# Detector Radiation Studies

M. I. Besana, F. Cerutti, A. Ferrari, V. Vlachoudis - EN-STI-FDA W. Riegler - EP-AIO



# Outline

- Brief update on the detector geometry:
  - o muon chambers
- Shielding:
  - o motivations
  - o possible conceptual design
- Radiation levels:
  - charged particle fluence rate
    neutron fluence rate
    photon fluence rate
    1 MeV neutron equivalent fluence
    dose
  - $\rightarrow$  Resolution:
    - inner part (R < 175 cm, z < 37 m): R x z: 5 mm x 5 cm</p>
    - external part (R > 175 cm, z < 37 m): R x z: 10 cm x 5 cm</p>
    - forward part (R < 350 cm, 37 m < z < 47 m): R x z: 5 mm x 10 cm</p>
- Conclusions

# **Detector Layout up to last Meeting:**



### **Muon Chambers**

#### Muon chambers: 3 cm thick aluminum chambers



# **Shielding Needs: Neutron Fluence Rate I**

Leakage from the forward part of the detector and from the cavern wall
 repopulation of muon chambers



# Shielding Needs: Neutron Fluence Rate II

- The leakage is even more important when the TAS contribution is taken into account:
  - the TAS is a hot spot for neutron production
  - the neutron fluence rate in the muon chambers goes up to 3 10<sup>5</sup> cm<sup>-2</sup>s<sup>-1</sup>



# **Shielding in the Forward Region**



05/04/16

#### M.I. Besana, FCC hadron detector meeting

## **Neutron Fluence Rates with Shielding**

- The shielding in the forward region is effective in reducing the neutron fluence rate
  - the fluence rate on the external muon chambers are reduced to 4 10<sup>4</sup> cm<sup>-2</sup> s<sup>-1</sup>
- However there are localized <u>leakage points</u> that have a significant impact on the rates observed in the muon chambers



# All Charged Particles Fluence Rate





### **Neutron Fluence Rate in Muon Chambers**



#### Fluence rates values:

- barrel muon chambers: 7 10<sup>4</sup> cm<sup>-2</sup> s<sup>-1</sup>, due to the leakage from the crack in the calorimeter for the cables
- end-cap muon chambers:
  - six chambers at z > 10 m: 10<sup>5</sup> cm<sup>-2</sup> s<sup>-1</sup>
  - two chambers at z < 10 m: 3 10<sup>5</sup> cm<sup>-2</sup> s<sup>-1</sup>
- expected rates: up to 300 Hz cm<sup>-2</sup>, compared to ~ 10 Hz cm<sup>-2</sup> of the previous layout

### **Photon Fluence Rate**





# **1D distributions: Tracking Chambers**





#### 05/04/16

M.I. Besana, FCC hadron detector meeting



### Dose



### Conclusions

- First radiation studies for the second version of FCC detector have been shown today
  - the contribution coming from the TAS is taken into account
  - results have been shown in terms of:
    - charged particles fluence rates
    - neutron fluence rates
    - photon fluence rates
    - 1 MeV neutron equivalent fluence
    - dose
    - other quantities are available, like charged hadrons and high energy hadrons fluence rates
  - I have prepared a map of the charged particle fluence for the tracker:
    - /eos/project/f/fcc-hh/data/Detector/Tracker/FCChh-Fluka-Charged\_RZ.o2.March\_2017.dat
    - if we agree on the format I can produce similar files for all the relevant quantities
- A shielding strategy has been proposed to protect the muon chambers against the leakage from the forward part of the detector and against the backscattering from the TAS:
  - the shielding is effective, but there are <u>localized leakage points</u> that affect fluence values in the muon chambers



### **Dose in the Hadronic Calorimeter**



#### M.I. Besana, FCC hadron detector meeting

### Long Term Damage for Tracker

#### Values for 30 ab<sup>-1</sup>:

| R [mm] | z[m] | Dose [MGy] | 1 MeV equivalent Fluence [cm <sup>-2</sup> ] |
|--------|------|------------|----------------------------------------------|
| 25     | 0    | 320        | 5.5 10 <sup>17</sup>                         |
| 60     | 0    | 88         | 1.25 10 <sup>17</sup>                        |
| 100    | 0    | 40         | 6 10 <sup>16</sup>                           |
| 150    | 0    | 23         | 3.3 10 <sup>16</sup>                         |
| 270    | 0    | 8.8        | 1.51 10 <sup>16</sup>                        |
| 900    | 0    | 0.65       | 3.2 10 <sup>15</sup>                         |
| 25     | 5    | 410        | 3.7 10 <sup>17</sup>                         |
| 50     | 16   | 250        | 2 10 <sup>17</sup>                           |