Exposing the Dead Cone with Jet Substructure

(from the LHC to FCC-ee)

Michele Selvaggi

with F. Maltoni and J. Thaler [1606.03449]

Parton Radiation and Fragmentation Workshop, CERN — November 22, 2016

• The **Dead Cone** effect

- The **Dead Cone** at the **LHC**
- The **Dead Cone** at the **FCC-ee**

assuming the quark is **stable**:

 $\sim \frac{1}{2p \cdot k}$ p+kp

assuming the quark is **stable**:

assuming the quark is **stable**:

in **soft** and **collinear** limit :

$$\frac{1}{\sigma} \frac{\mathrm{d}^2 \sigma}{\mathrm{d}z \,\mathrm{d}\theta^2} \simeq \frac{\alpha_S}{\pi} C_F \frac{1}{z} \frac{\theta^2}{(\theta^2 + \theta_D^2)^2}$$

 $\theta_D \equiv \frac{m_q}{E_q}$

,

in **soft** and **collinear** limit :

$$\frac{1}{\sigma} \frac{\mathrm{d}^2 \sigma}{\mathrm{d}z \,\mathrm{d}\theta^2} \simeq \frac{\alpha_S}{\pi} C_F \frac{1}{z} \frac{\theta^2}{(\theta^2 + \theta_D^2)^2}$$

$$\theta_D \equiv \frac{m_q}{E_q}$$

define
$$\Theta \equiv \frac{\theta}{\theta_D}$$

so that max is at $\Theta = |$:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Theta^2} \sim \frac{\Theta^2}{(1+\Theta_D^2)^2}$$

9

Does fixed order Monte Carlo correctly reproduce this effect ?

Does fixed order Monte Carlo correctly reproduce this effect ?

Do fixed order Monte Carlo and PS correctly describe this effect ?

- separate space in 2 semi-sphere
- sum all gluon radiation
- I entry per event with sum of radiation

Do fixed order Monte Carlo and PS correctly describe this effect ? YES !!

- separate space in 2 semi-sphere
- sum all gluon radiation •
- I entry per event with sum of radiation

TimeShower:MEextended = on/off
TimeShower:recoilDeadCone = on/off

10

• The **Dead Cone** effect

- The **Dead Cone** at the **LHC**
- The Dead Cone at the FCC-ee

The Dead Cone at the LHC

- Challenging since radiation and decay of massive particle both occur on a similar angular scale $\theta \sim m / E$
- Which heavy quarks are good candidates to start with ?

- m_{c,b} = 1.5 - 5 GeV , p_T = 40 GeV
$$\rightarrow$$
 $\theta_D \sim$ 0.03 - 0.1

- small angle
- large backgrounds \rightarrow exclusive decays (e.g. B+ \rightarrow J/ ψ K+)?
- which role does **hadronization** play?

The Dead Cone at the LHC

- Challenging since radiation and decay of massive particle both occur on a similar angular scale $\theta \sim m / E$
- Which heavy quarks are good candidates to start with ?
 - $m_{c,b}$ = 1.5 5 GeV , p_{T} = 40 GeV $\rightarrow~\theta_{D}$ ~ 0.03 0.1
 - small angle
 - large backgrounds \rightarrow **exclusive** decays (e.g. B+ \rightarrow J/ ψ K+)?
 - which role does hadronization play ?
 - m_t = 173 GeV , p_T = 500 GeV $\rightarrow \theta_D \sim 0.3$
 - moderate angle
 - small backgrounds
 - can fully reconstruct top decay products

The Dead Cone at the LHC

- Challenging since radiation and decay of massive particle both occur on a similar angular scale θ ~ m / E
- Which heavy quarks are good candidates to start with ?

- m_{c,b} = 1.5 - 5 GeV , p_T = 40 GeV
$$\rightarrow \theta_D \sim 0.03$$
 - 0.1

- small angle
- large backgrounds \rightarrow **exclusive** decays (e.g. B+ \rightarrow J/ ψ K+)?
- which role does hadronization play ?
- $m_t = 173 \text{ GeV}$, $p_T = 500 \text{ GeV} \rightarrow \theta_D \sim 0.3$
 - moderate angle
 - small backgrounds (radiation in decay being by far the largest)
 - can fully reconstruct **top decay products**

Boosted top quarks are good candidates

Contaminating radiation from decay

Dead cone can be potentially spoiled by **interference** with **radiation in top decay** ...

Top width effect becomes sizable when : $2p_t \cdot p_g \sim m_t \Gamma_t$

Can **neglect** interference if:
$$z \equiv \frac{E_g}{E_t} \gg \frac{\Gamma_t}{m_t} \rightarrow |z \gtrsim \mathcal{O}(0.1)$$

- large top boost to enhance FSR rate ($P \sim log \: E_t \: / \: m_t$)
- possible channels:
 - fully hadronic \rightarrow contamination from hadronic W decay
 - fully leptonic \rightarrow clean, but impossible to accurately reconstruct **top direction**
 - semi-leptonic \rightarrow clean, high rate
- event **selection**:
 - 2 fat-jets (R=1.0) in central rapidity, $p_T > 300 \text{ GeV}$
 - I fat-jet top-tagged and $p_{\rm T} > 500 \; GeV$
 - loosely isolated lepton inside other fat-jet (BLT = "Boosted Leptonic Top")
 - $E_T^{miss} > 50 \text{ GeV}$

\rightarrow selection designed to ensure close to 100% purity

• in order to reduce contamination from radiation in decay **require**:

$$\frac{p_T^g}{p_T^t} > 0.05.$$

- find the **top direction** by solving for E_z^{miss} :
 - make use W mass constraint (2 solutions)
 - solve **degeneracy** by checking consistency with hypothesis:
 - radiation in production (S)
 - radiation in decay radiation (B)
- Define **S** and **B** enriched regions:

- find the **top direction** by solving for E_z^{miss} :
 - make use W mass constraint (2 solutions)
 - solve **degeneracy** by checking consistency with hypothesis:
 - radiation in production (S)
 - radiation in decay radiation (B)
- Having all components at hand (b, I vu, g), define S and B enriched regions:

S-enriched: $m_{b\ell\nu} \in [170, 200] \text{ GeV},$ B-enriched: $m_{b\ell\nu} < 160 \text{ GeV}.$

Observing the Dead Cone

- **b-jet** sits exactly where **top FSR is max**
- rotate the event such that b-jet lies on the X axis
 → look the "other way"

Observing the Dead Cone x < 0

- **b-jet** sits exactly where **top FSR is max**
- rotate the event such that b-jet lies on the X axis
 → look the "other way"

X = -I

b

X > 0

t

Observing the Dead Cone

- **b-jet** sits exactly where top **FSR is max**
- rotate the event such that b-jet lies on the X axis
 → look the "other way"
- in one dim. , define:

$$\Theta_S^2 \equiv \operatorname{sign}(X) \Theta^2$$

Observing the Dead Cone x < 0

- purity can be increased by "pushing the b-quark away"
 - → require **larger angle** between t and b:

 $\Theta_b > 1.0$

X > 0

25

Observing the Dead Cone

- purity can be increased by "pushing the b-quark away"
 - → require **larger angle** between t and b:

 $\Theta_b > 1.0$

MadGraph (LO) : S - enriched × √s = 13 TeV $\Theta_{\rm b} > 1.0$ 3 160 $pp \rightarrow t\bar{t}$ 140 2 120 1 100 0 80 -1 60 40 -2 20 -3 -3 -2 2 3 -1 0

Х

event fraction / bin

0.1

0.08

0.06

0.04

0.02

0

-8

Observing the Dead Cone X < 0

- purity can be increased by "pushing the b-quark • away''
 - require **larger angle** between t and b:

 $\Theta_b >$

0

2

√s = 13 TeV

 $p p \rightarrow t \overline{t}$

S - enriched

 $\Theta_{\rm b} > 1.0$

Pythia8 (ME corr. off)

othia8 (ME corr. on)

8

 Θ_{s}^{2}

8

X > 0

6

8

 Θ_{s}^{2}

event fraction / bin

0.1

0.08

0.06

0.04

0.02

0

-8

Observing the Dead Cone X < 0

- purity can be increased by "pushing the b-quark • away''
 - require **larger angle** between t and b:

 $\Theta_b >$

0

2

√s = 13 TeV

 $pp \rightarrow t\bar{t}$

S - enriched

 $\Theta_{\rm b} > 1.0$

Pythia8 (PS)

Sherpa (PS)

Herwis++ (PS)

4G5_aMCatNLO (LO)

8

 Θ_{s}^{2}

X > 0

Sensitivity at the LHC

at 4 σ level after Run II

- Dead Cone is a fundamental prediction of QCD/QED that has been known for long time, but never conclusively measured
- Measuring it precisely can help in constraining various Monte Carlo/Parton Shower models
- A proposal relying on measuring radiation pattern around **boosted top quarks** using most recent **jet sub-structure** algorithm (Soft Drop) has been outlined
- The Dead Cone "hypothesis" should definitely be testable in p p collisions at LHC - Run II
- The full differential radiation pattern should be measurable at HL-LHC and
 FCC-hh

The Dead Cone effect

• The Dead Cone at the LHC

• The **Dead Cone** at the **FCC-ee**

VERY PRELIMINARY !

General considerations

- $e^+e^- \rightarrow tt$ hopeless, since **tops** are produced almost **at rest**.
- 2.5 yrs of data at Z pole \rightarrow 10¹³ Z bosons !! \rightarrow 10¹² b-quark pairs !!
- Naively both $Z \rightarrow$ bb, cc are possible good candidates.
- Focus on b's given more accessible $\theta_D(b) \sim 0.1$ vs. $\theta_D(c) \sim 0.03$
- Given such abundance, a starting point is to focus on **exclusive charged decays**:

e.g : $B^{+/-} \rightarrow J/\psi K^{+/-}$

 According to Pythia8 exclusive charged decays make 10⁻⁴ of total (would leave a sample of 10's of million)

- energy / bin $\sqrt{s} = 90 \text{ GeV}$ — Pythia8 (ME on) 0.05 $e^+ e^- \rightarrow b \overline{b}$ Pythia8 (ME off) 0.04 0.03 0.02 0.01 0 2 8 10 4 6 0 Θ^2
- separate space in 2 semi-sphere
- sum all gluon radiation
- I entry per event with sum of radiation

- separate space in 2 semi-sphere
- fill each emission with its energy
- several entries per event,

→energy flow

use reconstructed charged B hadron as a proxy for the original b quark direction

Event Selection:

- require **2 fat jets**
- both **b-tagged** with **high purity** algo.
- find among constituents charged candidates from **B-hadron decay**
- apply SoftDrop to remove soft contamination from other b and find two prongs
- match prongs with previously found B-Hadron.

 \rightarrow b subjet, and gluon candidate

25

- SURPRISINGLY, looks as if hadronization washes out dead cone completely
- Shouldn't the corrections be = $\frac{\Lambda_{QCD}}{m}$

?

- Huge production rate of b-quark pair at FCC-ee provides interesting laboratory for studying heavy quark fragmentation and the Dead Cone
- A simple proposal on measuring the b-quark dead cone on **exclusive charged b-hadrons decays** using jet sub-structure techniques has been sketched
- So far, **proof of concep**t validated at **parton level**.
- Results yet to be fully understood at **hadron level**, try various hadronization models

Full analysis with e⁺e⁻ events

Full analysis with e⁺e⁻ events

B - enriched

 $\Theta_{\rm h} > 1.0$

Interference with rad. in decay

