
FCC Physics meeting

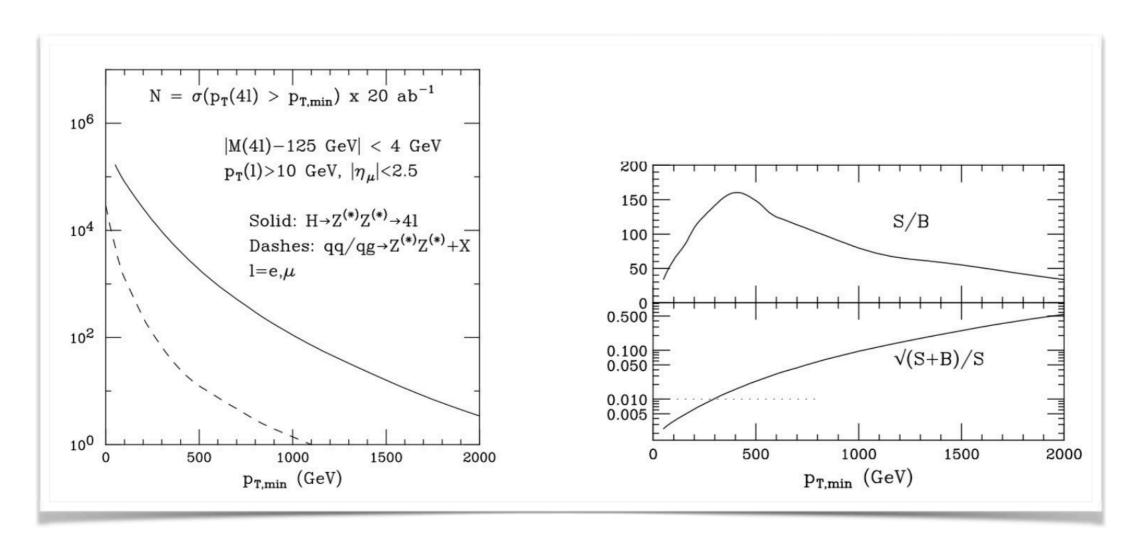
Michele Selvaggi
CERN

Agenda

Higgs properties

NEED VOLUNTEERS!!!

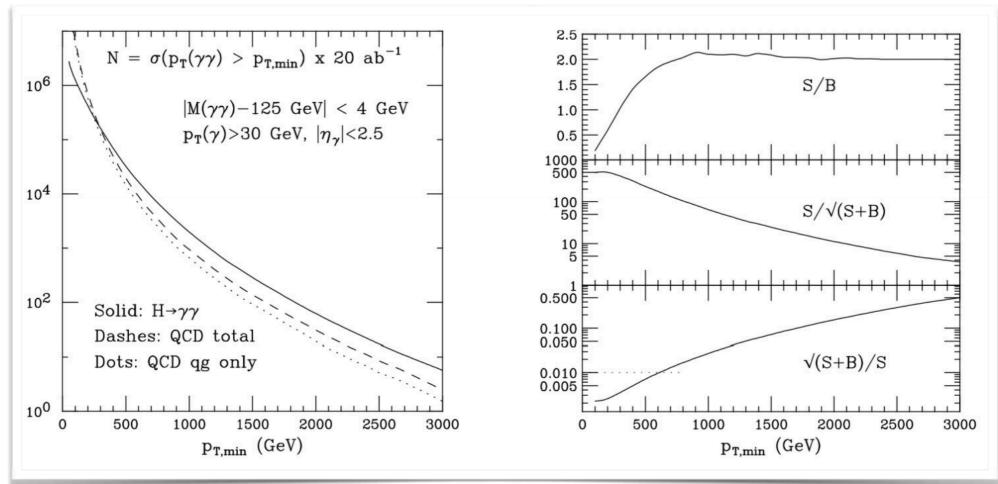
ghxy	FCC-ee
ZZ	0.16%
WW	0.85%
YY	1.7%
Ζγ	?
tt	
bb	0.42%
ττ	0.94%
СС	1.0%
SS	H→Vγ, in progr.
μμ	6.4%
uu,dd	H→Vγ, in progr.
ee	e ⁺ e ⁻ →H, in progr.
НН	
BR _{exo}	0.48%


FCC-hh
< %?
1%?
1 /0 :
1% ?
2% ?
5% ?
< 10-6 ?

Goals

- Setup a "task force", to work coherently on defining target precision benchmarks
- Define meas'nt strategies based on
 - precise info from FCC-ee
 - selfcontained FCC-hh inputs
- Define precision for both
 - absolute BR or BR ratio meas's
 - dσ/dp_T, (both absolute and shape) to probe BSM sensitivity
- Start by identifying ideal regions of S/\sqrt{B} (B=irreducible bgs), and allow for optimal det performance
- Identify regions of optimal separation between production channels
- Identify leading exptl syst, to be tested via concrete Delphes sim's, setting performance targets

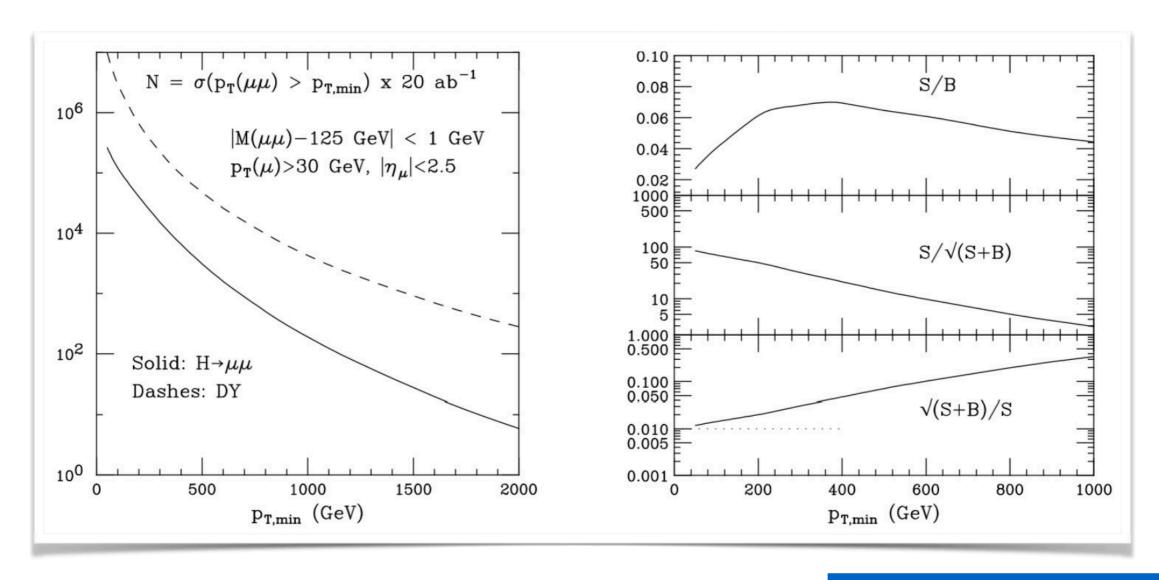
$gg \rightarrow H \rightarrow ZZ^* \rightarrow 4I$ at large p_T



- S/B ~ I for inclusive production at LHC
- Practically bg-free at large p_T at 100 TeV, maintaining large rates

p _{T,min} (GeV)	δ _{stat}
100	0.3%
300	1%
1000	10%

$gg \rightarrow H \rightarrow \gamma \gamma$ at large p_T



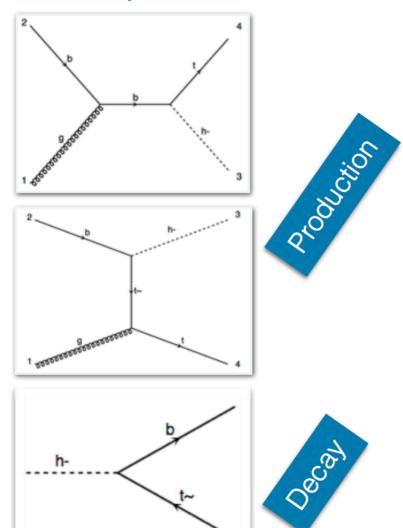
- At LHC, S/B in the $H \rightarrow \gamma \gamma$ channel is O(few %)
- At FCC, for p_T(H)>300 GeV, S/B~I
- Exptl systematics on BR($\mu\mu$)/BR($\gamma\gamma$)? (use same fiducial selection to remove H modeling syst's)
- Exptl mass resolution at large pt(H)?
- Potentially accurate probe of the H pt spectrum up to large pt

р _{т,min} (GeV)	δ _{stat}
100	0.2%
400	0.5%
600	1%
1600	10%

$gg \rightarrow H \rightarrow \mu \mu$ at large p_T

- Stat reach ~I% at p_T~I00 GeV
- Exptl systematics on BR($\mu\mu$)/BR($\gamma\gamma$)? (use same fiducial selection to remove H modeling syst's)

p _{T,min} (GeV)	δ _{stat}
100	1%
500	10%


Charged Higgs

Signal and Background

The cross sections for the signal process pp -> tH⁻ +X ->tbt~ +X

- 2.022 pb at m_H=500 GeV
- 0.281 pb at m_H=1000 GeV
- 0.0273 pb at m_H=2000 GeV

+ similar diagrams for d,s

Signal:

- -> tH-->tbt~
- -> W+W-bbb~

then three channels

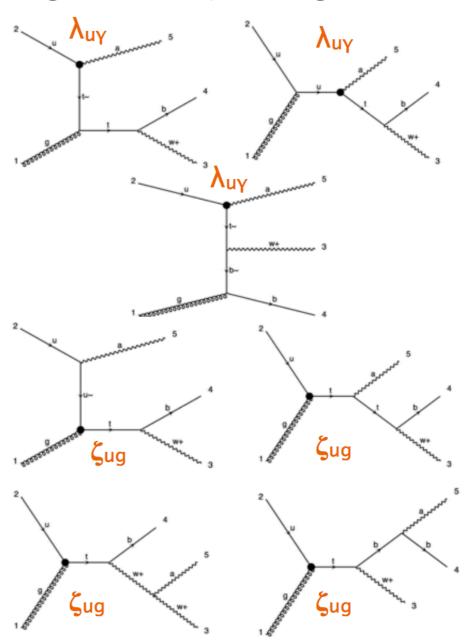
- -> 3 bjets+4 jets (full had)
- -> 3 bjets+2 jets+1I+MET (single lepton)
- -> 3 bjets+2I+MET(dilepton)

3

Top FCNC

O. Cakir

Signal


Signal:

- \rightarrow W b γ (off-shell top)
- -> t γ then W b γ (on-shell top)

then two channels

- -> photon+1 bjet+2 jets (hadronic)
- -> photon+1 bjet+1I+MET
 (single lepton)

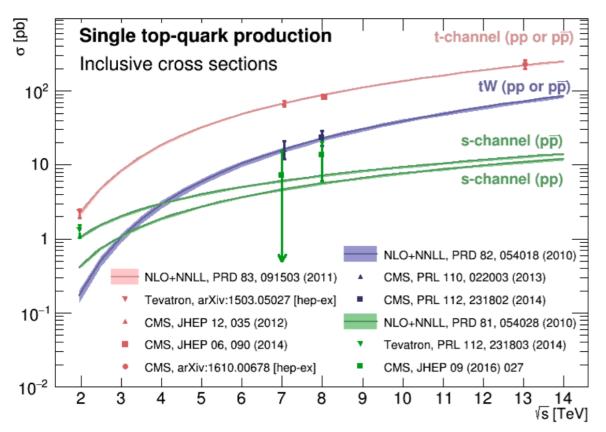
Diagrams for tuy and tug vertices

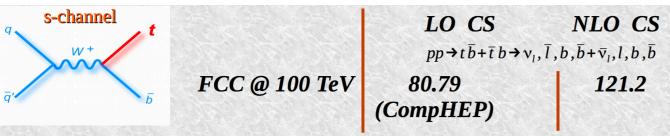
 similar diagrams for tcγ and tcg vertices

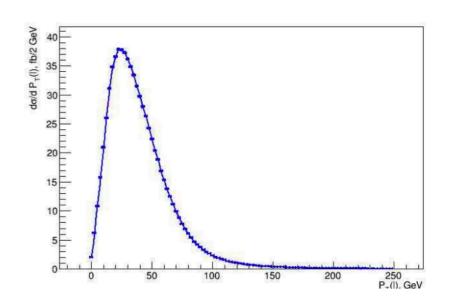
Charged Higgs/FCNC

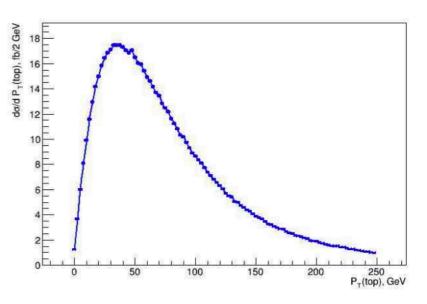
O. Cakir

Comments

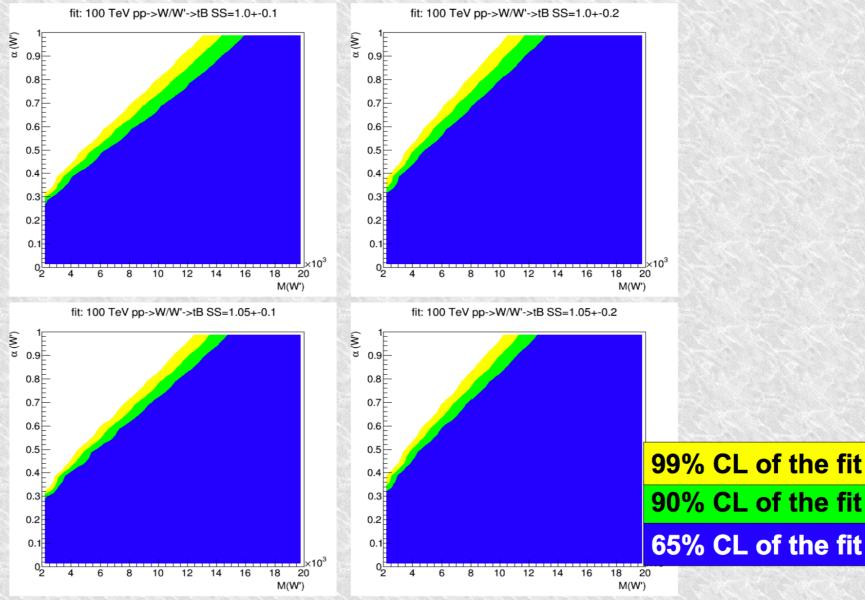

- We use FCCSW and other tools within SW. Pythia8 has internal subprocess b g->H- t, it is available in the 5FS.
 - Main background is t tbar+1bjet. We have produced t tbar+1jet background events (200k). Background t tbar+012jets can be used in the analysis. The background <u>WW+jets</u> can also be discussed. Events may be categorised into separate regions (SR, CR) according to reco jets and b-tagged jets.
- For process pp->tγ+X / pp->Wbγ+X, event generation with MadGraph5, hadronization and decays in Pythia8, fast simulation with Delphes 3.4. We have the cross sections and kinematical distributions of jets, electron, muon, met and photon.
 - Main background is W+bjet+photon. We have produced W+bjet +photon background events (200k). The background W+jets +photon can be discussed. After event selection SR and CR can be designed.


Single top s-channel


Single top features:


- Cross section proportional to $|V_{tb}|^2 =>$ allows direct measurement
- Wtb vertex enables tests of V-A structure
- Sensitive to new physics, e.g. anomalous couplings, 4th generation, W', H⁺

- One can directly apply the k-factor 1.5 for normalization to NLO
 - the s-channel distribution shapes are the same for LO and NLO
 Phys.Rev. D70 (2004) 114012

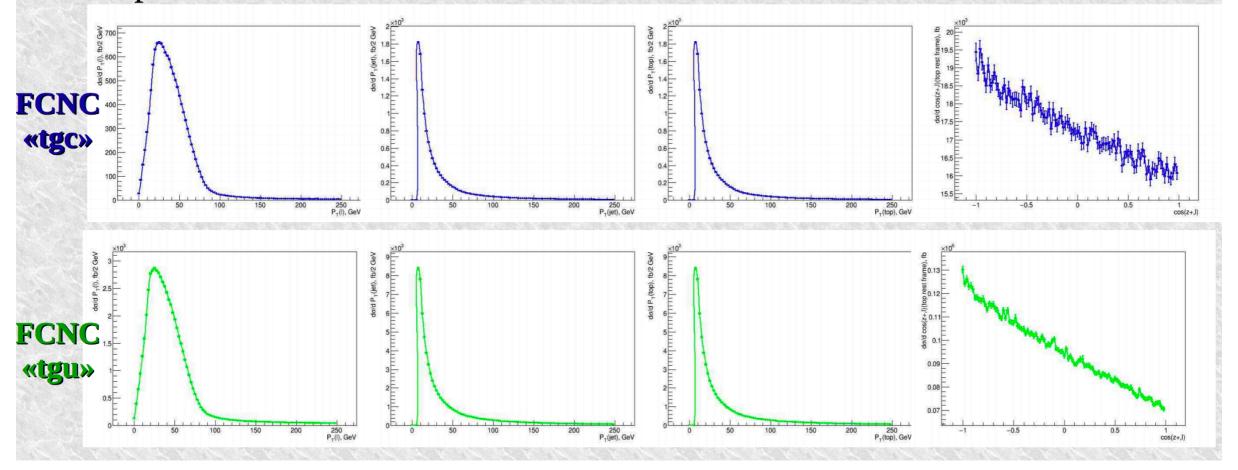


• FCC W' prospects:
- SM + left W'; variation of W' couplings to fermions and W' masses
- Cut Mtb>1000 GeV

No signal:

Some signal:

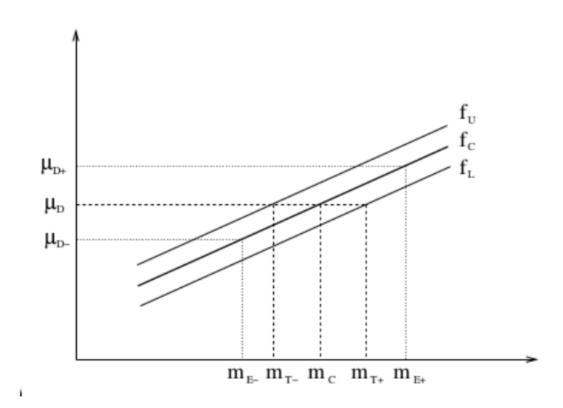
• Estimated exclusion of W' masses up to 16 TeV with SM-like 10 couplings



- CompHEP-based generators:
 - two event samples for values of FCNC parameters:
 - all necessary diagrams

$$\frac{k^c}{\Lambda} = 0.03 \, TeV^{-1}, \frac{k^u}{\Lambda} = 0.03 \, TeV^{-1}$$

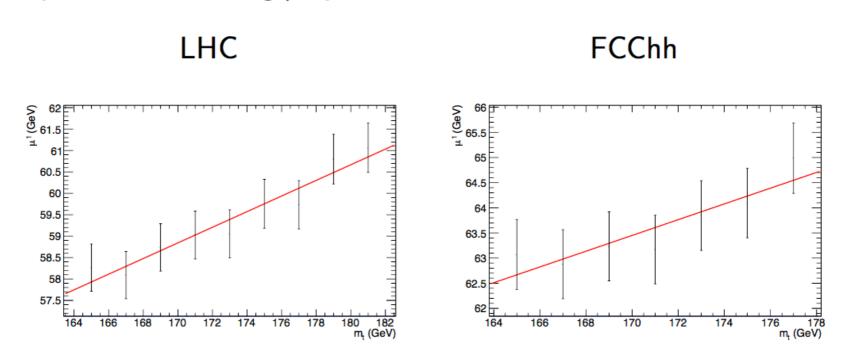
- samples with other FCNC coupling values can be obtained with the quadratic renormalization of the existing samples to the new values
- Representative distributions


Top Mass

Interesting proposal: measuring top mass with leptonic varibles only

- See Determination of the top quark mass from leptonic observables
- This method is promising a theoretical error at 0.8 GeV

Label	Observable
1	$p_T(\ell^+)$
2	$p_T(\ell^+\ell^-)$
3	$M(\ell^+\ell^-)$
4	$E(\ell^+) + E(\ell^-)$
5	$p_T(\ell^+) + p_T(\ell^-)$



$$\mu_{(i)}^O = \frac{1}{\sigma} \int d\sigma O^i$$

Top Mass

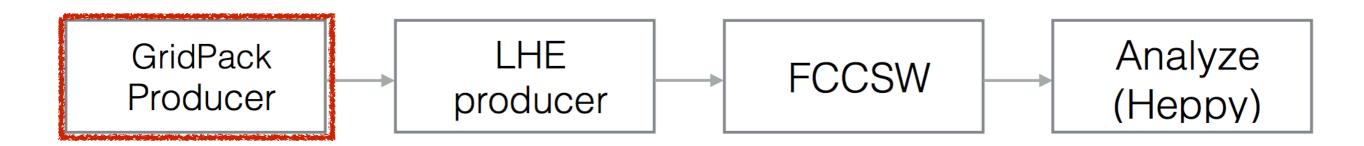
The study is really preliminary, we have just started to produce samples and obtaining μ_i predictions:

SnowMass Strategy

- Detailed in (arXiv:1308.1636)
- Produce $2 \rightarrow 4$ merged samples, i.e.
 - pp \rightarrow V + 0/1/2/3 jets
 - pp \rightarrow VV + 0/1/2 jets
 - pp \rightarrow VVV + 0/1 jets
- Binned in $H_T = \sum p_T(\text{final state})$

Dataset Name	Main Processes	Final States	Order		
	Dominant Backgrounds				
B-4p, Bj-4p ^a	vector boson + jets	V + nJ	$\mathcal{O}(lpha_s^nlpha_w)$		
BB-4p	divector + jets	VV + nJ	$\mathcal{O}(lpha_s^nlpha_w^2)$		
TT-4p	top pair + jets	TT + nJ	$\mathcal{O}(lpha_s^{2+n})$		
TB-4p	top pair off-shell $T^* \to Wj + \text{jets}$	TV + nJ	$\mathcal{O}(lpha_s^{n+1}lpha_w)$		
TJ-4p	single top (s and t-channel) $+$ jets	T+nJ	$\mathcal{O}(lpha_s^{n-1}lpha_w^2)$		
LL-4p	off-shell $V^* \to LL + \text{jets}$	$LL + nJ \ [m_{ll} > 20 \ \text{GeV}]$	$\mathcal{O}(lpha_s^nlpha_w^2)$		
Subdominant Backgrounds					
TTB-4p	top pair + boson	(TTV+nJ), (TTH+nJ)	$\mathcal{O}(lpha_s^{2+n}lpha_w)$		
BLL-4p	off-shell divector $V^* \to LL + \text{jets}$	$VLL + nJ \ [m_{ll} > 20 \ GeV]$	$\mathcal{O}(lpha_s^nlpha_w^3)$		
BBB-4p	tri-vector + jets, Higgs associated + jets	(VVV + nJ), (VH + nj)	$\mathcal{O}(lpha_s^nlpha_w^3)$		
H-4p	gluon fusion + jets	H+nJ	$\mathcal{O}(\alpha_s^n \alpha_h)$		
BJJ-vbf-4p	vector boson fusion + jets	$(V+nJ), (H+nJ) \ [n\geq 2]$	$\mathcal{O}(\alpha_s^{n-2}\alpha_w^3)$		

Our Strategy


- Cannot use SnowMass samples because of gen. level acc. cuts
- Produce separate V and H samples
- Adding:
 - ggH,VBF H,VH, ttH,
 - ggHH,VBF HH
- We plan on producing the following samples (work in progress):

Samples

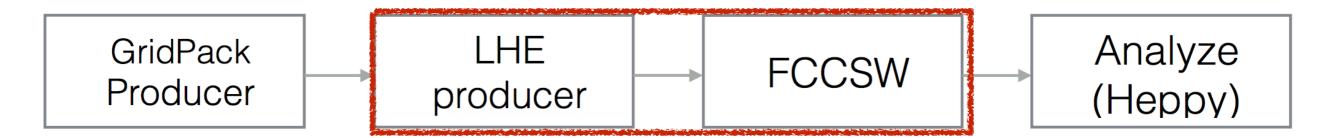
H_T bins

```
p_v0123j_5f":[0,1500,2900,5100,8500,100000],
'pp_vvv01j_5f":[0,1200,3000,6000,100000],
[pp_vv012j_5f":[0,300,1400,2900,5300,8800,100000],
pp_vbf_v01j_5f":[0,2000,4000,7200,100000],
pp_llv01j_5f":[0,800,2000,4000,100000],
[pp_11012j_5f":[0,200,700,1500,2700,4200,100000],
[pp_tv012j_5f":[0,500,1500,2800,4700,7400,100000],
[pp_t123j_5f":[0,1900,3500,5900,100000],
pp_ttv01j_5f":[0,1100,2700,4900,8100,100000],
[pp_tt012j_5f":[0,600,1200,2100,3400,5300,8100,100000],
'pp_h012j_5f":[0,100,1900,4400,8500,100000],
'pp_vh012j_5f":[0,300,1400,2900,5300,8800,1000<u>0</u>0],
[pp_hh01j_5f":[0,300,1400,2900,5300,8800,100000],
[pp_tth01j_5f":[0,1100,2700,4900,8100,100000],
pp_vbf_h01j_5f":[0,2000,4000,7200,100000],
 p_vbf_hh01j_5f":[0,2000,4000,7200,100000]
```

Workflow: GridPacks

- GridPack Producer⁽¹⁾
 - makes MG5_aMC@NLO GridPacks (i.e standalone script that produces LHE files)
 - Can be used either locally or on lxbatch/condor queues

./run.sh [nevents] [seed]


 For simplicity, GP that are of common interest will be produced centrally (WIP) and stored here (most are produced already):

/eos/fcc/hh/generation/mg5_amcatnlo/gridpacks

https://github.com/selvaggi/GridPackProducer

Workflow: LHE/FCCSW

C. Helsens

- LHE Producer⁽¹⁾
 - Produces Les Houches Event (LHE) files using GridPacks using Ixbatch queues (working on extending to HTCondor)
 - This part should be carried out by the user

- FCCSW file producer (work in progress):
 - Produces FCCSW files using LHE files
 - This part should be carried out by the user

https://github.com/clementhelsens/LHEventProducer

Workflow: LHEs

List of produced LHE files can be found here:

http://fcc-physics-events.web.cern.ch/fcc-physics-events/LHEevents.php

name	nevents	nfiles	outputdir	mainprocess	finalstates	cross section (pb)
pp_bbaa01j_4f	9,950,000	995	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_bbaa01j_4f/	bbaa + 0,1 jets 4 flavor scheme		5.899
pp_bbh	9,930,000	993	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_bbh/	bbar plus higgs	inclusive	0.916
pp_bbja_4f	10,000,000	1000	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_bbja_4f/	bbja 4 flavor scheme		4679
pp_bjaa01j_4f	9,990,000	999	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_bjaa01j_4f/	bjaa + 0,1 jets 4 flavor scheme		16.9
pp_h012j_5f_HT_0_100	10,010,000	1001	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_h012j_5f_HT_0_100/	gluon fusion higgs (finite mt) + 0/1/2 jets	0 < HT < 100	313.4
pp_h012j_5f_HT_100_400	0	0		gluon fusion higgs (finite mt) + 0/1/2 jets	100 < HT < 400	220.7
pp_h012j_5f_HT_1900_4400	0	0		gluon fusion higgs (finite mt) + 0/1/2 jets	1900 < HT < 4400	0.2767
pp_h012j_5f_HT_400_1000	0	0		gluon fusion higgs (finite mt) + 0/1/2 jets	400 < HT < 1000	47.27
pp_h012j_5f_HT_4400_8500	0	0		gluon fusion higgs (finite mt) + 0/1/2 jets	4400 < HT < 8500	0.003932
pp_hh	10,000,000	1000	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_hh/	gluon gluon fusion di-higgs	inclusive	0.65
pp_hh01j_5f_HT_0_300	10,000	1	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_hh01j_5f_HT_0_300/	gluon fusion di-higgs + 0/1 jets	0 < HT < 300	0.3501
pp_hh01j_5f_HT_1400_2900	10,000	1	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_hh01j_5f_HT_1400_2900/	gluon fusion di-higgs + 0/1 jets	1400 < HT < 2900	0.01262
pp_hh01j_5f_HT_2900_5300	10,000	1	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_hh01j_5f_HT_2900_5300/	gluon fusion di-higgs + 0/1 jets	2900 < HT < 5300	0.0007101
4 pp_hh01j_5f_HT_300_1400	10,000	1	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_hh01j_5f_HT_300_1400/	gluon fusion di-higgs + 0/1 jets	300 < HT < 1400	0.7453
5 pp_hh01j_5f_HT_8800_100000	0	0		gluon fusion di-higgs + 0/1 jets	8800 < HT < 100000	2.703e-06
<mark>6</mark> pp_jjaa01j_5f	8,485,000	340	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_jjaa01j_5f/	dijet diphoton + 0,1 jets 5 flavor scheme		55.72
7 pp_jjaa_4f	9,990,000	999	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_jjaa_4f/	dijet diphoton 4 flavor scheme		431.2
pp_jjaa_5f	9,890,000	989	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_jjaa_5f/	dijet diphoton		17.97
pp_jjja01j_5f	12,965,000	1061	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_jjja01j_5f/	photon +jets + 0,1 jets 5 flavor scheme		4.133e+05
pp_jjja_5f	9,950,000	995	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_jjja_5f/	photon +jets		1.023e05
pp_ll012j_5f_HT_0_200	0	0		V -> 11 (l=e,mu,ve,vm,vt) +	0 < HT < 200	0
pp_ll012j_5f_HT_1500_2700	10,000	1	/eos/fcc/hh/generation/mg5_amcatnlo/lhe/pp_ll012j_5f_HT_1500_2700/	V -> ll (l=e,mu,ve,vm,vt) +	1500 < HT < 2700	1.03

• • •

Future plans

Delphes/FCCSW

- New release 3.4.1 coming very soon:
 - include latest Tracker configuration
 - include latest Calorimeters
 - add Jet Substructure variables (requires FCCSW release)

MC production

- update framework for FCCSW job submission (together with C. Helsens)
 - factorized LHE/FCCSW production
 - automatise jet merging procedure
 - upgrade to HTCondor
- will announce a tutorial shortly (although instructions are already available)