Studies of fragmentation functions with the *BABAR* detector

Fabio Anulli

on behalf of the BABAR Collaboration

Parton Radiation and Fragmentation from LHC to FCC-ee,

CERN, November 21-22, 2016

Outline:

Fragmentation function definition

- Inclusive production of light hadrons at ~10 GeV
 - $-\pi$, K, p/ \overline{p} production
- Inclusive studies on charmed baryons at ~10 GeV
 - Inclusive Λ_c and Ξ_c spectra
 - $\Lambda_c^+ \overline{\Lambda}_c^-$ correlated production and popcorn mesons
- Measurement of Collins asymmetries:
 - $-e^+e^- \rightarrow \pi\pi + X$, $\pi K + X$, and KK + X
- Conclusions

Fragmentation functions definition

- Fragmentation functions (FFs) describe the process of hadronization of a parton
- Non-perturbative objects, but universal functions
- Depend on the scaled energy of the hadron h:

$$x = 2E_h/\sqrt{s}$$

Total Fragmentation Function

Parton Fragmentation Function

$$\frac{1}{\sigma_0} \frac{d\sigma^{e^+e^- \to hX}}{dx} = F^h(x,s) = \sum_{i=q,\bar{q}} \int_x^1 \frac{dz}{z} C_i\left(z,\alpha_s(\mu),\frac{s}{\mu^2}\right) D_i^h\left(\frac{x}{z},\mu^2\right) + \mathcal{O}\left(\frac{1}{\sqrt{s}}\right)$$

$$\sigma_0 = \sum_q \frac{4\pi\alpha^2}{s} \left(1 + \frac{\alpha_s}{\pi} + \dots \right)$$

process dependent short distance interaction

non-perturbative part

- $D_1^h(z, \mu^2)$ describes the probability that a parton *i* fragments into a hadron *h* carrying a fraction *z* of the parton momentum
- e^+e^- annihilation is the cleanest environment to study the fragmentation functions
 - but low sensitivity to gluon FF

Inclusive Hadronic Particle Spectra

- Perturbative QCD corrections lead to logarithmic scaling violations via the evolution equation (DGLAP)
- Precise measurements of IPS at different energies needed to:
 - better comprehend fragmentation processes
 - check consistency with a number of fragmentation models
 - test scaling violation
 - test QCD predictions
- Most of data collected at LEP energies
- Measurement of both quark and antiquark fragmentation
- Limited precision measurements at lowenergy before *B*-factories

- ► BABAR have measured Inclusive Spectra of:
 - > 3 light mesons (π^{\pm} , K^{\pm} , η)
 - > 1 light baryon (\bar{p}/p)
 - > 4 Heavy baryons (Λ_c , Ξ_c , Ξ'_{c} , Ω_c)
- > measurements performed both at \sqrt{s} =10.54 GeV and at Y(4S) mass peak

Inclusive production of light hadrons

Phys. Rev D88, 032011 (2013)

- It uses a data sample of 0.9 fb⁻¹ @Y(4S) and 3.6 fb⁻¹ at 10.54 GeV.
- Measured both *conventional* and *prompt* hadrons cross sections:
 - prompt: primary hadrons or products of a decay chain where all particles have a lifetime shorter than 10⁻¹¹s
 - conventional: includes weak decay products of K_S and strange baryons

Test of hadronization models

- Scaled momentum distribution: $x_p = 2p^*/E_{cm}$
 - Coverage: $0.2 < p^* < 5.27 \text{ GeV/c}$
 - Syst. uncertainties from ~2% to ~10% in the highest momentum bins, dominate the full error
- Data consistent and much more precise than previous ARGUS data at similar energies
- Consistent also with Belle data, with some deviation at the highest momenta
- Data are compared to predictions of three hadronization models
 - Parameters tuned on previous data from ARGUS and from higher energy experiments
- Consistency for pions and kaons within ~10%
 - but significant differences in shape
- Poor description of proton data

Scaling properties

- Hadronization should be scale invariant except for "small" effects of hadron masses, running of α_S ,...
- Scaling violations at low x_{p} , due to masses are well known and modeled adequately (here JETSET is shown for comparison)
- Expect substantial scaling violations at high x_p :
 - Seen clearly in π and K data; reproduced by models (within a few % for π , and 15% for K)
 - Much smaller scaling violation in proton data than models predict

Test of MLLA+LHPD QCD predictions

In the Modified Leading Logarithmic Approximation (MLLA) with Local Parton Hadron Duality (LHPD) ansatz [Azimov, Z.Phyis.C27,65 (1985)]:

- the multiplicity distributions versus $\xi = -\ln(x_p)$ should be Gaussian near the peak;
- The peak position ξ * should decrease esponentially with increasing hadron mass at a given E_{cm}
- ξ * should increase logarithmically with $E_{\rm cm}$ for a given hadron type

Peak position ξ* from symmetric gaussian fits

	π^\pm	K^{\pm}	p/\bar{p}
Prompt	2.337 ± 0.009	1.622 ± 0.006	1.647 ± 0.019
Conventional	2.353 ± 0.009	1.622 ± 0.006	1.604 ± 0.013

it is observed $\xi^*_{p} \approx \xi^*_{K}$

Test of MLLA+LHPD QCD predictions

- \triangleright BABAR and Z^0 data provide precise determination of the slopes
- All data are consistent with the expected logarithm dependence with the center-of-mass energy
- > Similar slopes for pions and protons, different for kaons
 - > possibly due to flavor composition changing with E_{cm}

Inclusive production of charmed hadrons

- Phys.Rev. D75, 012003 (2007): Inclusive Λ_c production
- Phys.Rev.Lett. 95, 142003 (2005): Production and decay of Ξ_c
- Phys.Rev.Lett. 99, 062001 (2007): Production and decay of Ω_c
- hep-ex/0607086: Ξ_c production

Charm production at BABAR

- Heavy hadrons produced in e^+e^- annihilations provide a laboratory for the study of heavy-quark jet fragmentation
- Relevant quantities are
 - Relative production rates for different spin, parity, ...
 - Associated momentum spectra
 - Differences among mesons and baryons
- Measurements at 10.54 GeV, below $B\overline{B}$ production threshold, are the ideal place to study $e^+e^- \rightarrow c\overline{c}$ reactions, and test charm fragmentation functions, the charmed hadrons being made of one of the leading quarks
- Large amount of data to study $b \rightarrow c$ decays from inclusive measurements at the Y(4S):
 - B-mesons → charmed mesons/baryons

Inclusive Λ_c spectrum measurement

PRD 75, 012003 (2007)

9.5 fb⁻¹ off-resonance 81 fb⁻¹ on-resonance

- reconstruct $\Lambda_c^+ \rightarrow pK^-\pi^+$ from tracks consistent from originating from interaction point
- evaluate track efficiencies from data in two-dimensional (p, θ) bins
- weight events according to inverse efficiency matrix
- fit mass peak in each x_p bin

- ▶ Determine $e^+e^- \rightarrow c\bar{c}$ events from off-resonance data (E_{cm} =10.54 GeV)
- ▶ Determine $e^+e^- \rightarrow B\bar{B}$ events from on-resonance data subtracting the off-resonance cross section scaled by the different c.m. energy

Trento, February 27, 2008 Fabio Anulli 12

Inclusive Λ_c spectrum measurement

- We measure (at E_{cm} =10.54 GeV):
- $\langle x_p \rangle = 0.574 \pm 0.009$
- Total rate per event:

$$N_{\Lambda_C}^{q\bar{q}} = 0.057 \pm 0.002 \text{(exp)} \pm 0.015 (\Lambda_C BF)$$

• assuming Λ_C^+ from $e^+e^- \rightarrow cc$, we get a production rate per c-jet of:

$$N_{\Lambda_C}^{c-jet} = 0.071 \pm 0.003 (\exp) \pm 0.018 (\Lambda_C BF)$$

 Result consistent with previous CLEO and Belle measurements

PRD 75, 012003 (2007)

- Compare to other baryons or mesons
- \wedge Λ_C peak slightly lower w.r.t. Ξ_c
- > D mesons (both PS and V state), show broader peaks and differ significantly for $x_p \sim 1$

Trento, February 27, 2008

Fabio Anulli

Inclusive Λ_c spectrum at the Y(4S)

- Spectrum for Y(4S) decays obtained subtracting the much harder $e^+e^- \rightarrow cc$ spectrum
- Kinematic limit $x_p = 0.47$
- Shape consistent with previous results
- We measure

$$N_{\Lambda_C}^{Y} = 0.091 \pm 0.006 (\exp) \pm 0.024 (\Lambda_C BF)$$

• i.e. $(4.5 \pm 1.2)\%$ of $B_{u,d}$ decays include a Λ_c

- > Data suggest a dominance of quasi-two-body decays like:
 - \bullet B \rightarrow $(\Lambda_c^+ \bar{p}$, $\Lambda_c^+ n$, $\Lambda_c^+ \Delta$, $\Sigma_c \bar{p}$) + $m\pi$
 - comparing with MC simulations the favorite range for the number of pions is 3 < m < 5+
 - also B decays into 2 charmed baryons seem to contribute significantly

More c-baryons inclusive spectra: Ξ_c^0 and Ω_c^0

- Measurements based on a data set of 230 fb-1
- Ξ_c^0 reconstructed in two decay modes

Branching Fraction

$$\mathcal{B}(B \to \Xi_c^0 X) \times \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$$

= $(2.11 \pm 0.19 \pm 0.25) \times 10^{-4}$.

Integrated cross section from cc $\sigma(e^+e^- \to \Xi_c^0 X) \times BF(\Xi_c^0 \to \Xi^- \pi^+)$ = (388 ± 39 ± 41) fb

- Ω_c^0 reconstructed in 4 decay modes
 - measured ratio of BFs

B meson Branching Fraction

son thing thing
$$BF(B \to \Omega_c^0 X) \times BF(\Omega_c^0 \to \Omega^- \pi^+)$$

$$= [5.2 \pm 0.9(\exp) \pm 0.5(\text{model})] \times 10^{-6}$$

Integrated cross section for continuum production

$$\sigma\left(e^{+}e^{-} \to \Omega_{c}^{0}X\right) \times BF\left(\Omega_{c}^{0} \to \Omega^{-}\pi^{+}\right)$$

= 11.2 ± 1.3 (exp) ± 1.0 (model) fb

* M.G. Bowler, Z. Phys. C11, 169 (1981).

More *c*-baryons inclusive spectra: Ξ_c hep-ex/0607086

State	Mass (MeV/c ²)	J^{P}
Ξ_{c}	2470	1/2+
$\Xi_{ m c}$	2575	1/2+
$\Xi_{ m c}^{\ *}$	2645	3/2+

- Ξ'_{c} first observed by CLEO in 1999
- $\Delta m = m(\Xi'_c) m(\Xi_c) = 107 \text{ MeV}/c^2$
 - electromagnetic decay $\Xi'_c \rightarrow \Xi_c \gamma$

first evidence of $B \rightarrow \Xi'_c$ decays

 $\mathcal{B}(B \to \Xi_c^{'+} X) \times \mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+) = (1.69 \pm 0.17 (\text{exp.}) \pm 0.10 (\text{model})) \times 10^{-4}$ $\mathcal{B}(B \to \Xi_c^{'0} X) \times \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (0.67 \pm 0.07 (\text{exp.}) \pm 0.03 (\text{model})) \times 10^{-4}$

Measurement of Collins asymmetries for charged pions and kaons

- Phys.Rev. D90, 052003 (2014): Collins asymmetries for pion pairs
- Phys.Rev. D92, 111101(R) (2015): Collins asymmetries for $\pi \pi \pi / \pi K / K K$ pairs

The Collins Fragmentation Function

Polarized FF (Collins FF): dependence on $z=2E_h/\sqrt{s}$, P_{\perp} , and s_q

"Standard" unpolarized FF

$$D_1^{q\uparrow}(z, \mathbf{P}_\perp; s_q) = D_1^q(z, P_\perp) + \frac{P_\perp}{zM_b} H_1^{\perp q}(z, P_\perp) \mathbf{s}_q \cdot (\mathbf{k}_q \times \mathbf{P}_\perp)$$

- H₁ is the polarized fragmentation function or Collins FF
- Chiral-odd function
- could arise from a **spin-orbit** coupling
- leads to an asymmetry in the angular distribution of final state particles (Collins effect) NPB 396,161(1993)
- first non-zero Collins effect observed in SIDIS PRL 94,012002(2005) NPB 765, 31(2007)

In e⁺e⁻ annihilation</sup>, γ^* (spin-1) \rightarrow spin-1/2 q and \overline{q}

- in a given event, the spin directions are unknown, but they must be parallel
- they have a polarization component transverse to the q direction $\sim \sin^2\theta$ (θ wrt the e^+e^-)
- · exploit this correlation by using hadrons in opposite jets

$$e^+e^- \rightarrow q\overline{q} \rightarrow \pi_1\pi_2X \quad (q=u, d, s) ==> \sigma \propto cos(\phi_i)H_1^{\perp}(z_1) \otimes H_1^{\perp}(z_2),$$

Use Collins FF to extract Transversity

SIDIS: Semi Inclusive Deep Inelastic Scattering

SIDIS

- Unpolarized lepton beam off transversely polarized nucleon target
 - non-zero Collins effects
 - spin direction known
 - two chiral-odd functions
 Transversity PDF & Collins FF

Global analysis of SIDIS (HERMES & COMPASS) and ete-(BELLE, BABAR, BESIII) data

==> simultaneous determination of Transversity (h₁) and Collins functions (CFF).

e⁺e⁻ annihilation

γ* (spin-1) goes to spin-1/2 q and q
 Two Collins functions
 contribute to the cross section

Collins effect in di-hadron correlation

Detection of hadron pairs with same or opposite charge sensitive to different combination of favored and disfavored FFs

- favored FF: one of the parent quarks matches a valence quark in the hadron, • i.e.: $u \rightarrow \pi^+, d \rightarrow \pi^-, s \rightarrow K^-, ...$
- **disfavored FF:** no such match, i.e. $d \rightarrow \pi^+, u \rightarrow \pi^-, s \rightarrow K^-, s \rightarrow \pi^{\pm}, \dots$

Similarly for Unlike-sign Kaon pairs:

Analysis reference frames

[See NPB 806, 23 (2009)]

RF12 or Thrust RF

- Thrust axis to estimate the $q\bar{q}$ direction
- $\phi_{1,2}$ defined using thrust-beam plane
- Modulation diluted by gluon radiation, detector acceptance,...

$$\sigma \sim 1 + \frac{\sin^2 \theta_{th}}{1 + \cos^2 \theta_{th}} \cos(\phi_1 + \phi_2) \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1(z_1) \bar{D}_1(z_2)}$$

P₂ θ₂ e P₁ P₁ P₀

RF0 or Second hadron momentum RF

- Alternatively, just use one track in a pair
- Very clean experimentally (no thrust axis), less so theoretically
- Gives quark direction for higher pion momentum

$$\sigma \sim 1 + \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \cos(\frac{2\phi_0}{\rho_0}) \mathcal{F} \left[\frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1(z_1) \bar{D}_1(z_2)} \right]$$

Collins effect is measured as a function of the pions fractional energy $(z_{1,2}=2E_{\pi}/\sqrt{s})$, pions transverse momentum (p_{t1},p_{t2},p_{t0}) , and as a function of the polar angle of the reference axis (θ_{th},θ_2)

Extraction of asymmetry parameters from data

Collins Asymmetries

extracted from fit to the normalized azimuthal distribution

$$R_{\alpha} = \frac{N(\phi_{\alpha})}{\langle N_{\alpha} \rangle} = a + \mathbf{b} \cdot \cos(\phi_{\alpha})$$

- unpolarized contribution is flat
- Collins FF contained in the cosine moment b
- The MC generator does not include polarized FF as the Collins FF
 - observed modulation in MC sample produced by detector acceptance
 - correction of these effects with MC would bring to too large systematic uncertainties
- Collins effect not sensitive to electric charge
 - U and L distribution coincident in MC
 - slightly different in data due different contribution of favored and unfavored FF

Double Ratios

- Double Ratio (DR) of Unlike-sign over Like-sign pion pairs:
- eliminate the acceptance effects and the first order radiative effects
 - acceptances and radiative contributions do not depend on the charge combination of the pion pair;
 - approximation holds for small asymmetries.

$$\frac{R_{\alpha}^{U}}{R_{\alpha}^{L}} = \frac{N^{U}(\phi_{\alpha})/\langle N^{U}(\phi_{\alpha})\rangle}{N^{L}(\phi_{\alpha})\langle N^{L}(\phi_{\alpha})\rangle} \rightarrow P_{0} + P_{1} + P_{1} + P_{2} + P_{3} + P_{4} + P_{4} + P_{5} + P_{$$

Contains only the Collins effects and higher order radiative effects

MC: small deviation from zero ==> assigned as a systematic error

Uncorrected Asymmetry

Analysis strategy

- Two analyses performed at BABAR:
 - 1. $e^+e^- \to X + \pi\pi$ PRD 90, 052003
 - asymmetries as a function of pions z and p_T
 - 2. $e^+e^- \to X + \pi\pi/\pi K/KK$ PRD 92, 111101(R)
 - simultaneous extraction of asymmetries for $\pi\pi$, πK , and KK pairs

Analysis strategy:

- Perform event and particle selections
- Separate into $\pi\pi$, KK and $K\pi$ candidate sets and subdivide into Like and Unlike charge
 - Charged data set is the combination of U and L.
- Measure azimuthal angle distributions for each set in both reference frames
 - Take the ratios of Unlike to Like and Unlike to Charged normalized distributions
 - Subtract background contributions and correct for particle misidentification

Selection of two jets topology: thrust > 0.8

• Extract Collins Asymmetry from each set, as a function of kinematic variables

Collins asymmetries in pion pair production

Measurement of Collins asymmetries from double ratios in $e^+e^- \to \pi\pi X$ have been performed by Belle (PRD78,032011, Erratum PRD 86, 039905) and *BABAR* at Q²~110 GeV², and by BESIII (PRL 116, 042001) at Q²~13 GeV²

Collins asymmetry measured by BABAR as function of:

- 6×6 bins of pion fractional energy in both RF12 and RF0
- 4×4 bins of (p_{t1},p_{t2}) in RF12
- 9 bins of pto in RFO
- asymmetry measured also vs. $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ and $\sin^2\theta_2/(1+\cos^2\theta_2)$

A^{UL} and A^{UC} asymmetries strongly correlated as they are obtained from the same data sample

22 November 2016, CERN Fabio Anulli 25

$BABAR \pi\pi$ results and global fits

Extraction of the Transversity PDF and Collins FF combining SIDIS and e^+e^- data

Anselmino et al: arXiv:1510.05389

Comparison between old fit (SIDIS + Belle data) with new fit (BABAR $\pi\pi$ data added)

- Fit uncertainties significantly reduced in the new analysis
- Good consistency for the transversity function
- The differences seen for the Collins FF are mainly due to the different parametrization used:
 - old fit: fav. and dis. FFs have the same dependency on z, and could differ only for a renormalization constant
 - new fit: the fav. and dis. FFs are left uncorrelated

Collins asymmetries for $\pi\pi$, $K\pi$, KK pairs

Measured Collins asymmetries reported in (z_1, z_2) bins

PRD 92, 111101(R) (2015)

- \bullet Asymmetries rise as a function of z: more pronounced for U/L
- \bullet A^{UL} KK asymmetry slightly higher than pion asymmetry for high z
- * KK asymmetry consistent with zero at lower z
- * ππ results consistent with previous BABAR analysis

Extraction of the Collins FF from BABAR kaon data

Anselmino et al., arXiv:1512.02252

Fitted function superimposed to BABAR data

- It uses the pion fav. and disfav. Collins FF extracted in arXiv: 1510.05389,
- It assumes a simplified parametrization for the corresponding kaon Collins FFs.

Test universality of Collins FF: Calculate SIDIS single spin asymmetries from the fitted function and compare with data → good agreement observed

Fabio Anulli 28

Summary

- BABAR is continuing the program of studying fragmentation processes, making use of the $\sim 500 \text{ fb}^{-1}$ of e^+e^- collisions at $\sim 10.6 \text{ GeV}$
- Inclusive spectra have been measured for light hadrons (π, K, p) and for the lightest charmed baryon with great precision, and the data compared to several model predictions
 - Large discrepancies seen between models and proton data
- Collins asymmetries measured for charged hadron pairs in two-jet events.
 - Precise measurement of pion-pair asymmetries in fine bins of fractional energies and transverse momenta ⇒ PRD 90, 052003 (2014)
 - Simultaneous measurement of asymmetries for $\pi\pi$, πK , and KK pairs as a function of fractional energies \Rightarrow PRD 92, 111101(R) (2015)
 - First information on kaon Collins FF in e^+e^- data
 - Results consistent with theoretical predictions (e.g. PL B 659, 234 (2009))
 - Global analyses of $e^+e^-(BABAR+Belle)$ and SIDIS asymmetries for pions allow extraction of the transversity PDF and the pion Collins FFs.
 - πK and KK pairs results used to extract kaon Collins FF
 - Consistency with HERMES and COMPASS data on kaons indicates the validity of universality of the Collins FF

BACKUP SLIDES

PEPII and the BABAR detector

Charged hadrons identification

- Excellent identification of π^{\pm} , K^{\pm} , and p/\bar{p} \Rightarrow Cherenkov light plus dE/dx
 - Efficiency matrix E_{ij} : performance of our hadron identification procedure as a function of p_{lab}
 - very hight at low p_{lab} (good dE/dx)
 - plateau for p_{lab} where DIRC provides good separation
 - fall off at highest p_{lab} , where the Cherekov angles for different particles converge
 - calibrated using data control samples
 - → we derive corrections to the simulated efficiency matrix (green band)
 - large efficiency over much of the momentum range
 - few-% mis-identification

Scaling properties

BaBar/Belle comparison

- Belle have measured differential cross section $d\sigma/dz$ [PRL 111, 062002 (2013)]
- we normalize arbitrarily to compare the shapes

- FFs for π and K from a global analysis of SIDIS and e⁺e⁻ data:
 - BaBar, Belle, TPC, TASSO, TOPAZ, ALEPH, OPAL, SLD, DELPHI + HERMES, COMPASS
 - quarks treated as massless particles
 - · improvement of the accuracy of the global fit
- More details in PRD 88, 054019 (2013)

Inclusive Λ_c studies

- The Λ_c^+ (cud) is the lightest c-baryon
- We precisely measured its mass reconstructing two low-Q decays, to minimize systematic uncertainties
- We find (PRD 72, (2005) 052006)
 - $m(\Lambda_c^+) = 2286.46 \pm 0.14 \text{ MeV}/c^2$
- More precise and 2.5σ higher than the previous PDG value:
 - $m_{PDG}(\Lambda_c^+) = 2284.9 \pm 0.6 \text{ MeV}/c^2$

35

Inclusive Λ_c spectrum measurement

 Several fragmentation functions implemented in JETSET generator

distributions affected by JETSET simulation of gluon radiation

- test each models against our data using a binned χ^2

- No model seems to correctly reproduce the data, but
- The fitted values of the free parameters are quite different from those used for light hadrons and charmed mesons
- These results indicate the needs of different functions for baryons and mesons (like in DIS, where there is a dependency on the number of spectator quarks)

Correlated $\Lambda_c^+ \overline{\Lambda}_c^-$ production

- What about baryon number conservation?
 - Measurements at high energies shows small rapidity differences between BaryonantiBaryon couples ==> "local baryon correlation"
 - if "local" correlation and two charmed baryons produced from leading c-quarks, we expect to see two more baryons ==> kinematically suppressed @ E_{cm} ~10 GeV
 - CLEO measured $\frac{P(\Lambda_c \Lambda_c X)}{P(\Lambda_c \overline{D}^{(*)} Y)} \approx 3.5$ PRD 63, 112003 (2001)
- ► BABAR looks for $e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^- X$ events
- Observe 649 ± 31 events vs ~150 expected ==> ratio of ~4.2 consistent with CLEO result
- very few additional baryons observed
- most of additional tracks are pions produced at the e^+e^- vertex ==> we measure 2.6 ± 0.3 π^{\pm} /event
- \triangleright there is room for additional ~1.3 popcorn π^0 /event
- 2.2 units of rapidity differences observed on average

All indicate these are "jetty" events with long-range baryon number conservation!

The Collins Fragmentation Function

J.C. Collins Nucl.Phys.B396,161 (1993)

- Spin-dependent chiral-odd Fragmentation Function (FF)
- It is related to the probability that a transversely polarized quark will fragment into a spinless hadron

number density function:

$$D_{hq\uparrow} = D_1^q(z, P_{h\perp}^2) + H_1^{\perp q}(z, P_{h\perp}^2) \frac{\hat{k} \times \vec{P}_{h\perp} \cdot \vec{S}_q}{zM_h}$$
 unpolarized FF CollinsFF

First experimental evidence of non zero Collins FF for pions came from SIDIS experiments:

HERMES (PRL94,012002(2005))

e⁺e⁻ annihilations:

- not conclusive studies at LEP: DELPHI (Nucl.Phys.B79,554-556 (1999))
- direct evidence of non-zero Collins FF at KEKB: Belle (PRL96,232002(2006), PRD78,032011(2008))

BABAR $\pi\pi$ results compared to Belle and BESIII

Extraction of the Transversity PDF and Collins FF combining SIDIS and e^+e^- data

Comparison between different results obtained at different Q²:

- BaBar and Belle @ $Q^2 \sim 110 \; GeV^2$
- BESIII @ $Q^2 \sim 13 \text{ GeV}^2$

★ BaBar

BesIII

0.05

- BaBar and Belle results that fall in the larger BESIII z-bins are averaged taking into account the statistical and systematic uncertainties
- Good agreement between different data sets for low z
- BESIII larger asymmetries in the last z-bins: consistent with the prediction reported in arXiv:1505.05589
- Some tensions between BaBar and Belle for high z in the thrust frame (no BESIII data available)

Belle: PRD78, 032011 (2008) (Erratum: PRD 86, 039905)

BESIII: PRL 116, 042001 (2016)

- The experimental method assumes the thrust axis as qq direction
- This is only a rough approximation

Introduces dilution of asymmetry in RF12. Correct through MC study

No dilution effect in RF0

Opening angle between thrust axis and $q\bar{q}$ axis

22 November 2016, CERN Fabio Anulli 40

- Simultaneous extraction of the asymmetries corrected for background (mainly charmed hadron decays, but also BB and $\tau+\tau-$) and K/π misidentification in each fractional energy interval
- Fit independently the double ratio distributions of the three selected samples KK, $K\pi$, $\pi\pi$

$$A_{KK}^{\text{meas}} = F_{uds} \cdot A_{KK}^{Collins} + \sum_{i} F_{i}^{KK} \cdot A_{KK}^{i}$$

1. Background sources:

- mainly from $e^+e^- \rightarrow c\bar{c}$ events (more than 30%); smaller contribution from BB, $\tau^+\tau^-$ (A_{BB}~A_{τ}~0)
- construct a D*-enhanced MC and data control samples to estimate the charm contribution

$$\begin{array}{c} \mathbf{D^{*\pm}} \longrightarrow \mathbf{D^0}\pi^{\pm}, \ \mathbf{D^0} \longrightarrow \mathbf{K}\pi, \ \mathbf{D^0} \longrightarrow \\ \mathbf{K}3\pi, \ \mathbf{D^0} \longrightarrow \mathbf{K}\pi\pi^0, \ \mathbf{D^0} \longrightarrow \mathbf{K}_S\pi \ \pi \end{array}$$

• The fractions $(F(f)_{\text{sig/bkg}}^{hh})$ of hadron pairs coming from signal (uds) and background events (cc, BB, $\tau^+\tau^-$) are obtained from MC simulation

$$A_{KK}^{\text{meas}} = F_{uds}^{KK} \cdot A_{KK}^{Collins} + F_{c\bar{c}}^{KK} \cdot A_{KK}^{charm}$$

$$A_{KK}^{D^*} = f_{uds}^{KK} \cdot A_{KK}^{Collins} + f_{c\bar{c}}^{KK} \cdot A_{KK}^{charm}$$

- Simultaneous extraction of the asymmetries corrected for background (mainly charmed hadron decays, but also BB and $\tau+\tau-$) and K/π misidentification in each fractional energy interval
- Fit independently the double ratio distributions of the three selected samples KK, $K\pi$, $\pi\pi$

$$A_{KK}^{\text{meas}} = F_{uds} \cdot A_{KK}^{Collins} + \sum_{i} F_{i}^{KK} \cdot A_{KK}^{i}$$

2. K/π misidentification:

• Evaluate from MC the fraction $(\xi_{hh}^{(hh)})$ that a given hadron pair is reconstructed as KK, $K\pi$, or $\pi\pi$ pair

$$A_{KK}^{\text{meas}} = F_{uds} \cdot \left(\sum_{nm} \xi_{nm}^{(KK)} \cdot A_{nm}^{Collins}\right) + F_{c\bar{c}}^{KK} \cdot \left(\sum_{nm} \xi_{nm}^{(KK)} \cdot A_{nm}^{charm}\right)$$

$$\xi_{\text{hh}} \text{ (hh)} \leftarrow \text{reconstructed hadron pairs}$$

$$\text{generated hadron pairs}$$

3. Solve the system of equations to extract all asymmetry parameters

$$A_{KK}^{meas} = F_{uds}^{KK} \cdot (\xi_{KK}^{(KK)} A_{KK} + \xi_{K\pi}^{(KK)} A_{K\pi} - \xi_{\pi\pi}^{(KK)} A_{\pi\pi}) + \\ F_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(KK)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(KK)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(KK)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(KK)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{\pi\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(\pi\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(\pi\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{\pi\pi} \cdot (\xi_{KK}^{(KK)D^*} A_{KK} + \xi_{K\pi}^{(KK)D^*} A_{K\pi} + \xi_{\pi\pi}^{(KK)D^*} A_{\pi\pi}) + \\ f_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(KK)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(KK)c\bar{c}-D^*} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)c\bar{c}-D^*} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(K\pi)D^*} A_{KK} + \xi_{K\pi}^{(K\pi)D^*} A_{K\pi} + \xi_{\pi\pi}^{(K\pi)D^*} A_{\pi\pi}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}-D^*} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}-D^*} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}-D^*} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}-D^*} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}-D^*} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}-D^*} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}-D^*} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}-D^*} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}-D^*} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}-D^*} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}-D^*} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}-D^*} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}-D^*} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}-D^*} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}-D^*} A_{K\pi}^$$

Systematic uncertainties

A large number of systematic checks were done. The main contributions come from:

- MC uncertainties
- Particle identification (PID)
- Fit procedure
- Dilution method
- E_{vis} cut

Additional checks show negligible effects, such as:

- Beam polarization studies
- Asymmetry consistency between different data taking period
- Possible coupling between Collins and detector effect

Sum in quadrature of systematic uncertainties (absolute values)