

Jet Charge Determination at the LHC

On behalf of the ATLAS and CMS collaborations

S. Tokár, Comenius Univ., Bratislava FCC-ee 2016, Geneva, 21-22 Nov 2016

11/21/2016

- About the ATLAS and CMS experiments
- > A bit of jet charge history
- On theoretical approach
- > Jet charge used for determination of the top quark charge
- Jet charge in boosted W boson studies
- Studies of charge of jets initiated by quarks and gluons

Conclusion

- collisions: $p \rightarrow \leftarrow p, \sqrt{s} = 7, 8$ and 13 TeV
- Peak luminosities: 3 4×10³²cm⁻²s⁻¹.
- ATLAS and CMS detectors are multipurpose detectors aiming mainly on deep inelastic *pp* collisions

11/21/2016

A bit of jet charge history

Jet charge: Field and Feynman, Nucl. Phys. B136, 1 (1978) \rightarrow an observable sensitive to the electric charge of quarks as the momentum weighted charge sum constructed from charged-particle tracks in a jet.

Experimental use of jet charge:

First in deep inelastic scattering studies ($vp, \overline{v}p$...) (Nucl. Phys. B184, 13 (1981), Phys. Lett. 144B, 302 (1984).) – evidence of quarks in nucleons.

- Tagging the charge of *b*-quark jets
 - Asymmetry of b-production (Z. Phys. C 48, 433 (1990), Phys. Lett. B 259, 377 (1991)...)
 - Neutral B-meson oscillation (Phys. Lett. B 327, 411 (1994), Phys. Rev. D 60, 072003(1999)...)
 - Determination of top quark charge (PRL 98,41801 (2007), PRD 88,032003 (2013), JHEP 11 (2013)031)
- Hadronically decaying W bosons to distinguish them from QCD jets (PLB 422,369 (1998), PLB 502, 9 (2001),..., JHEP 12 (2014) 017.
- To distinguish jets from quarks and gluons (NP B276, 253 (1986), PLB 302, 523 (1993), EPJC 74, 3023 (2014) 11/21/2016

The role of the jet charge

Calculation of jet charge (Q_J) :

$$Q_{\rm J} = \frac{1}{\left(p_{\rm T,J}\right)^{\kappa}} \sum_{h \in \text{Jet}} q_h \times \left(p_{\rm T,h}\right)^{\kappa}, \quad Q_{\rm J} = \frac{\sum_{h \in \text{Jet}}^{N} q_h \left|\vec{j} \cdot \vec{p}_h\right|^{\kappa}}{\sum_{h \in \text{Jet}}^{N} \left|\vec{j} \cdot \vec{p}_h\right|^{\kappa}}, \quad Q_{\rm J} = \sum_{h \in \text{Jet}} z_h^{\kappa} q_h, \quad z_h = \frac{E_h}{E_{\rm J}}$$

 q_h , $p_{T,h}$, $\vec{p}_h \equiv$ the h^{th} track charge, transverse momentum, momentum $\kappa \equiv$ an exponent (free parameter), $\vec{j} \equiv$ jet direction unit vector

ATLAS and CMS: big potential to go beyond treating jets simply as 4-momenta to treating them as objects with substructure and quantum numbers.

Theory:

- calculation of jet charge is challenging as it is not an infrared-safe quantity \rightarrow sensitivity to hadronization \rightarrow knowledge of fragmentation functions.
- Soft collinear effective theory (SCET) is used factorization of hard and soft contribution.
 Phys. Rev. D 86,094030 (2013)

11/21/2016

Theoretical approach – mean jet charge

Calculation of jet charge is challenging: it is not an infrared-safe quantity.

Jet charge is sensitive to hadronization

knowledge of the fragmentation functions is needed.

The average jet charge:

$$\begin{aligned}
\left\langle Q_{\kappa}^{i} \right\rangle &= \int dz \, z^{\kappa} \sum_{h} Q_{h} \frac{1}{\sigma_{jet}} \frac{d\sigma_{h \in jet}}{dz} = \frac{1}{16\pi^{3}} \frac{\tilde{J}_{ii}\left(E,R,\kappa,\mu\right)}{J_{i}\left(E,R,\mu\right)} \sum_{h} Q_{h} \tilde{D}_{i}^{h}\left(\kappa,\mu\right) \quad \text{NLO} \\
z &= E_{h}/E_{jet} \approx p_{T}^{h}/p_{T}^{jet} \quad \text{Jet function vs jet energy E and size R (collinear radiation in jet)} \\
\tilde{D}_{i}^{h}\left(\nu,\mu\right) &= \int_{0}^{1} dx \, x^{\nu} D_{i}^{h}\left(x,\mu\right) \quad \equiv \text{Mellin moment of the fragmentation function } D_{i}^{h}.
\end{aligned}$$

For $\kappa > 0$ the charge – dominated by collinear and not soft radiation.

The effects of pileup and contamination on jet charge: significance of W' vs Z' (m=1TeV, 50 events) separation vs exponent κ .

11/21/2016

S. Tokar, FCC-ee, CERN, Geneva, 21-22 Nov 2016

PRL 110, 212001 (2013)

Theoretical approach - jet charge width

Width of the jet charge: correlations among hadrons are required! $\left(\Gamma_{\kappa}^{i}\right)^{2} = \left\langle \left(Q_{\kappa}^{i}\right)^{2} \right\rangle - \left\langle Q_{\kappa}^{i} \right\rangle^{2} \qquad \Rightarrow \text{the moment} \left\langle \left(Q_{\kappa}^{i}\right)^{2} \right\rangle :$ $\left\langle \left(Q_{\kappa}^{i}\right)^{2} \right\rangle = \int dz \, z^{2\kappa} \sum_{h} Q_{h}^{2} \frac{1}{\sigma_{\text{jet}}} \frac{d\sigma_{h \in \text{jet}}}{dz} + \int dz_{1} dz_{2} \, z_{1}^{\kappa} z_{2}^{\kappa} \sum_{h_{1}, h_{2}} Q_{h_{1}} Q_{h_{2}} \frac{1}{\sigma_{\text{jet}}} \frac{d\sigma_{h_{1}h_{2} \in \text{jet}}}{dz_{1} dz_{2}} = \cdots$

1st term can be expressed: in terms of products of fragmentation and jet functions 2nd term: via dihadron fragmenting jet functions

Comparison of theory prediction (bands) for the average (left) and width (right) of the jet charge distribution to PYTHIA (\Box and \Box for d and u quarks) for e^+e^- collisions).

Normalizing to 1 at E = 100 GeV and R = 0.5 removes dependence on nonpert. input and quark flavor

11/21/2016

Top quark charge: via decay products' charges

ATLAS experiment at \sqrt{s} = 7 TeV, data of 2.1 fb⁻¹

Phys. Rev.D 88, 032003 (2013)

SM (Q_{top} = 2/3): $t^{2/3} \rightarrow b^{-1/3} + W^{+1}$ vs exotics (Q_X = -4/3): $t_X^{-4/3} \rightarrow b^{-1/3} + W^{-1}$

for top quark determination

- ✓ Charge of W via its lept-decay
- Determination of b-quark charge_
- Correct lepton b-jet pairing

$$Q_{b-jet} = \frac{\sum_{i}^{N} q_{i} \left| \vec{j} \cdot \vec{p}_{i} \right|^{\kappa}}{\sum_{i}^{N} \left| \vec{j} \cdot \vec{p}_{i} \right|^{\kappa}}$$

 $q_i \equiv i^{th}$ particle charge $\vec{p}_i \equiv i^{th}$ particle momentum $\vec{j} \equiv b$ -jet direction $\kappa \equiv an exponent (=0.5)$

Soft lepton decay of **b** quark, $b \rightarrow l^- \nu_l X$, Sign (Q_b) = sign (Q_l)

lepton+jets case (1 high-p_T lepton)

 $m(l, b_{jet}^{(1,2)}) < m_{cr} \& m(l, b_{jet}^{(2,1)}) > m_{cr}$

optimization: $m_{\rm cr}$ = 155 GeV

alternative: Kinematic fitter (KLFitter)

Combined $\langle Q_l \times Q_{bjet} \rangle + \langle O: SM \rangle$ charge: $\langle Q_l \times Q_{bjet} \rangle + \langle O: SM \rangle$

Purity o *b* quark determination: 61%

Combined b-jet charge: Data vs MC

Data of $\int Ldt = 2.05 \ fb^{-1}$ are compared with MC signal expectations. ATLAS

Data vs MC: compatibility with SM within statistical errors!

XM exclusion: $>8\sigma$

11/21/2016

CMS: boosted W boson and jet charge

efficienc

ruction

Topologies studied: $t\overline{t}$ ℓ +jets, W+jets, dijets events

Jet charge used with 5 other variables for W boson ID in boosted regime

CMS simulation with pileup for W^- , W^+ and W+jets vs generator MG+Pythia

- jet mass: 60 < m_{iet}< 100 GeV
- *W* jet p_T : 400 < p_T < 600 GeV
- Jet charge via track $p_{\rm T}$ weighting $Q^{\kappa} = \frac{1}{(1-1)^{\kappa}} \sum Q_i \times (p_{{\rm T},i})^{\kappa}$

Jet charge distributions in $t\overline{t}$ sample: simulation and data for W^+ and W^- jets from $t\overline{t}$

- Lepton charge determines W sign.
- W^+ and W^- jets contributions to the $t\overline{t}$ data can be separated with \geq 5 SD.
- Jet charge: data vs MC \rightarrow good agreement.

ATLAS: jet charge in dijet events

Measurement of jet charge in dijet events, pp collisions at $\sqrt{s}=8$ TeV, 20.3 fb⁻¹.

- ✓ Single-jet trigger with jet p_T threshold from 25 to 360 GeV.
- \checkmark Jet charge = momentum-weighted sum of the charges of tracks associated to a jet

$$Q_{J} = \frac{l}{\left(p_{\mathrm{T}J}\right)^{\kappa}} \sum_{i \in \mathrm{Tracks}} q_{i} \times \left(p_{\mathrm{T},i}\right)^{\kappa}$$

 $q_i (p_{T,i}) \equiv i^{\text{th}} \text{ track charge } (p_T)$ $p_{TJ} \equiv \text{jet } p_T, \ \kappa \equiv \text{regularization parameter}$

 $|\eta| < 2.1$ and $p_T > 50$ GeV

Fraction of dijet events with different jet flavor

PRD 93, 052003 (2016)

Jet charge distribution for various jet flavors

ATLAS: jet charge unfolding, systematics, PDFs

- Unfolding of jet charge (15 bins) distribution vs jet p_T (10 bins) to particle level: iterative Bayesian technique (RooUnfoldframework)
- Systematic uncertainties: a few percent
 - ✓ Correction factors (fake, inefficiency factors) from MC
 - Response matrix: experimental uncertainties on jet p_T and charge (track reconstruction)
 - Unfolding procedure: data-driven technique used to estimate bias from prior and number of iteration

The average jet charge vs jet p_T , more central jets, data vs theory (diff. PDFs) \Rightarrow increase due to u quark jets

The standard deviation of jet charge vs jet p_T

The best: CTEQ6L1 ⇒ difference in MC/data up to 10% (15%) for forward (central) jets

11/21/2016

. 12

ATLAS: jet charge data vs theory

Data vs theory \Rightarrow Pythia / Herwig models using CTEQ6L1 PDFs - 3 values of κ: 0.3, 0.5, 0.7

The average jet charge vs jet p_{τ} , more central jets, data vs theory (diff. PDFs)

The standard deviation of jet charge vs jet p_{τ} , Data vs Pythia/Herwig

Using CTEQ6L1 \Rightarrow at low p_T MC below data \leq 5% For CT10 NLO PDF: $\leq 10\%$

11/21/2016

S. Tokar, FCC-ee, CERN, Geneva, 21-22 Nov 2016

1500

1000

1000

1500

Jet p_ [GeV]

κ = 0.5 [▼] κ = 0.7

ATLAS: up- and down-quark jet charge

Flavor-fractions from PDFs + matrix element calculations used to extract the average u- and d-quark jet charge in each p_{τ} bin.

Theory gives for average jet charge:

PRD 86, 094030 (2012) PRL110, 212001 (2013)

 $(-0.024+0.004 \kappa = 0.3)$

$$\langle Q_J \rangle = \bar{Q} \left(1 + c_\kappa \ln\left(p_T / \bar{p}_T \right) \right) + O \left(c_\kappa^2 \right) c_\kappa \approx \begin{cases} -0.038 \pm 0.006 & \kappa = 0.5 \\ -0.049 \pm 0.008 & \kappa = 0.7 \end{cases}$$

 $\overline{Q} = \langle Q_J \rangle (\overline{p}_T)$ for some fixed \overline{p}_T

scaling violation parameter

11/21/2016

S. Tokar, FCC-ee, CERN, Geneva, 21-22 Nov 2016

14

CMS: jet charge in dijet events

- Jet charge for a quark, antiquark or gluon initiating a jet.
- Dijet events selected for the analysis
- 3 jet charge variables considered:

 $P_{\Box,i}(P_{\perp,i}) =$ the momentum component of the constituent *i* parallel (transverse) to the jet axis.

Reconstructed jet charge distribution data vs MC (u-, d-, g- ...and others jets) for jet charge Q^{κ}

11/21/2016

CMS: jet charge unfolding and systematics

- The measured jet charge distribution is unfolded from detector level to particle level (iterative Bayesian meth.)
- Response matrix from Pythia 6 simulation
- SVD approach also used
- Bayesian and SVD approaches: agreement within 1%

Average leading jet charge: Difference between detector and particle level vs leading jet p_T (Pythia 6).

Syst. effect in percent (%)	$\kappa = 1.0$			$\kappa = 0.6$			$\kappa = 0.3$		
	Q^{κ}	Q_L^{κ}	Q_T^{κ}	Q^{κ}	Q_L^{κ}	Q_T^{κ}	Q^{κ}	Q_L^{κ}	Q_T^{κ}
Jet energy scale	0.7	< 0.1	< 0.1	0.4	< 0.1	< 0.1	0.3	< 0.1	< 0.1
Jet energy resolution	0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Track reconstruction	0.4	0.4	0.5	0.5	0.4	0.5	0.5	0.4	0.4
Track <i>p</i> _T resolution	1.4	1.0	0.8	1.0	0.6	0.7	1.5	0.4	0.4
Response matrix modeling	1.6	1.6	1.8	1.0	0.8	1.3	1.5	1.3	1.3
Response matrix statistics	0.9	0.9	0.6	0.6	0.6	0.5	0.6	0.5	0.4

11/21/2016

CMS: jet charge results after unfolding

Leading jet charge distributions for charges Q^{κ} , Q_{L}^{κ} and Q_{T}^{κ} , $\kappa = 0.6$; data vs MC/PDFs

17

Leading jet charge distributions of Q^{κ} for different jet p_{τ} intervals; data vs MC/PDFs

Summary

- LHC experiments, ATLAS and CMS have shown that the variable jet charge can be effectively used to distinguish jets initiated by partons of different electric charges in pp collisions.
- □ Jet charge, especially using it with other variables (like jet invariant mass, etc.) within multivariate techniques, can be used in:
 - ✓ Study of asymmetries in $q\bar{q}$ production to distinguish q from \bar{q}
 - ✓ Studies with W bosons decaying hadronically
 - ✓ Many other studies where flavour of jets should be determined.
- A good perspective of using jet charge is in boosted approaches especially at 13-14 TeV collisions - to distinguish heavy charged and neutral vector bosons

