UPDATE ON CALORIMETRY

M. Aleksa, J. Faltova, C. Helsens, A. Henriques, C. Neubüser, N. Topiline, A. Zaborowska

 $5 \ {\rm April} \ 2017 \\ {\rm FCC} \ {\rm hadron} \ {\rm detector} \ {\rm meeting}$

Estimated # channels for FCC calorimeters

	Calo partition	Technology	η coverage	# long. layers	Δη x Δφ	# channels]
ECAL	EM B	LAr / Pb	< 1.7	8	0.01 × 0.012	1,294 x 10 ³	
	EM EB		1.5 - 2.5	6	0.01×0.012	562 x 10 ³	Delphes:
	EFCAL		2.5 - 6.0	6	0.025 x 0.025	457 x 10 ³	
HCAL	HEC	LAr/Cu	17-25	6	0.025 × 0.025	104×10^{3}	$(\Delta\eta imes\Deltaarphi)$
HCAL	HEC	LAI / Cu	1.7 - 2.5	0	0.023 × 0.023	104 X 10	EM B: 0.05×0.012
	HFCal		2.3 - 6.0	6	0.05 × 0.05	113×10^{3}	Tile B: 0.05×0.05
	Tile B	Tiles / Stain. Steel	< 1.3	10	0.025 x 0.025	222 x 10 ³	no longitudinal lavers
	Tile EB		1.0 - 1.8	8	0.025 x 0.025	65 x 10 ³	
Total	ECAL (LAr / Pb)					2,313 x 10 ³	-
	HCAL (LAr / Cu)					217 x 10 ³	
	HCAL (Tiles / S.					288 x 10 ³	
	Steel)						
	ALL					2,818 x 10 ³	

Proposed ECAL + HCAL granularity

- Technologies allow to increase or reduce the number of channels

5 April 2017

Electromagnetic calorimeter: design

Cylinders with absorber

- \blacksquare idealistic,
- simple to implement,
- used up to now.

5 April 2017

Electromagnetic calorimeter: design

- \blacksquare idealistic,
- simple to implement,
- used up to now.

- complex,
- difficult to build.

Electromagnetic calorimeter: design

 \blacksquare idealistic,

Anna Zaborowska

- simple to implement,
- used up to now.

- simple,
- increasing lAr gap (change of sampling fraction with calo depth).

Inclined absorber planes

- complex,
- difficult to build.

■ 2 mm absorber plate:

- $\hfill\square$ lead in middle
- \Box steel on the outside
- $\hfill\square$ glued together
- 1 mm readout (printed circuit board) in between absorbers
- 3 mm to 5.4 mm (80% increase) liquid argon gap
- 30° inclination angle

Inclined ECal: Energy resolution - first check

- calculation done with one value of sampling fraction (for each energy)
- 1.8 X₀ realistic amount of material in front, important to minimise the cryostat material (further study will be done for 1.5 X₀ that seems to be feasible)
- liquid argon / absorber ratio differs with calorirmeter depth
- shower fluctuations lead to large constant terms

Inclined ECal: Sampling fraction

 SF = energy deposited in active material out of total deposited energy (within one longitudinal layer)

Inclined ECal: Sampling fraction

Energy distribution for 200GeV electron

- SF = energy deposited in active material out of total deposited energy (within one longitudinal layer)
- 4 layers are the minimum needed to correct for the EM scale

Inclined ECal: Sampling fraction

Energy distribution for 200GeV electron

- SF = energy deposited in active material out of total deposited energy (within one longitudinal layer)
- 4 layers are the minimum needed to correct for the EM scale
- Energy resolution improves quickly with number of layers used for SF calculation

Inclined ECal: Energy resolution - improved

- calculating sampling fraction in (8) longitudinal layers
- correction to cell energy, no prior knowledge of the particle energy
- \blacksquare decrease of the constant term
- improvement of the sampling term

- Optimisation of the inclination angle and liquid argon gap size
- Validation using tracker in front of calorimeter and realistic cryostat (total of 1.5 X₀ for $\eta=0$)
- Sliding window reconstruction

Tile hadronic calorimeter: mechanic assembly

Study done by Nikolai Topiline from JINR

stainless steel scintillating tiles WLS fibres (ratio 4.7:1) SiPMTS as readout

Tile hadronic calorimeter: mechanic assembly

Anna Zaborowska

Implementation of realistic TileCal design in FCCSW

 $\begin{array}{l} 10 \mbox{ layers: } 2\times10\mbox{ cm} (0.5\#\lambda) \\ + 4\times15\mbox{ cm} (0.75\#\lambda) \\ + 4\times25\mbox{ cm} (1.3\#\lambda) \\ \mbox{instead of 18 layers of 10\mbox{ cm} each} \\ + \mbox{ girder and crossbar (steel support)} \end{array}$

New material scans

- \blacksquare tracker
- \blacksquare inclined ECal
- \blacksquare realistic TileCal design

BACKUP SLIDES

FCC calorimeter system

Electromagnetic (EM) calorimeters

- Barrel (EM B)
- Extended Barrel (EM EB)
- Forward calorimeter (EFCal)
- Note: Technology has not been chosen yet

- Current baseline: Fe + Scintillators (Tile B, Tile EB), Pb + LAr (all the rest)

08/03/17

FCChh detector meeting

Hadronic calorimeters

- Barrel (Tile B)
- Extended Barrel (Tile EB)
- Hadronic endcap (HEC)
- Forward calorimeter (HFCal)