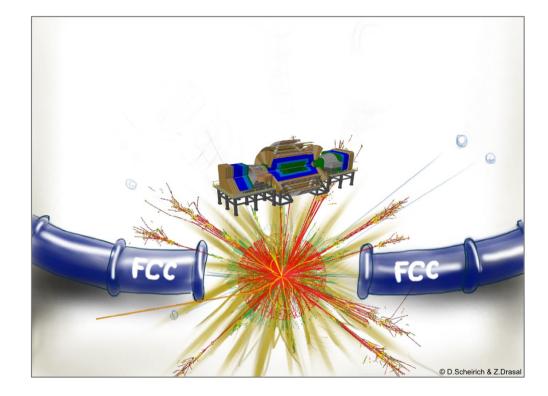
Studies on Tracker Z-resolution Requirements



Zbyněk Drásal CERN

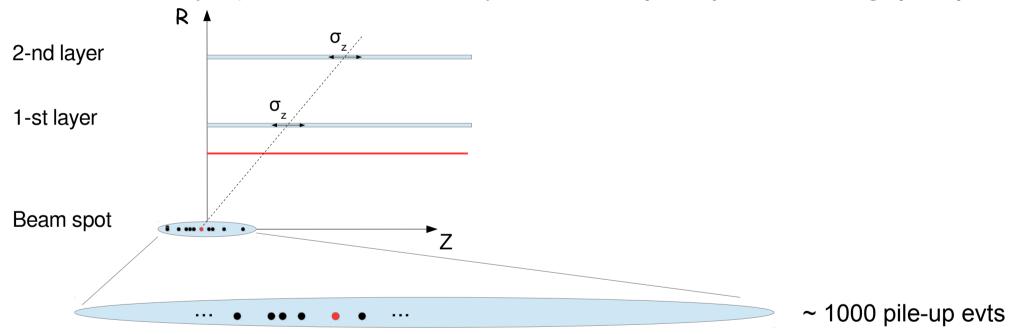
With Marcello Mannelli

Introduction

• dp_{T}/p_{T} resolution given by tracker granularity in R- Φ , what defines the granularity in Z?

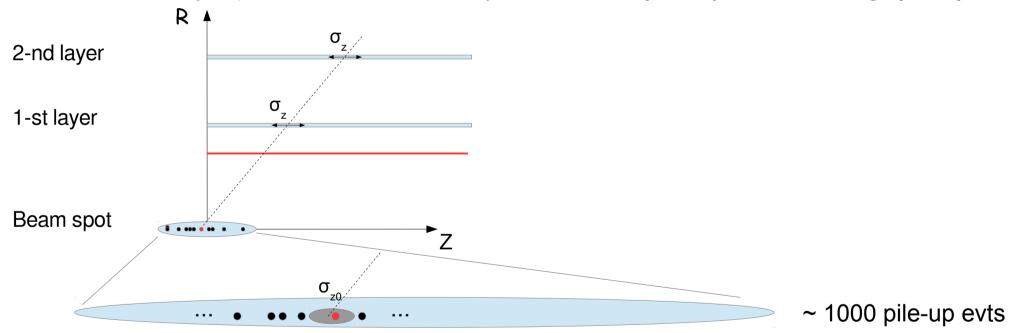
Introduction

- dp_{T}/p_{T} resolution given by tracker granularity in R- Φ , what defines the granularity in Z?
 - one of the key requirements on the tracker layout: to find the primary vertex in a huge pile-up



Introduction

- dp_{T}/p_{T} resolution given by tracker granularity in R- Φ , what defines the granularity in Z?
 - one of the key requirements on the tracker layout: to find the primary vertex in a huge pile-up



 \rightarrow Z_o resolution needs to "sufficiently small" not to cover several pile-up vertices

Beam-spot Simulation

• How to estimate the pile-ups distribution in Z?

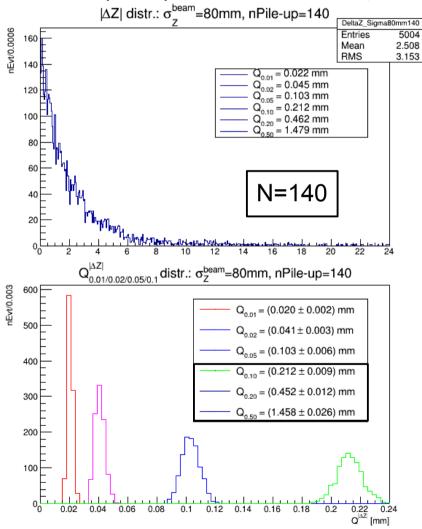
Beam-spot Simulation

- How to estimate the pile-ups distribution in Z?
 - Beam spot sizes (courtesy of F. Cerutti): $\sigma_{long} \sim 80$ mm, $\sigma_{trans} \sim 1.6$ 6µm (Gauss. profile)

 - \rightarrow sort them from -Z to +Z

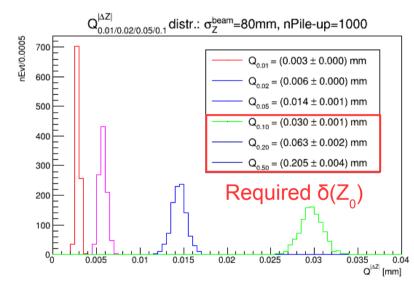
- use quantiles to quantify the required Z_0 resolution: $\delta(Z_0)$

• Several pilu-up scenarios studied, let's compare N=140 (Phase 2 upgrade)



Several pilu-up scenarios studied, let's compare N=140 (Phase 2 upgrade) & N=1000 • $|\Delta Z|$ distr.: σ_z^{beam} =80mm, nPile-up=140 $|\Delta Z|$ distr.: σ_z^{beam} =80mm, nPile-up=1000 DeltaZ Sigma80mm140 DeltaZ Sigma80mm1000 nEvt/0.0006 5004 nEvt/0.0001 4995 Entries Entries 160 180 2.508 Mean Mean 0.3691 RMS 3.153 RMS 0.5075 140 160 $Q_{0.01} = 0.022 \text{ mm}$ Q_{0.01} = 0.003 mm $Q_{0.02} = 0.045 \text{ mm}$ $Q_{0.02} = 0.006 \text{ mm}$ 140 120 $Q_{0.05}^{0.02} = 0.103 \text{ mm}$ $Q_{0.05}^{0.02} = 0.015 \text{ mm}$ Q_{0.10} = 0.212 mm Q_{0.10} = 0.029 mm 120 $Q_{0.20}^{0.10} = 0.462 \text{ mm}$ 100 Q_{0.20} = 0.063 mm $Q_{0.50}^{0.20} = 1.479 \text{ mm}$ $Q_{0.50}^{0.20} = 0.199 \text{ mm}$ 100 80 80 60 60 N=1000 N=140 40 40 Why have 20 20 ٥Ê 8 10 12 0^C 14 16 18 0.5 1.5 2.5 $Q_{0.01/0.02/0.05/0.1}^{|\Delta Z|}$ distr.: σ_Z^{beam} =80mm, nPile-up=140 $Q_{\underline{0.01}/\underline{0.02}/\underline{0.05}/\underline{0.1}}^{|\Delta Z|} \text{ distr.: } \sigma_{Z}^{beam} = 80 \text{ mm, nPile-up} = 1000$ 600 F nEvt/0.003 nEvt/0.0005 700 $Q_{0.01} = (0.020 \pm 0.002) \text{ mm}$ $Q_{0.01} = (0.003 \pm 0.000) \text{ mm}$ 500 Q_{0.02} = (0.041 ± 0.003) mm 600 $Q_{_{0.02}} = (0.006 \pm 0.000) \text{ mm}$ Q_{0.05} = (0.103 ± 0.006) mm $Q_{_{0.05}} = (0.014 \pm 0.001) \text{ mm}$ 500 400 $Q_{0.10} = (0.212 \pm 0.009) \text{ mm}$ $Q_{0.10} = (0.030 \pm 0.001) \text{ mm}$ 400 $Q_{0.20} = (0.452 \pm 0.012) \text{ mm}$ Q_{0.20} = (0.063 ± 0.002) mm 300 Q_{0.50} = (1.458 ± 0.026) mm $Q_{0.50} = (0.205 \pm 0.004) \text{ mm}$ 300 200 Required $\delta(Z_0)$ 200 100 100 0 0 0.22 0.2 Q^[ΔZ] [mm] 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.24 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.02 0.2 Q^{|ΔZ|} [mm]

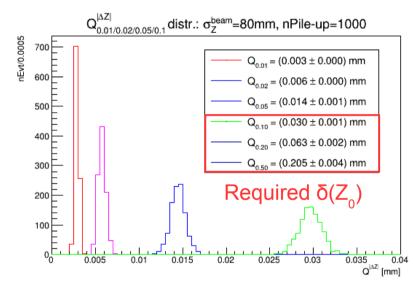
• Comment: Would the timing information help or do we have to rely on Z-res. only?



 ΔZ requirement: ~ 30 - 200 μ m $\rightarrow \Delta$ t: ~ 0.1 – 0.7 ps

→ probably NOT achievable, but more advanced studies needed ...

• Comment: Would the timing information help or do we have to rely on Z-res. only?



 ΔZ requirement: ~ 30 - 200 μ m $\rightarrow \Delta$ t: ~ 0.1 – 0.7 ps

→ probably NOT achievable, but more advanced studies needed ...

• **Conclusion:** Compared to Phase 2 upgrade the FCC-hh tracker is required to have much better Z_0 -resolution ~ 50µm & simultaneously provide such fine Z_0 -resolution up-to higher η !

How to Determine the Granularity in Z?

- In first approximation $(\sin(\Delta \phi) \sim \Delta \phi)$ one fits a line: $\mathbf{z}_i = \mathbf{cotg}(\theta) \cdot \mathbf{r}_i + \mathbf{z}_0$ ($\mathbf{r}_i = \text{layer/ring radii}$)
 - in reality: $z = cos(θ).s + z_0$, approx. valid for $p_{\tau} \gtrsim 1 \text{GeV}$ (pixel only), $p_{\tau} \gtrsim 4 \text{GeV}$ (full tracker)
 - method of global $\chi 2$ fit applied

How to Determine the Granularity in Z?

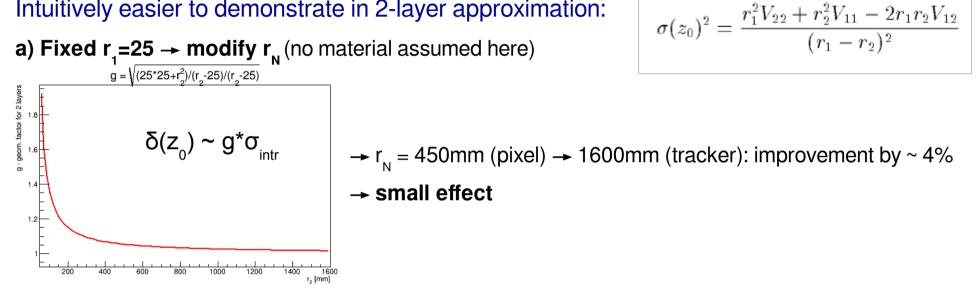
- In first approximation $(\sin(\Delta \phi) \sim \Delta \phi)$ one fits a line: $\mathbf{z}_i = \mathbf{cotg}(\theta) \cdot \mathbf{r}_i + \mathbf{z}_0$ ($\mathbf{r}_i = \text{layer/ring radii}$)
 - in reality: $z = cos(\theta).s + z_0$, approx. valid for $p_{\tau} \gtrsim 1$ GeV (pixel only), $p_{\tau} \gtrsim 4$ GeV (full tracker)
 - method of global χ2 fit applied

•
$$Z_0$$
 resolution: $\sigma_z \approx \sigma \sqrt{\frac{1}{n} + \frac{\overline{r}^2}{\sum_{i=1}^n r_i^2 - n \overline{r}^2}}$ affected by several factors:

- Tracker lever-arm (particularly important: r_1 , r_N)
- Number of measurement planes
- Intrinsic resolution & measurement plane tilt (barrel versus disc configuration)
- Material budget (particularly effect of beam-pipe & 1st layer important!)

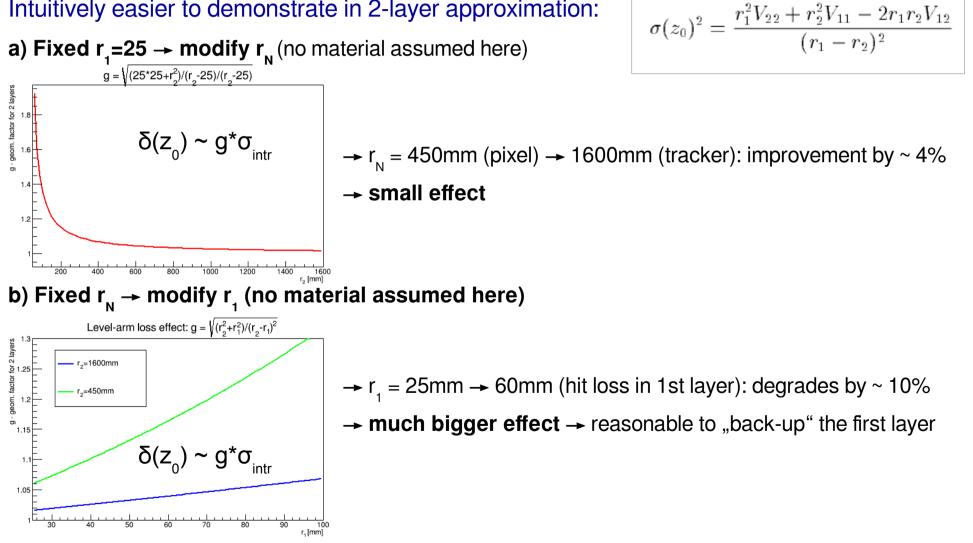
Granularity in Z & Lever-arm Effect

Intuitively easier to demonstrate in 2-layer approximation: •



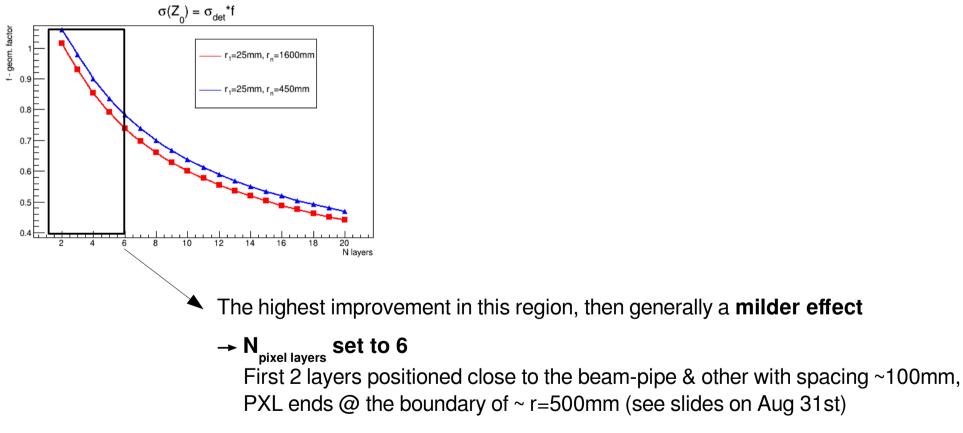
Granularity in Z & Lever-arm Effect

Intuitively easier to demonstrate in 2-layer approximation: •



Granularity in Z & Number of Meas. Planes

• Scaling factor of Z resolution with respect to #layers:



→ More optimization needed using pattern recognition studies

 Plane resolution in Z generally depends on plane tilt (α=0 for barrel, α=90 for disc) & track θangle (error propagated to Z direction → affects tilted planes only):

 $\sigma_z = (\cos(\alpha) + D\sin(\alpha))\sigma_{z-intr}, D = cotg(\theta)/\sqrt{(1-A^2)}, A = r_i/2R, (r_i = |\vec{r_{meas}} - \vec{0}|)$

 Plane resolution in Z generally depends on plane tilt (α=0 for barrel, α=90 for disc) & track θangle (error propagated to Z direction → affects tilted planes only):

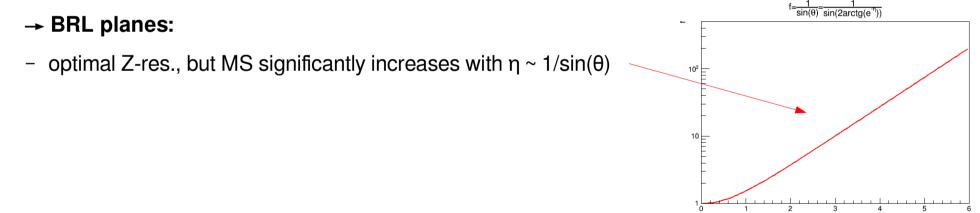
 $\sigma_z = (\cos(\alpha) + D\sin(\alpha))\sigma_{z-intr}, D = cotg(\theta)/\sqrt{(1-A^2)}, A = r_i/2R, (r_i = |\vec{r_{meas}} - \vec{0}|)$

• Two effects against each other: Z-resolution versus material budget (multiple scattering)

 Plane resolution in Z generally depends on plane tilt (α=0 for barrel, α=90 for disc) & track θangle (error propagated to Z direction → affects tilted planes only):

$$\sigma_z = (\cos(\alpha) + D\sin(\alpha))\sigma_{z-intr}, D = \cot(\theta)/\sqrt{(1-A^2)}, A = r_i/2R, (r_i = |\vec{r_{meas}} - \vec{0}|)$$

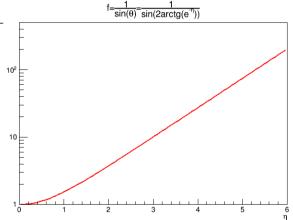
• Two effects against each other: Z-resolution versus material budget (multiple scattering)



 Plane resolution in Z generally depends on plane tilt (α=0 for barrel, α=90 for disc) & track θangle (error propagated to Z direction → affects tilted planes only):

 $\sigma_z = (\cos(\alpha) + D\sin(\alpha))\sigma_{z-intr}, D = cotg(\theta)/\sqrt{(1-A^2)}, A = r_i/2R, (r_i = |\vec{r_{meas}} - \vec{0}|)$

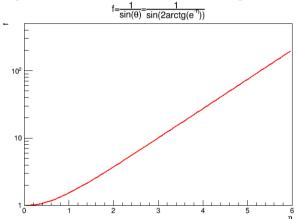
- Two effects against each other: Z-resolution versus material budget (multiple scattering)
 - → BRL planes:
 - optimal Z-res., but MS significantly increases with $\eta \sim 1/sin(\theta)$
 - → Tilted planes:
 - Z-res. degraded by formula (e.g. discs measure R instead of Z), but MS effect minimized



 Plane resolution in Z generally depends on plane tilt (α=0 for barrel, α=90 for disc) & track θangle (error propagated to Z direction → affects tilted planes only):

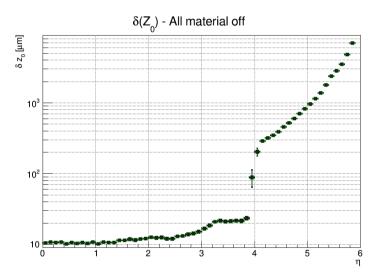
 $\sigma_z = (\cos(\alpha) + D\sin(\alpha))\sigma_{z-intr}, D = cotg(\theta)/\sqrt{(1-A^2)}, A = r_i/2R, (r_i = |\vec{r_{meas}} - \vec{0}|)$

- Two effects against each other: Z-resolution versus material budget (multiple scattering)
 - → BRL planes:
 - optimal Z-res., but MS significantly increases with $\eta \sim 1/sin(\theta)$
 - → Tilted planes:
 - Z-res. degraded by formula (e.g. discs measure R instead of Z), but MS effect minimized
 - → Which one is optimal?
- Conclusion:
 - Preliminary results show that "long" BRL planes provide better performance than any tilted
 - → First 2 pxl BRL layers extended up-to $\eta=4$ (1st layer) and $\eta=3.5$ ("back-up" 2nd layer), but very low material budget ~ 0.5-1.0% x/x0 per layer necessary!



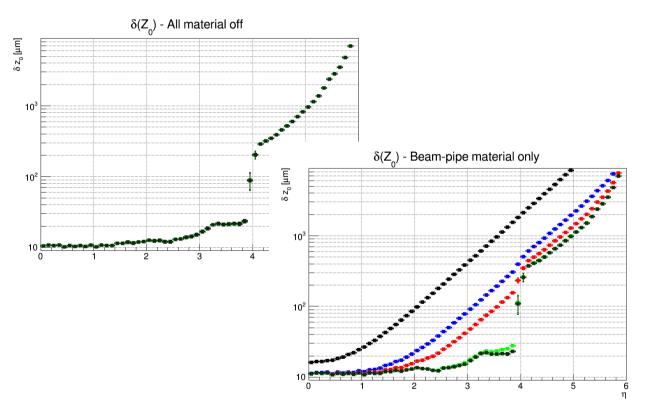
Z_0 Impact Parameter Study \rightarrow MB Effect

No material



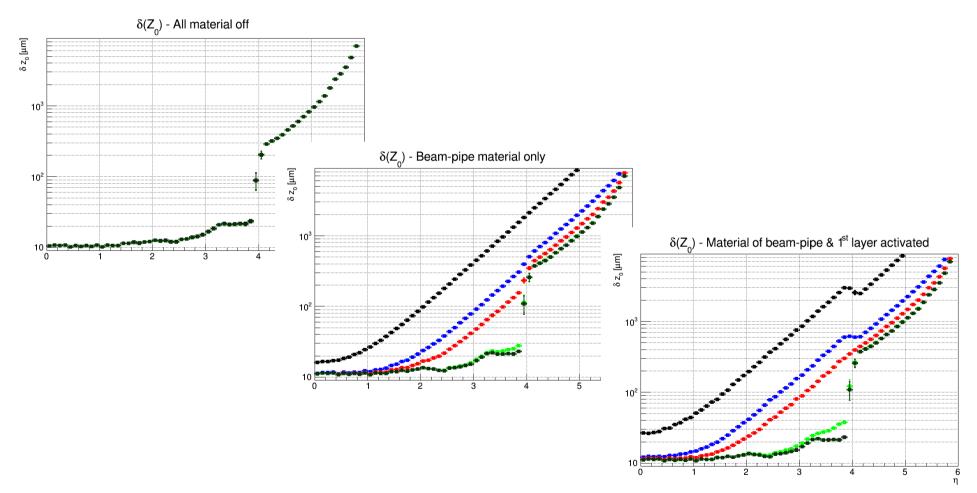
Z_0 Impact Parameter Study \rightarrow MB Effect

No material → beam-pipe only



Z_0 Impact Parameter Study \rightarrow MB Effect

• No material → beam-pipe only → beam-pipe+1st layer material effect (the rest det. Transparent)

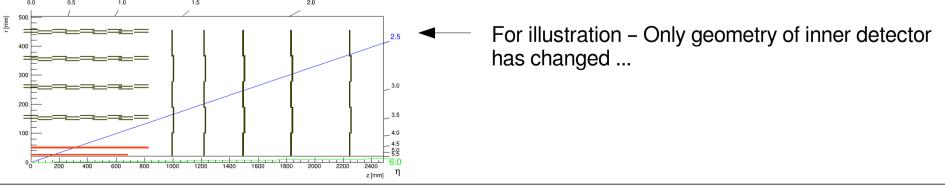


-> Material budget of beam-pipe & the closest BRL layer have the most significant impact!

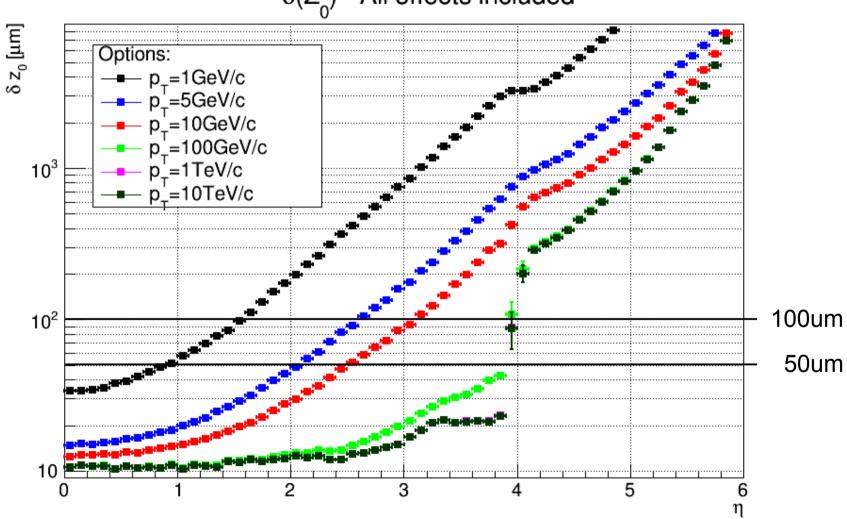
Final "Optimized" Geometry Layout

Inner detector (pixel):

- 1st & 2nd BRL layer: $\sigma_{R-\phi} = 10\mu m$, $\sigma_{Z} = 15\mu m$, x/x₀ = 0.5% per layer
- 3rd-6th BRL layer: $\sigma_{R-\phi}$ =10µm, σ_{Z} =30µm, x/x₀ = 1.5% per layer
- 1st ring @ 1st & 2nd ECap disc: $\sigma_{R-\Phi} = 10\mu m$, $\sigma_z = 15\mu m$, x/x₀ = 1.5% per layer
- All other rings @ ECap discs: $\sigma_{R-\phi} = 10\mu m$, $\sigma_{R} = 30\mu m$, $x/x_{0} = 1.5\%$ per layer
- Outer detector & Fwd detector:
 - All BRL layers: $\sigma_{B-\phi} = 10 \mu m$, $\sigma_{7} = 100 \mu m$, $x/x_{0} = 3.0\%$ per layer
 - All rings up-to r<600mm: $\sigma_{R-\Phi}=10\mu m$, $\sigma_{z}=30\mu m$, x/x₀ = 1.5% per layer
 - All rings above r>=600mm: $\sigma_{B-\phi}$ =10µm, σ_{7} =100µm, x/x₀ = 3.0% per layer
- More details will be available at http://fcc-tklayout.web.cern.ch/fcc-tklayout



Z₀ Impact Parameter Resolution



$\delta(Z_0)$ - All effects included

Conclusions

- Current results based on simplified approach show that:
 - The tracker impact parameter resolution in Z₀ should be @ level δ(Z₀) ~ 50µm up-to full tracker coverage!
 - Such resolution can't be achieved due to high material effect (mainly due to beam-pipe & first layer) for η higher than ~ 2.5
 - By combination of reasonable granularity in Z, which have been optimized, & low material budget for first 2 measurement planes satisfactory results are achieved up-to η ~ 2.5
 - Timing information seems not to be applicable to solve these issues (requirements ~ 0.1-1.0ps)
 - On the other hand, in vertexing one uses more than 1 track, so these limits are the most stringent ones
- Plans:
 - Try to find more optimal layout & pushing the eta boundary to higher value by mixing the advantages
 of BRL layers & low material effect of tilted layers → find optimal tilted layout, if possible
 - **Optimize number of layers** by studying simplified pattern recognition capabilities