCC-ee Workshop . . . , CERN , 21.& 22.11.2016

Influence of Hadronisation Smearing

Jets measured from hadrons, parton properties influenced by hadronisation! $z = E_{hadron}/E_{parton}$ replace parton by jet energy $\rightarrow z = E_{hadron}/E_{jet}$

- Hadronisation smearing \rightarrow jet-parton \triangleleft -resolution $\sim 3^{\circ}$ at Z \rightarrow parton energy smearing (tube model) $\propto \sim 1/E_{parton}$
- Effect on FF's is ∝ slope of FF
 ⇒ strong overestimate of gluon FF at small E and high x

This principle problem is there for any jet analysis!

 Less of a problem for multiplicities (small "slow" variations)

Cure (?) hadronisation unfolding \rightarrow systematics!

Crude analytical estimate!

Klaus Hamacher, Gluon and Quark Fragmentation from LEP to FCC-ee: Gluon Fragmentation Function FCC-ee Workshop . . . , CERN , 21.& 22.11.2016

Generalisation to Higher Rank Splittings/Subjets

Reminds to Zeno's paradox

Gluon splitting starts at higher y cmp. to quark.

Quark then keeps up even for high ranks (middle).

Explains "smallish" multiplicity in gluon jets.

For high rank: Splitting probability about equal for g and q.

All jets are gluon dominated!

Topology Dependence of 3 Jet Event Multiplicity

ch

with

Eden, Gustafson, Khoze

$$L = \ln\left(\frac{s}{\Lambda^2}\right), \quad L_{q\bar{q}} = \ln\left(\frac{s_{q\bar{q}}}{\Lambda^2}\right), \\ \kappa_{Lu} = \ln\left(\frac{s_{qg}s_{\bar{q}g}}{s\Lambda^2}\right), \quad \kappa_{Le} = \ln\left(\frac{s_{qg}s_{\bar{q}g}}{s_{q\bar{q}}\Lambda^2}\right)$$

Prediction accounts for coherence effects by choice of scales Division into $q\bar{q}$ and gluon part is arbitrary

 \rightarrow differing definitions of gluon multiplicity \leftrightarrow differing scales.

The phase space of the $q\bar{q}$ -pair is restricted by the gluon jet \rightarrow requires correction

Klaus Hamacher, Gluon and Quark Fragmentation from LEP to FCC-ee: Gluon Fragmentation Function FCC-ee Workshop . . . , CERN , 21.& 22.11.2016

Topology Dependence of 3 Jet Event Multiplicity

• In the Dipole Model energy slopes of gg and $q\bar{q}$ systems are related by:

$$\frac{dN_{gg}(L')}{dL'}\Big|_{L'=L+c_g-c_q} = \frac{C_A}{C_F} \left(1 - \frac{\alpha_0 c_r}{L}\right) \frac{d}{dL} N_{q\bar{q}}(L)$$

- $N_{q\bar{q}}(E_{\rm cm})$ measured by various e^+e^- -experiments
- Solution leaves constant of integration N_0 free
 - \rightarrow To be determined from a single measurement of N_{gg} for the prediction.

 \rightarrow Take CLEO-data from $\chi_b'(J=2)\rightarrow gg$ decay at $E_{\rm cm}=9.9132 {\rm GeV}$ and the

Analysis:

- Select 3 jet events without cut on y_{cut} (AoD, Cambridge, Durham, PHYJET)
- Apply (tiny) hadronisation correction
- Compare general and symmetric topologies
- Compare udscb and udsc events \rightarrow constant offset $N_0 \sim 0.6$ due to b-events
- Compare solutions Eden (A) and (B)
- Leave N_0 free \rightarrow only slope determines measurement of C_A/C_F !!!

The 3 Jet Multiplicity

- Compare udsc (\circ) and udscb (\bullet) data
- Eden A ——
 - Very good agreement for symmetric and general topologies
- Eden B - (dismissed by DELPHI) - χ^2 inacceptable in global fit
- OPAL used Eden B (sym. events only)
- DELPHI result based only on Eden A

$$rac{C_A}{C_F} = 2.261 \pm 0.014_{
m stat.} \pm 0.036_{
m exp.} \ \pm 0.052_{
m theo.} \pm 0.041_{
m clus.}$$

Klaus Hamacher, Gluon and Quark Fragmentation from LEP to FCC-ee: Gluon Fragmentation Function FCC-ee Workshop . . . , CERN , 21. 22.11.2016

Energy dependence of the Gluon Multiplicity N_{gg}

Klaus Hamacher, Gluon and Quark Fragmentation from LEP to FCC-ee: Gluon Fragmentation Function FCC-ee Workshop . . . , CERN , 21.& 22.11.2016

Identified Particles

Observe increased baryon production in gluon-fragmentation (typ. +20%)

additional leading baryons reasonably reproduced in string picture

not confirmed at LEP !

Octet Neutralisation ?

Expected (known \rightarrow PGF) for gluons

enhances:

- production of leading neutral systems;
- glueballs (?); isoscalars

NOT confirmed in std. fragmentation!

Signature: leading neutral system with rapidity gap $\Delta y \sim 1.5$

Tiny ($\leq 2\%$) excess of "fast" neutral systems at small inv. mass (≤ 2 GeV)

- seen by ADO
- unidentfied (no excess of $\eta, \Phi \dots$)

Refection in Gluon Fragmentation Function ?

ALEPH

(unpublished, shown by G. Rudolph, Trento & ÖFKT Krems)

Scaled momentum spectra jor jets in 3 jet events (jet 1,2,3 E-ordered)

"Gluon"-jet (3) spectrum "harder" than predicted by JETSET/Ariadne, full simulation !

Klaus Hamacher, Gluon and Quark Fragmentation from LEP to FCC-ee: Summary FCC-ee Workshop . . . , CERN , 21.& 22.11.2016 20

What should be done ?

	Z	125 GeV	160 GeV	240 GeV	350 GeV
$\mathcal{L}_{int}/Exp.y./\mathrm{ab}$	22	11	3.8	.87	.21
$\sim \# q ar q / Exp.$	10^{12}	10^{9}	10^{8}	10^{7}	10^{6}
$\sim #3 - jets_{tagged}$	10^{10}	10^{7}	10^{6}	10^{5}	10^{4}

+ radiative Events: statistics > LEP from \sim 40 GeV to 240 GeV!

Consequences for gluon to quark comparisons

- study of "any" dyn. dependence with negligible stat. unvertainty frag. functions, splitting kernels . . .
- mitigate systematics/resolution by unfolding, control using E-dependence
- fundamental problems remain $(q\bar{q}g$, not gg vs. $q\bar{q}$, tree level association, "parton" resolution)
- $q\bar{q}g$ -multiplicity: topology dependence can be cross-checked vs. explicit E-dependence, slope derivatives, check of dead cone effect, . . .

What should be done ? (cont.)

- Enormous statistic allows for measurement of rare or difficult to measure processes.
- Compare esp. leading particles in *gluon* and **quark** jets:
 - search for octet-fragmentation
 - isoscalars ($\Phi, \omega, f(1710), \ldots$) / glueballs
 - measurements mass-plots of resonances incl. (!) neutrals
 - check baryons + resonances ($\Delta^{0,++},\ \Lambda,\ \Lambda(1520),\ \dots$)

Analysis: when does resonance belong to a jet? How to combine a resonance?

• More ideas? (depend on low E results (JLAB), lattice calculations)

Experimentally: need some particle id., high resolution e.m. calorimetry