
#### FCC-hh



#### Update on FCC-hh physics analyses

Heather Gray, Filip Moortgat, Michele Selvaggi (CERN)



# Physics Analysis Meetings



We started a new series of informal "physics analysis" meetings dedicated to discussing progress of 100 TeV physics studies in view of the 2018 CDR

First Meeting was on February 21st

https://indico.cern.ch/event/613195/

30-40 people attended, summary will follow.

Next meeting: March 27th at 2pm

https://indico.cern.ch/event/618771/

#### Reminder



How to get started on 100 TeV Physics studies?

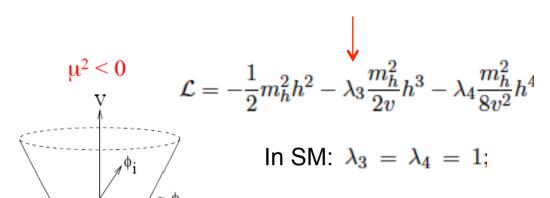
Pick a topic from the list of 100 TeV Physics Benchmarks:

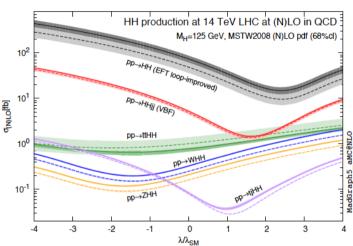
See <u>Heather's talk</u> at the last meeting

Follow the FCC Pythia + Delphes + Heppy tutorial (Michele Selvaggi):

http://fccsw.web.cern.ch/fccsw/tutorials/fcc-tutorials/FccFullAnalysis.html

Check the MC event database (Clement Helsens):


http://fcc-physics-events.web.cern.ch/fcc-physics-events/index.php


# First meeting agenda



16:00 → 16:15 Introduction () 15m Speakers: Filip Moortgat (CERN), Heather Gray (LBNL) FCC\_Analysis\_Meeti... **16:15** → 16:30 Status Report on HH->bbgg (15m Speaker: Michele Selvaggi (CERN) hhbbaa\_status\_210... Invisible Higgs at 100 TeV ①20m 🖉 🕶 **16:30** → 16:50 Speaker: Philip Coleman Harris (CERN) PCH\_DMExp100TeV... Stop search at 100 TeV **16:50** → 17:05 Speaker: Owen Robert Colegrove (Univ. of California Santa Barbara (US)) FCC\_2\_21\_UCSB.pdf Studies on Top FCNC and Charged Higgs Searches at FCC-hh **17:05** → 17:20 (15m) Speaker: Orhan Cakir (Ankara University (TR)) Study\_V07.pdf 30-40 people attending







#### Golden Channel: pp → HH → bbγγ

- Detailed study performed already in 2016
  - results obtained with Contino, Panico, Papaefstathiou, Son are summarised in the 100 TeV report
- Perform the analysis:

a

- with latest detector description (4T vs 6T)
  - better in terms of jet energy resolution
- · shape analysis instead of cut-based
- include discussion on systematics

Michele Selvaggi (CERN)



#### Cut and count analysis

Michele Selvaggi (CERN)

Further apply:

$$m_{bb} \in [100, 150] \text{ GeV}$$

| $ m_{\gamma\gamma} $ | _ | $m_h$ | < | 2.0, | 2.5, | 4.5 | ${\rm GeV}$ |
|----------------------|---|-------|---|------|------|-----|-------------|
| $\gamma$             |   | 11011 |   | 0,   | ,    | 1.0 | ~~          |

| Process                           | Acceptance cuts [fb] | Final selection [fb] | Events ( $L=30~{\rm ab^{-1}}$ |
|-----------------------------------|----------------------|----------------------|-------------------------------|
| $h(b\bar{b})h(\gamma\gamma)$ (SM) | 0.73                 | 0.40                 | 12061                         |
| $bbj\gamma$                       | 132                  | 0.467                | 13996                         |
| $jj\gamma\gamma$                  | 30.1                 | 0.164                | 4909                          |
| $t ar{t} h(\gamma \gamma)$        | 1.85                 | 0.163                | 4883                          |
| $b ar b \gamma \gamma$            | 47.6                 | 0.098                | 2947                          |
| $b ar{b} h(\gamma \gamma)$        | 0.098                | $7.6 	imes 10^{-3}$  | 227                           |
| $bj\gamma\gamma$                  | 3.14                 | $5.2 \times 10^{-3}$ | 155                           |
| Total background                  | 212                  | 1.30                 | 27118                         |

Old

HH: 0.848 + / - 0.012ttH: 6.424 + / - 0.146jjaa: 86.149 + / - 0.542jjja: 184.513 + / - 2.431jjaa: 77.374 + / - 1.829bbja: 187.706 + / - 0.794bbaa: 39.57 + / - 0.153bjaa: 11.826 + / - 0.141New

HH: 123ttH: 14 -----jjaa: 4jjjaa: 4jjjaa: 4jjjaa: 4jjjaa: 4jjjaa: 4jjaa: 4jjjaa: 4jjaa: 4jjjaa: 4jjjaa: 4jjjaa: 4jjjaa: 4jjjaa: 4jjjaa: 4jjjaa: 4jjaa: 4jjjaa: 4jjjaa: 4jjjaa: 4jjaa: 4



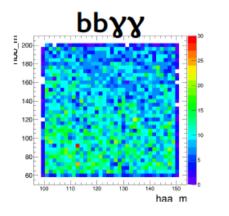
#### Cut and Count

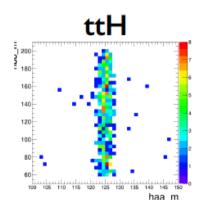
Michele Selvaggi (CERN)

- Disclaimer: very preliminary!!
  - · Signal yield looks compatible
  - Background ~ x2 larger overall
- (Statistical) Precision:
  - Report:  $\Delta \mu / \mu = 1.6\% (\Delta \lambda / \lambda = 3.4\%)$
  - Here:  $\Delta \mu / \mu = 2.1\%$  ( $\Delta \lambda / \lambda = 4.2\%$ )

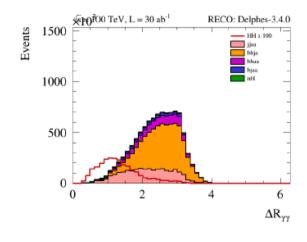
#### NO SYSTEMATICS !!

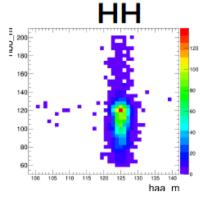



#### Possible improvements


#### · Optimize event selection

- $\Delta R < 2$  (although probably very correlated with  $p_T^{pair}$ )
- build categories based on jet multiplicities (non b-jet veto)


#### Perform a shape analysis:


- · do not throw away precious events
- exploit correlations, ex: m<sub>γγ</sub> vs m<sub>bb</sub>





# Michele Selvaggi (CERN)

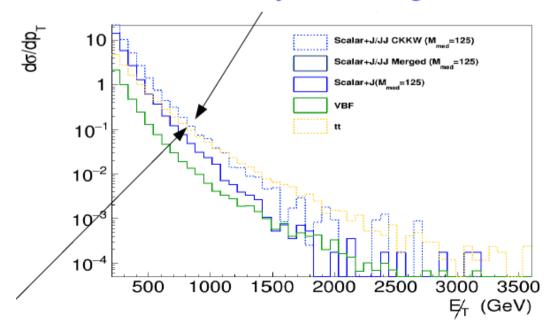






### 2D binned shape analysis

Michele Selvaggi (CERN)

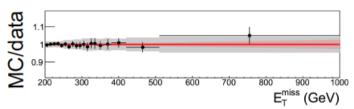

- Just a preliminary test, no systematics:
  - 2D binned max likelihood fit.
  - $\Delta\mu/\mu = 1.6\% (\Delta\lambda/\lambda = 3.4\%)$
- Can be improved by:
  - background smoothening (now stat. limited despite several M events generated)
  - eventually parametric shape analysis

#### NO SYSTEMATICS !!

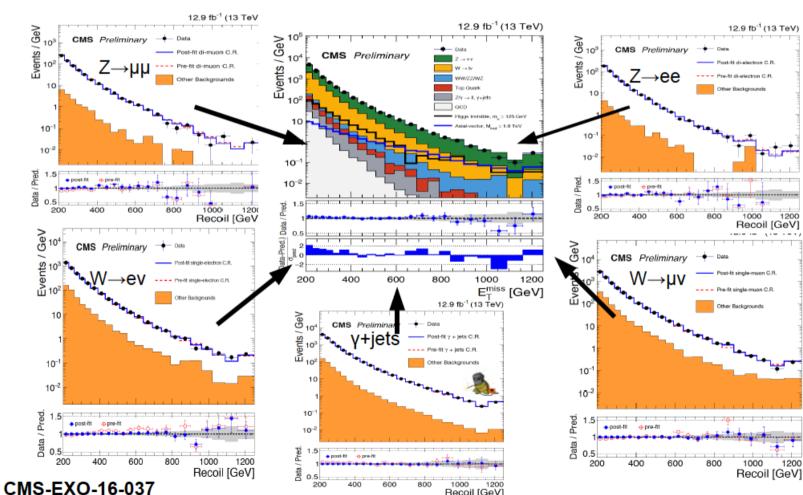


Phil Harris (CERN)

- Currently investigating H→Invisible
  - Monojet and tt+H are the dominant productions
  - ttH is hugely enhanced wrt 14 TeV
  - When compared with H+1j form gluon fusion it wins
  - However H+2j is also large



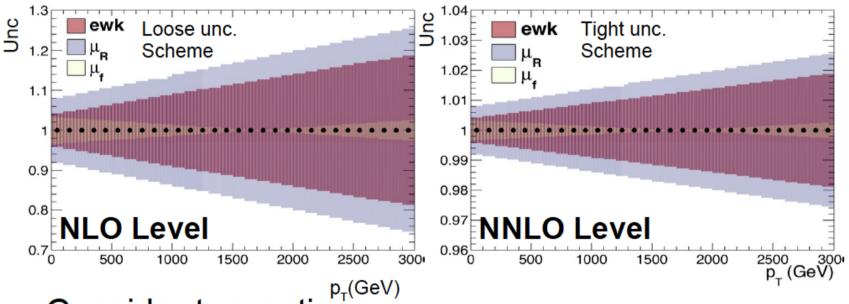




#### Essence of the search

- Rely on control regions to model signal region
  - Control regions have small signal fraction
  - Use the control region to derive :
    - Corrections to the MET scale and resolution
    - Missing higher order corrections in the MC
  - This eliminates the dominant uncertainties
  - Analysis scales with statistical power of control regions
    - As long as they continue to grow: not systematics limited
- All the control regions are fit simultaneously
  - By fitting simultaneously rely on the ratio of production

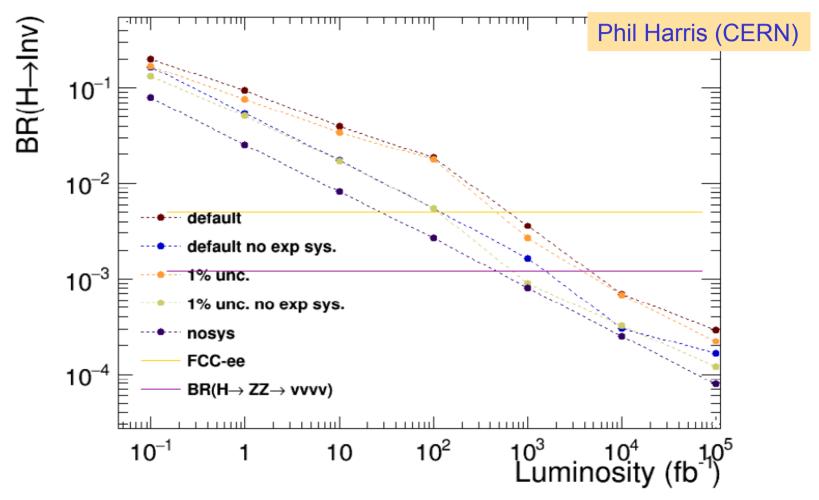





Phil Harris (CERN) 5 Control regions 15% uncertainty @ 1 TeV



Recoil [GeV]

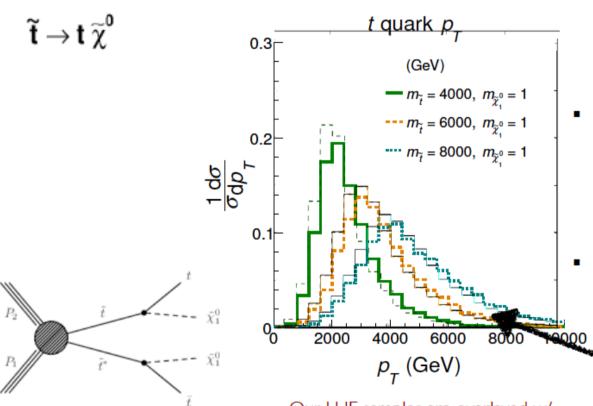



What are reasonable uncertainty choices



- Consider two options :
  - A Loose uncertainty →Comparable to NLO
  - A Tight uncertainty →Comparable to NLO
- Using : 0.5%/0.25%/5% e/μ/τ efficiency & 1% lumi






Cross the SM neutrino wall at FCC with < 1 ab-1



Search for supersymmetric partner of the top quark

Owen Colegrove (UCSB)



- Decayed LHE files generated from Madgraph for 100 TeV pp collisions.
  - 50,000K Events for M\_stop in [4,6,8 [GeV]], M\_lsp = 1 GeV.
- Gen-IvI distributions for tops from stop decay are shown to the left.

 $\Delta R \sim 2 m_T/p_T$ 

Expect small jet radii

 Our LHE samples are overlayed w/ inverted line-style to compare results from "Boosting Stop Searches", ref to come.



#### Top Tagger Efficiency vs. Granularity

Owen Colegrove (UCSB)

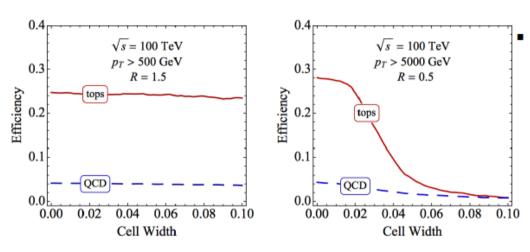
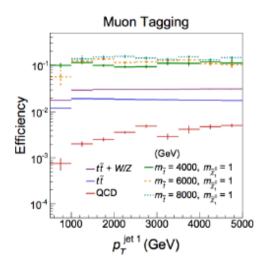



FIG. 2: HEP top tagger performance for jets with  $p_T > 500$  GeV [left] and > 5 TeV [right]. The red solid curve shows the tagging efficiency for top quarks, and the blue dashed curve shows the mis-tag rate for light-flavor QCD jets.

#### Granularity


- Cell width Δφ×Δη ≈ 0.02×0.02 or less is necessary for hadronic substructure (~4 x current CMS granularity)

Source: Boosting Stop Searches with a 100 TeV Proton Collider <a href="https://arxiv.org/abs/1406.4512">https://arxiv.org/abs/1406.4512</a>



# Muonic Top Tagger?

Owen Colegrove (UCSB)



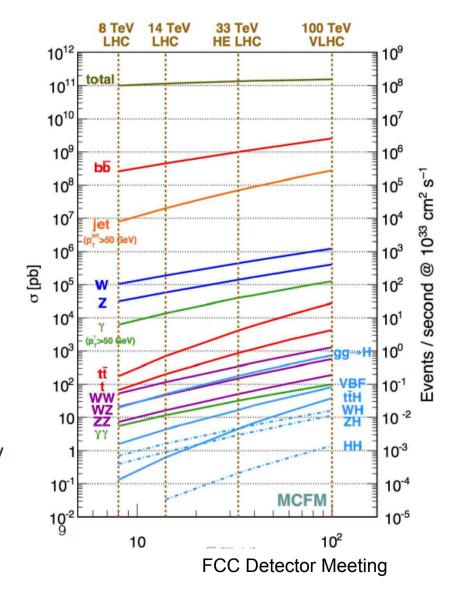

- Muonic Top Tagger
  - Look for muonic W decay + collaminated hadronic b decay or vice versa
  - An efficient top tagger for a low granularity detector
  - Can be combined with "QCD" cuts for better bkg rejection.

FIG. 3: Efficiency for finding a  $\mu^{\pm}$  with  $p_T > 200$  GeV within  $\Delta R < 0.5$  of the leading jet for three choices of stop mass, along with the  $t\bar{t} + W/Z$ ,  $t\bar{t}$  and QCD backgrounds. ("Boosting Stop Searches")



# Thoughts

- Reproduce "boosted tops" analysis results?
  - It would be a nice starting point to build confidence
- Generate relevant samples?
  - High p<sub>T</sub> ttbar; ttbar+X, single t, X+jets, diboson, QCD?
- Compare w/ a granularity driven search?



# **Charged Higgs**



#### High mass charged Higgs boson

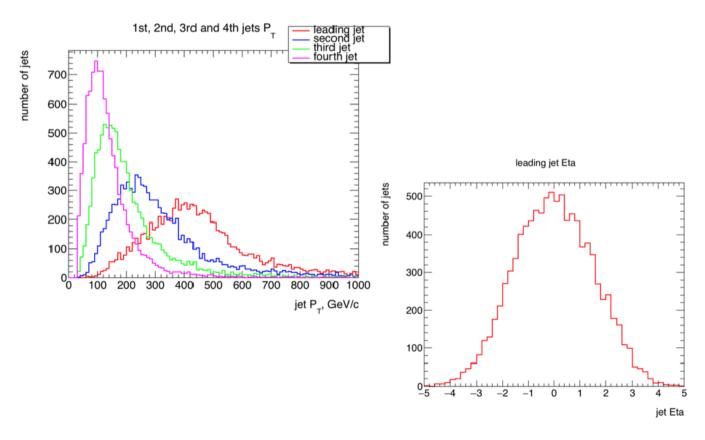
#### Workpackage:

Orhan Cakir (Ankara)

- Take mass 500 GeV, 1 TeV, 2 TeV
- H+->tb~ channel (t->W+b, 2b-tagging, top boosted?, W->hadronic/leptonic)
- H<sup>+</sup>->tau nu channel (tau-tagging, MET)
  - Includes: b-tagging, MET, tau-tagging

#### **Study Plan:**

- Use FCCSW
- Model framework (2HDM or Model independent)
- Generate events (Pythia8 or MG5)
- Detector simulation with FCC card (Delphes 3.4 and FCChh.tcl)
- Analysis (C++ or Python)
- Plots (Root6)
- Abstract (ID138) submission for poster presentation at FCC Week 2017, "Production of High Mass Charged Higgs Boson at FCC-hh"




# **Charged Higgs**



#### Charged Higgs boson (mass 1000 GeV)

Orhan Cakir (Ankara)



### Top FCNC

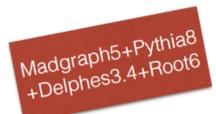


#### Top quark FCNC couplings

Orhan Cakir (Ankara)

#### Workpackage:

- Study process p p -> (t a + t~ a) -> (W+b a + W-b~ a) with on-shell top and off-shell top (with b-tagging, top boosted?, W->hadronic/leptonic)
  - includes: b-tagging, jets, photon, MET, lepton
- Study sensitivity to FCNC couplings  $\lambda_{q}$  and  $\zeta_{q}$  at different FCC-hh luminosity projections O.Cakir, I.Turk Cakir, H.Denizli, A.Senol,


#### Study Plan:


- Model framework (2HDM or Model independent)
- Generate events with MG5 and PS with Pythia8
- Detector simulation with FCC card (Delphes 3.4 and FCChh.tcl)
- Analysis (C++ or Python) and plots (Root6)
- Abstract (ID137) submission for oral presentation at FCC Week 2017, "Probing FCNC couplings through photon associated single top quark production at FCC-hh"

# Top FCNC



#### Signal (tqy)





#### Summer students



#### Some good news concerning FCC summer students:

- Yesterday received message that most of our FCC Summer Student projects were accepted in the regular programme.
- We can look at other options for the projects that were not accepted (non-member state students, "stage" students)

# Summary



- Started monthly meetings to discuss progress on physics studies towards 2018 FCC-hh CDR
- Several groups reported on progress and/or plans
- Please contact us if you're interested in starting or participating in a study
- Next meeting: Monday March 27<sup>th</sup> at 14:00