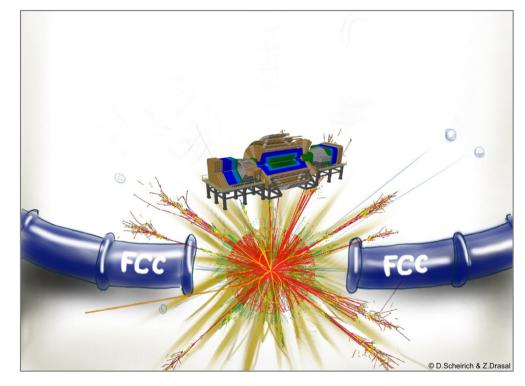
Conclusion on Non-uniform B Field Effects

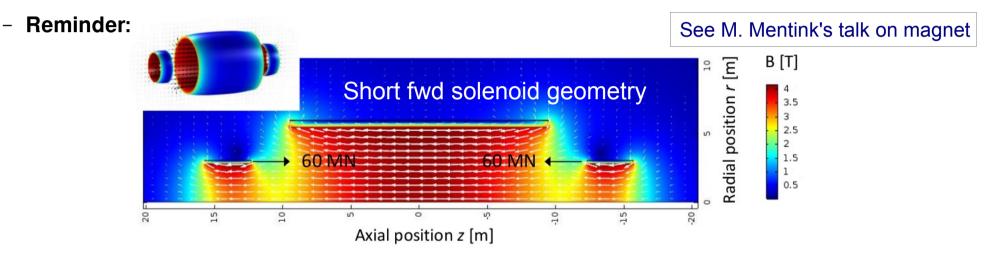


W. Riegler, <u>Z. Drásal</u> CERN

With M. Mannelli

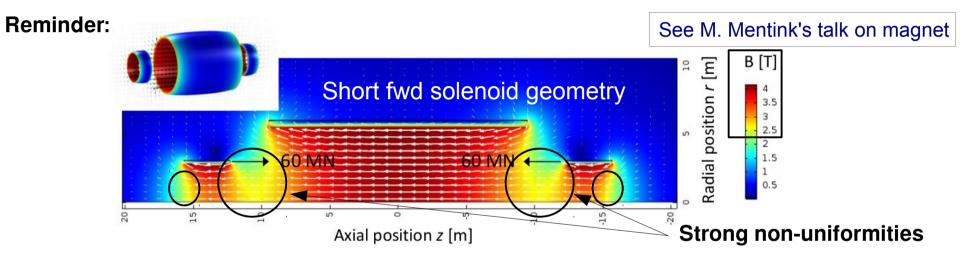
• Last time, an approximative approach presented ("N-parabolas" approach within tkLayout) to estimate the effect of mag. field non-uniformity in solenoid configuration ...

• Last time, an approximative approach presented ("N-parabolas" approach within tkLayout) to estimate the effect of mag. field non-uniformity in solenoid configuration ...



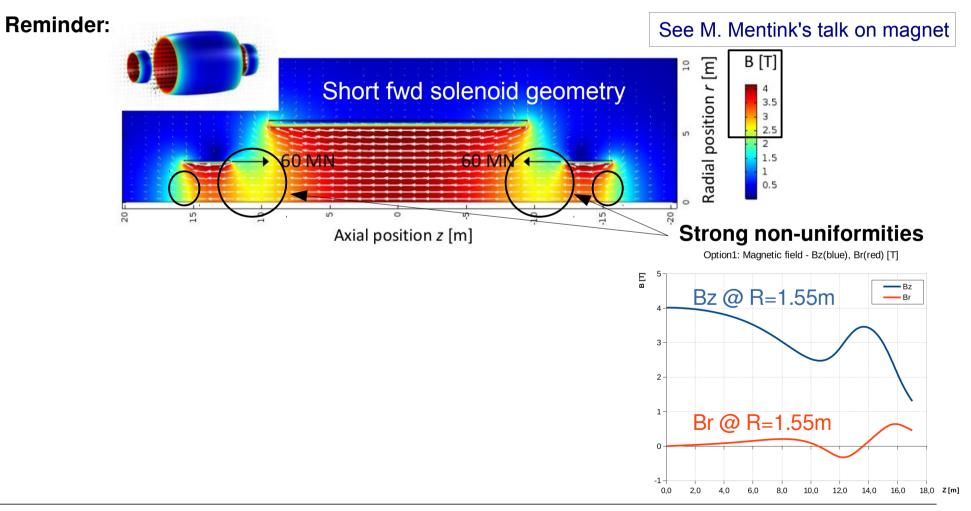
• Last time, an approximative approach presented ("N-parabolas" approach within tkLayout) to estimate the effect of mag. field non-uniformity in solenoid configuration ...

_

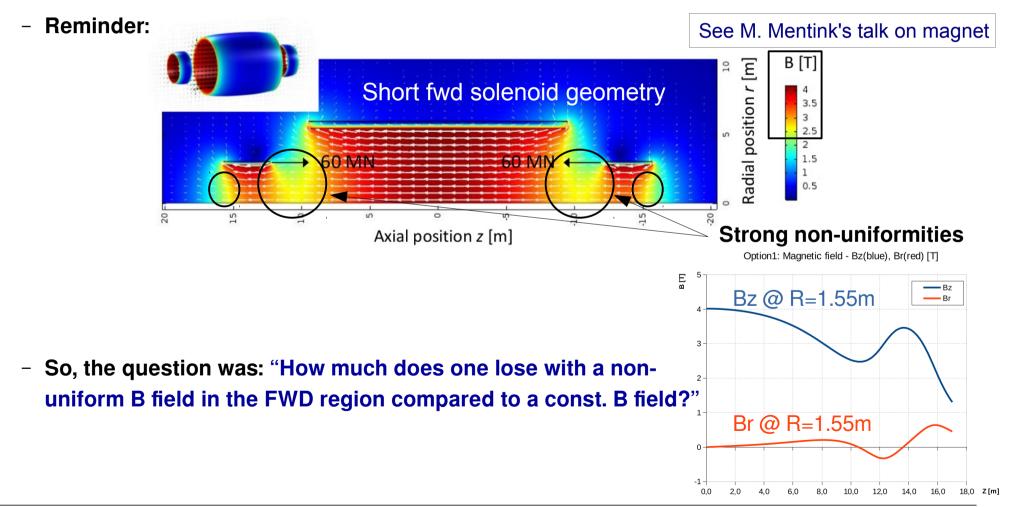


• Last time, an approximative approach presented ("N-parabolas" approach within tkLayout) to estimate the effect of mag. field non-uniformity in solenoid configuration ...

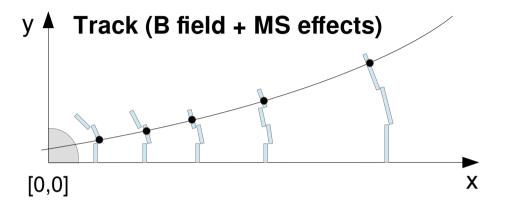
_



• Last time, an approximative approach presented ("N-parabolas" approach within tkLayout) to estimate the effect of mag. field non-uniformity in solenoid configuration ...



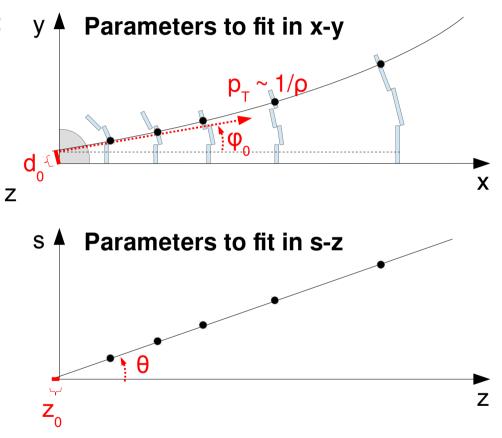
• Mathematical concept applied in tkLayout:



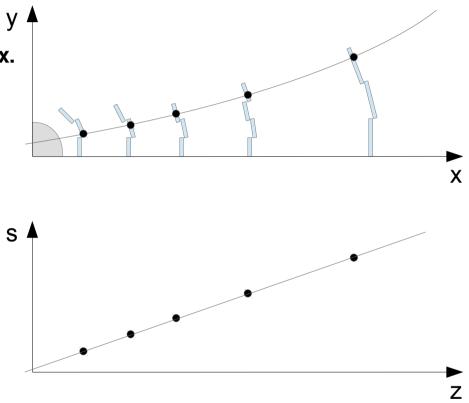
• Mathematical concept applied in tkLayout:

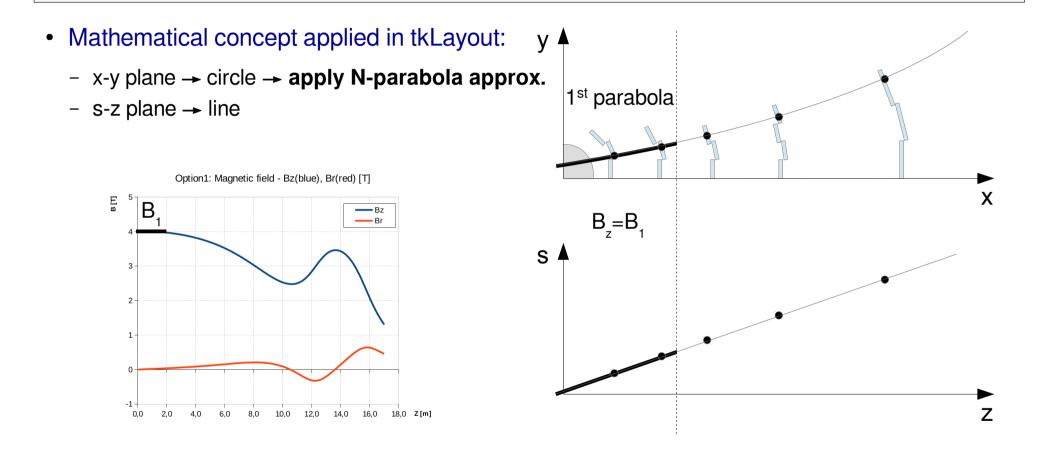
Global χ^2 fit

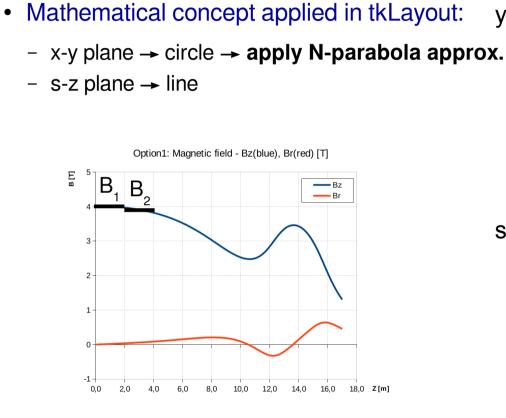
- x-y plane \rightarrow circle
- s-z plane \rightarrow line

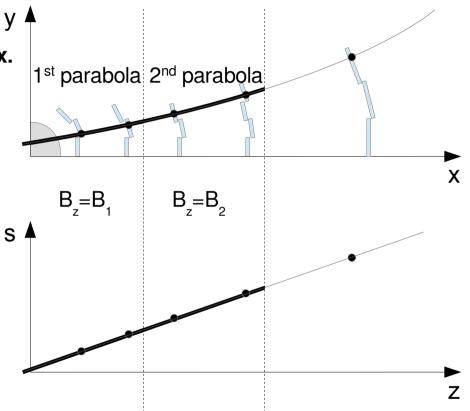


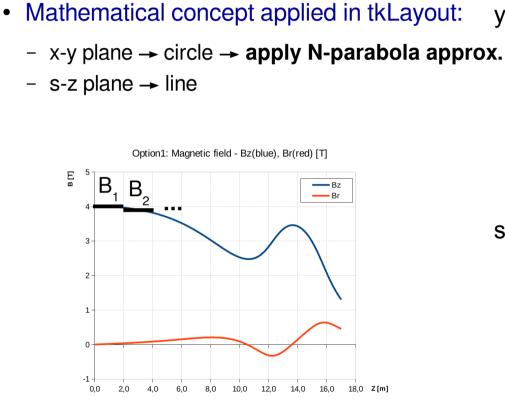
- Mathematical concept applied in tkLayout: y
 - x-y plane → circle → apply N-parabola approx.
 - s-z plane \rightarrow line

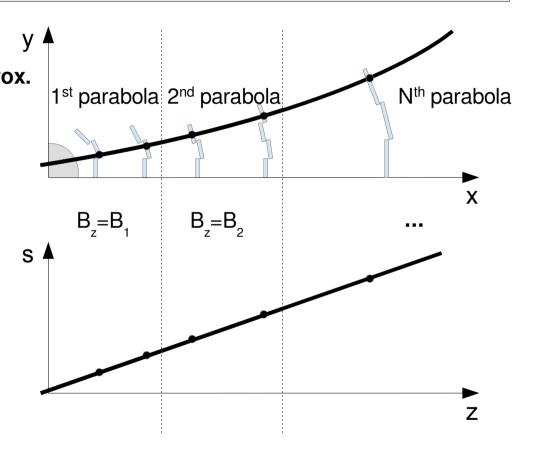


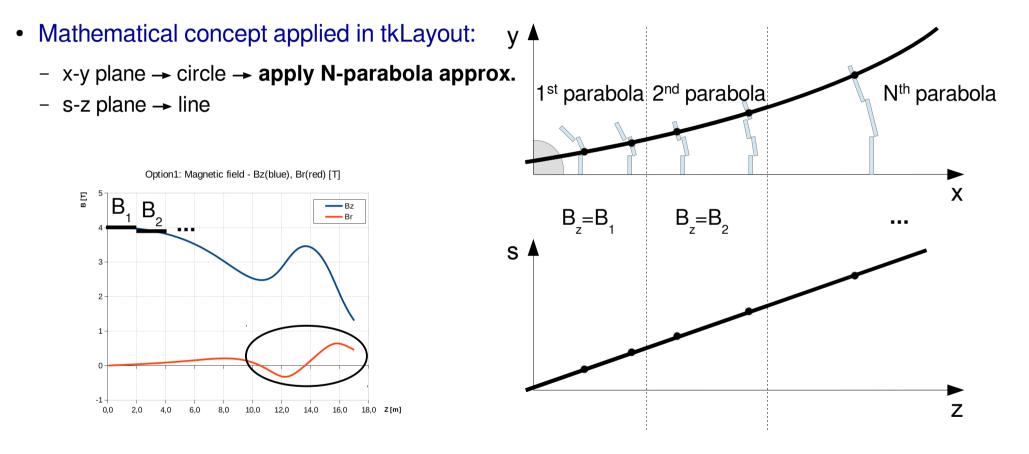












- But several assumptions were applied in this technique:
 - $B = B_z(z) \rightarrow$ function of z only $\rightarrow p_T$ const. along the path **s**
 - $B_r(r,z) \sim 0$

Is it reasonable?

• Full approach (by W.Riegler) - solve numerically equation of motion in Mathematica SW:

$$\frac{d^2 \vec{x}(s)}{ds^2} = \frac{0.3}{p} \frac{d\vec{x}(s)}{ds} \times \vec{B}(\vec{x}(s))$$

$$k = \frac{0.3}{p}$$

• Full approach (by W.Riegler) → solve numerically equation of motion in Mathematica SW:

$$\begin{bmatrix}
\frac{d^2\vec{x}(s)}{ds^2} = \frac{0.3}{p} \frac{d\vec{x}(s)}{ds} \times \vec{B}(\vec{x}(s)) \\
k = \frac{0.3}{p}
\end{bmatrix}, \text{ or explicitly}, \text$$

• Full approach (by W.Riegler) → solve numerically equation of motion in Mathematica SW:

$$\frac{d^{2}\vec{x}(s)}{ds^{2}} = \frac{0.3}{p} \frac{d\vec{x}(s)}{ds} \times \vec{B}(\vec{x}(s)) \quad \text{, or explicitly} \quad x''(s) = \frac{0.3}{p} [y'(s)B_{z}[x(s), y(s), z(s)] - z'(s)B_{y}[x(s), y(s), z(s)]] \\ y''(s) = \frac{0.3}{p} [z'(s)B_{x}[x(s), y(s), z(s)] - x'(s)B_{z}[x(s), y(s), z(s)]] \\ z''(s) = \frac{0.3}{p} [x'(s)B_{y}[x(s), y(s), z(s)] - y'(s)B_{x}[x(s), y(s), z(s)]] \\ z''(s) = \frac{0.3}{p} [x'(s)B_{y}[x(s), y(s), z(s)] - y'(s)B_{x}[x(s), y(s), z(s)]] \\ \vec{F} = q(\vec{v} \times \vec{B}) \rightarrow |\vec{p}| = \text{const.} \text{ (cf. tkLayout: } |p_{T}| = \text{const.)along path}$$

• Full approach (by W.Riegler) → solve numerically equation of motion in Mathematica SW:

$$\frac{d^{2}\vec{x}(s)}{ds^{2}} = \frac{0.3}{p} \frac{d\vec{x}(s)}{ds} \times \vec{B}(\vec{x}(s))$$
, or explicitly

$$\frac{w''(s)}{ds^{2}} = \frac{0.3}{p} [y'(s)B_{z}[x(s), y(s), z(s)] - z'(s)B_{y}[x(s), y(s), z(s)]]$$

$$y''(s) = \frac{0.3}{p} [z'(s)B_{x}[x(s), y(s), z(s)] - x'(s)B_{z}[x(s), y(s), z(s)]]$$

$$z''(s) = \frac{0.3}{p} [x'(s)B_{y}[x(s), y(s), z(s)] - y'(s)B_{x}[x(s), y(s), z(s)]]$$

$$z''(s) = \frac{0.3}{p} [x'(s)B_{y}[x(s), y(s), z(s)] - y'(s)B_{x}[x(s), y(s), z(s)]]$$

- Strategy -- use B field map (exported on a grid) & solve ODEs in Mathematica SW:
 - Let's denote the solution as g(s) & use it as a template function in global χ² fit (with MS effects included & hits positions estimated by tkLayout)

f(s) = cg(s) + bs + a

• Full approach (by W.Riegler) → solve numerically equation of motion in Mathematica SW:

$$\frac{d^{2}\vec{x}(s)}{ds^{2}} = \frac{0.3}{p} \frac{d\vec{x}(s)}{ds} \times \vec{B}(\vec{x}(s))$$
, or explicitly

$$\frac{w''(s)}{ds^{2}} = \frac{0.3}{p} [y'(s)B_{z}[x(s), y(s), z(s)] - z'(s)B_{y}[x(s), y(s), z(s)]]$$

$$y''(s) = \frac{0.3}{p} [z'(s)B_{x}[x(s), y(s), z(s)] - x'(s)B_{z}[x(s), y(s), z(s)]]$$

$$z''(s) = \frac{0.3}{p} [x'(s)B_{y}[x(s), y(s), z(s)] - y'(s)B_{x}[x(s), y(s), z(s)]]$$

$$k = \frac{0.3}{p} [x'(s)B_{y}[x(s), y(s), z(s)] - y'(s)B_{x}[x(s), y(s), z(s)]]$$

- Strategy use B field map (exported on a grid) & solve ODEs in Mathematica SW:
 - Let's denote the solution as g(s) & use it as a template function in global χ² fit (with MS effects included & hits positions estimated by tkLayout)

f(s) = cg(s) + bs + a

- a \rightarrow shift from template position @ [0,0,0], i.e. ~ d₀
- b \rightarrow rotation from template rotation @ [0,0,0], i.e. ~ ϕ_0
- c → curvature scaling factor (assumed to be 1 for true trajectory)

• Full approach (by W.Riegler) → solve numerically equation of motion in Mathematica SW:

$$\frac{d^{2}\vec{x}(s)}{ds^{2}} = \frac{0.3}{p} \frac{d\vec{x}(s)}{ds} \times \vec{B}(\vec{x}(s))$$
, or explicitly

$$\frac{w''(s)}{ds^{2}} = \frac{0.3}{p} [y'(s)B_{z}[x(s), y(s), z(s)] - z'(s)B_{y}[x(s), y(s), z(s)]]$$

$$y''(s) = \frac{0.3}{p} [z'(s)B_{x}[x(s), y(s), z(s)] - x'(s)B_{z}[x(s), y(s), z(s)]]$$

$$z''(s) = \frac{0.3}{p} [x'(s)B_{y}[x(s), y(s), z(s)] - y'(s)B_{x}[x(s), y(s), z(s)]]$$

$$k = \frac{0.3}{p} [x'(s)B_{y}[x(s), y(s), z(s)] - y'(s)B_{x}[x(s), y(s), z(s)]]$$

$$k = \frac{0.3}{p} [x'(s)B_{y}[x(s), y(s), z(s)] - y'(s)B_{x}[x(s), y(s), z(s)]]$$

- Strategy
 → use B field map (exported on a grid) & solve ODEs in Mathematica SW:
 - Let's denote the solution as g(s) & use it as a template function in global χ² fit (with MS effects included & hits positions estimated by tkLayout)

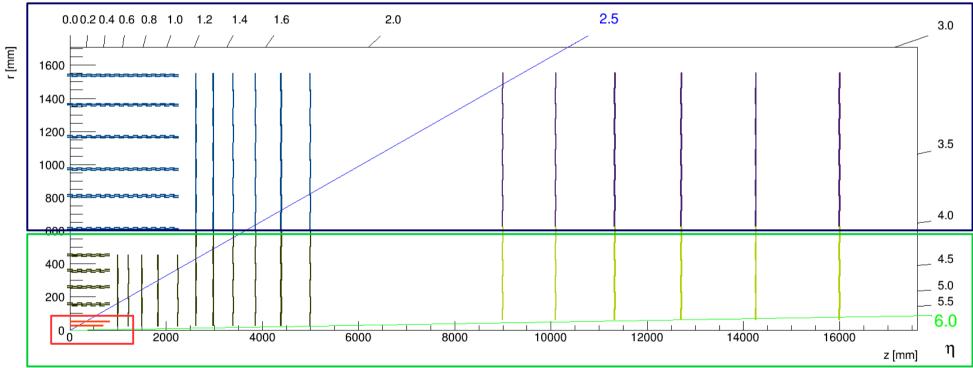
f(s) = cg(s) + bs + a

- a \rightarrow shift from template position @ [0,0,0], i.e. ~ d₀
- b \rightarrow rotation from template rotation @ [0,0,0], i.e. ~ ϕ_0
- $c \rightarrow$ curvature scaling factor (assumed to be 1 for true trajectory)

$$\Delta c = \frac{\Delta p}{p} \approx \frac{\Delta p_T}{p_T}$$

FCC-hh Tracker Geometry

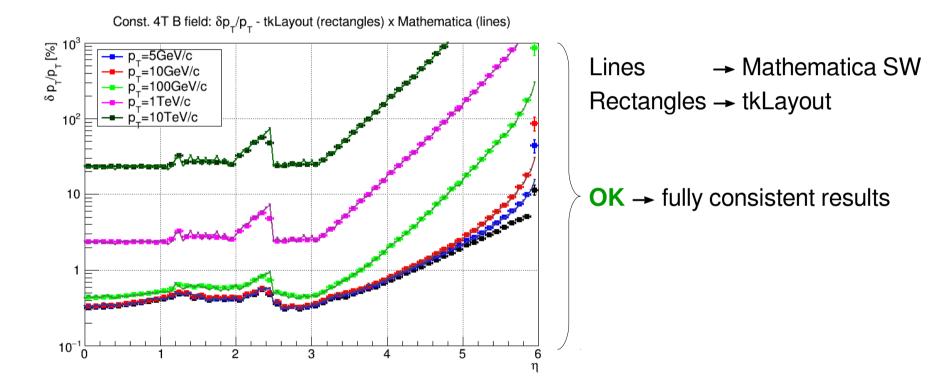
- Studied tracker geometry:
 - For details see: http://fcc-tklayout.web.cern.ch/fcc-tklayout/FCChh_Option3.v01/index.html



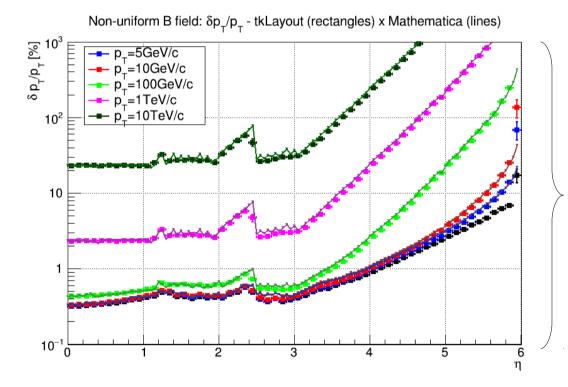
- Resolution:
 - **10x15µm²** (0.5% x/x₀ BRL only, EC 1.5% x/x₀),
 - **10x30μm²** (1.5% x/x₀), **10x100μm²** (3.0% x/x₀)

Short Fwd Solenoid: Methods Cross-check

Let's first cross-check both approaches → study of geometry with short fwd solenoid & ideal const. 4T mag. field:



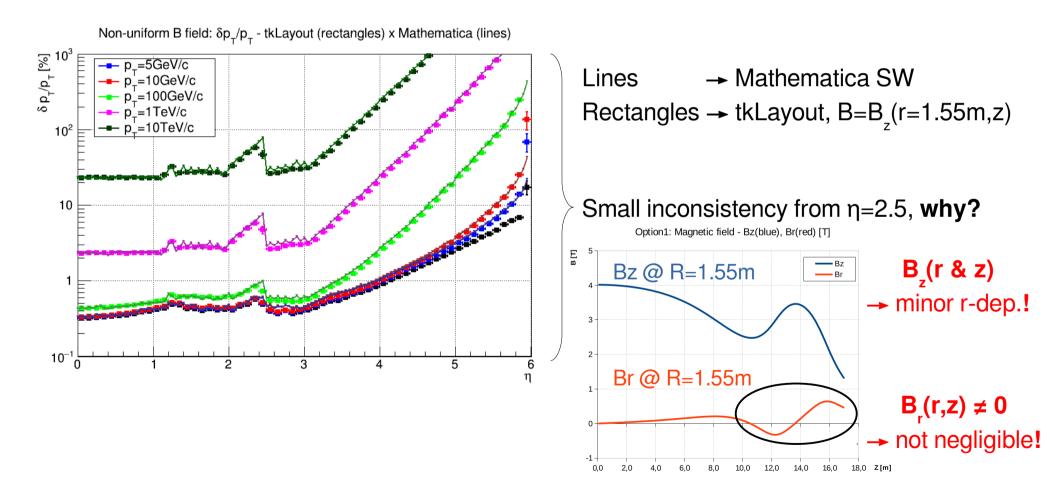
• Study of geometry with short fwd solenoid with realistic non-uniform mag. field:



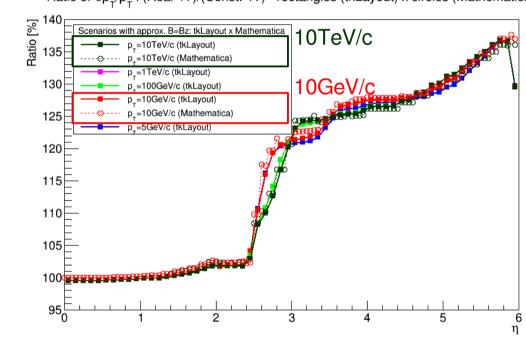
Lines \rightarrow Mathematica SW Rectangles \rightarrow tkLayout, B=B₂(r=1.55m,z)

Small inconsistency from η =2.5, **why?**

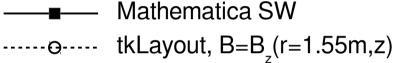
• Study of geometry with short fwd solenoid with realistic non-uniform mag. field:



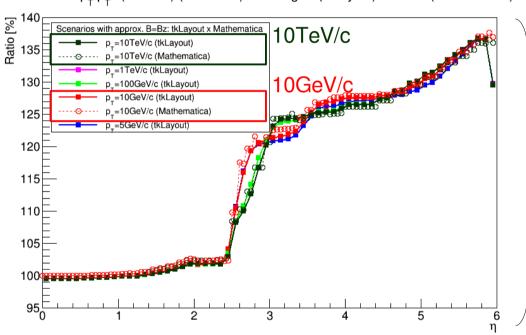
• Let's "switch off" the $B_{r}(r,z)$ component in full approach (Mathematica SW):

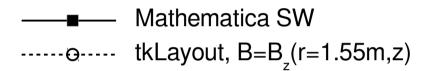


Ratio of $\delta p_{+}/p_{-}$: (Real 4T)/(Const. 4T) - rectangles (tkLayout) x circles (Mathematica)



• Let's "switch off" the $B_r(r,z)$ component in full approach (Mathematica SW):

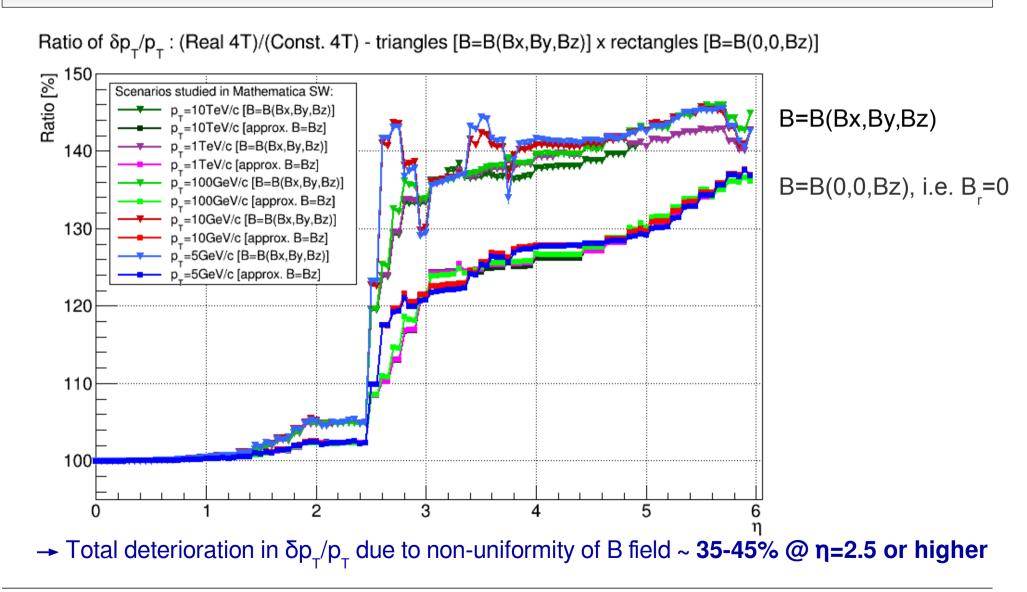




OK \rightarrow Consistent results, if B_r(r,z)=0

→ Deterioration due to B_z(r,z) ~25-35% compared to const. 4T B scenario

Final Results



Conclusions & Outlook

- With true magnet system in a configuration with short FWD solenoid ("baseline") one gets
 ~ 35-45% worse performance in δp_T/p_T from η=2.5 up-to 6 compared to an ideal case
 with const. 4T B field
 - → Deterioration by ~ 25-35% due to Bz(r,z) component of the B field
 - Worsening by extra ~ 5-10% due to Br(r,z) component of the B field ($B\phi=0$ due to field symmetry)
 - \rightarrow Up-to $\eta=2.5$ the deterioration is 5% in maximum
 - So, approximately half of the detector η coverage is going to be influenced by the FWD solenoid & overall B field non-uniformity!

Conclusions & Outlook

- With true magnet system in a configuration with short FWD solenoid ("baseline") one gets
 ~ 35-45% worse performance in δp_T/p_T from η=2.5 up-to 6 compared to an ideal case
 with const. 4T B field
 - → Deterioration by ~ 25-35% due to Bz(r,z) component of the B field
 - Worsening by extra ~ 5-10% due to Br(r,z) component of the B field ($B\phi=0$ due to field symmetry)
 - \rightarrow Up-to $\eta=2.5$ the deterioration is 5% in maximum
 - So, approximately half of the detector η coverage is going to be influenced by the FWD solenoid & overall B field non-uniformity!
- Outlook:
 - → The same mathematical method(s) may be used to fully assess the dipole option & compare its performance with solenoid field for the CDR!