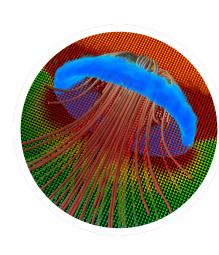
BEYOND LEADING ORDER CALCULATIONS ON HPC

EFFECTIVELY TARGETING THE ARGONNE LEADERSHIP COMPUTING FACILITY

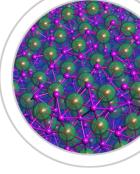
KALYAN KUMARAN Deputy Director of Science – Advanced Technologies & Data Co-Lead, Joint Laboratory for System Evaluation (JLSE)

September 22, 2016

WHAT DOES ALCF DO?


We deliver cycles to support computational science

- Delivers billions of core hours of compute time
- Overall availability for the resource exceeds 96%


We partner with community to produce science

- ALCF provides expert computational scientists, called Catalysts, to assist the science teams to ready their codes to efficiently use the resources.
- ALCF provides performance engineering, full user support, and data analysis and visualization services to the science teams.
- Last year, ALCF-supported research resulted in 160+ refereed publications, in journals such as *Proceedings of the National Academy of Sciences*, *Nature*, and *Physical Review Letters*.

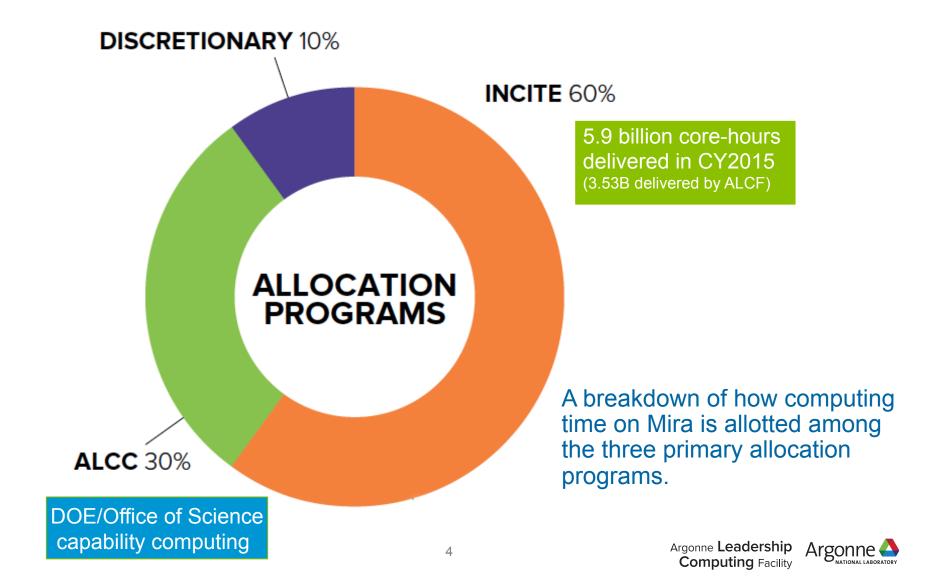
We partner with community on R&D in hardware and software

HOW TIME ON DOE LEADERSHIP COMPUTING SYSTEMS IS AWARDED

Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program

- Open to any researcher in the world
- Allocates time on ALCF's IBM BG/Q (Mira) and OLCF's Cray XK7 (Titan)
- Approximately 60 percent of LCF resources are allocated through INCITE

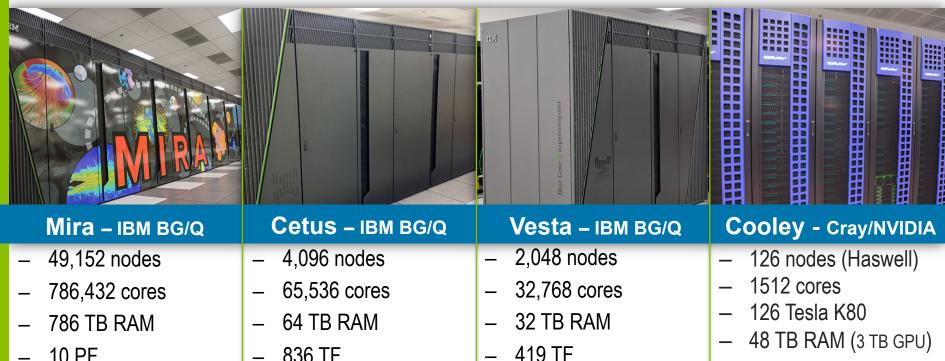
ASCR Leadership Computing Challenge (ALCC) program


- Emphasis on high-risk, high-reward simulations in areas directly related to DOE's energy mission, national emergencies, or for broadening the user base
- Allocates up to 30 percent of the computational resources at ALCF, NERSC, and OLCF

Director's Discretionary

- Open to researchers in academia and industry
- Primarily a "first step" for projects working toward an INCITE or ALCC award
- Allocates up to 10 percent of the computational resources at ALCF

LCF AWARD PROGRAM BREAKDOWN


Allocation Programs at the LCFs

LCF Allocation Programs	IN	CITE 60%	А	LCC 30%		ector's 10% etionary		
Mission	that require	n-payoff science es LCF-scale ources		h-payoff science DOE mission	Strategic LCF goals			
Call	1x/year – (Closes June)		1x/year – C	loses February	Rolling			
Duration	1-3 years, y	early renewal	1	year	3m,6m,1 year			
Typical Size	30 - 40 projects 75M – 500M core-hours/yr.		10-20 projects	10M – 300+M core-hours/yr.	~100 of projects	.5M – 10M core-hours		
Total Hours	~5 billion core-h	ours (~3.5B ALCF)	~2.5 billion core-	hours (~1.75 ALCF)	~590 million ALCF			
Review Process	Scientific Computational Peer-Review Readiness		Scientific Peer-Review	Computational Readiness	Strategic impact and feasibility			
Managed By	Ŭ	ement committee & OLCF)	DOE Offic	e of Science	LCF management			
Readiness	F	ligh	Mediu	m to High	Low to High			
Availability				hers and organizat res (16.7% of Mira				

ALCF-2 PRODUCTION SYSTEMS

10 PF

Storage

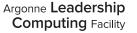
HOME: 1.44 PB raw capacity SCRATCH:

fs0 - 26.88 PB raw, 19 PB usable; 240 GB/s sustained

836 TF

- fs1 10 PB raw, 7 PB usable; 90 GB/s sustained
- fs2 (ESS) 14 PB raw, 7.6 PB usable; 400 GB/s sustained (not in production yet)

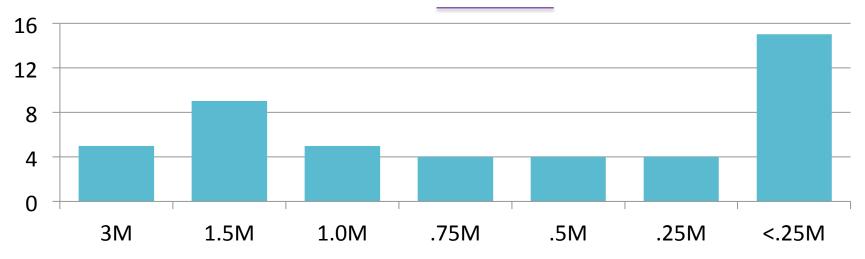
TAPE: 21.25 PB of raw archival storage [17 PB in use]


ALCF TEAMS OF EXPERTS

Catalyst – work with the project teams to maximize and accelerate their research

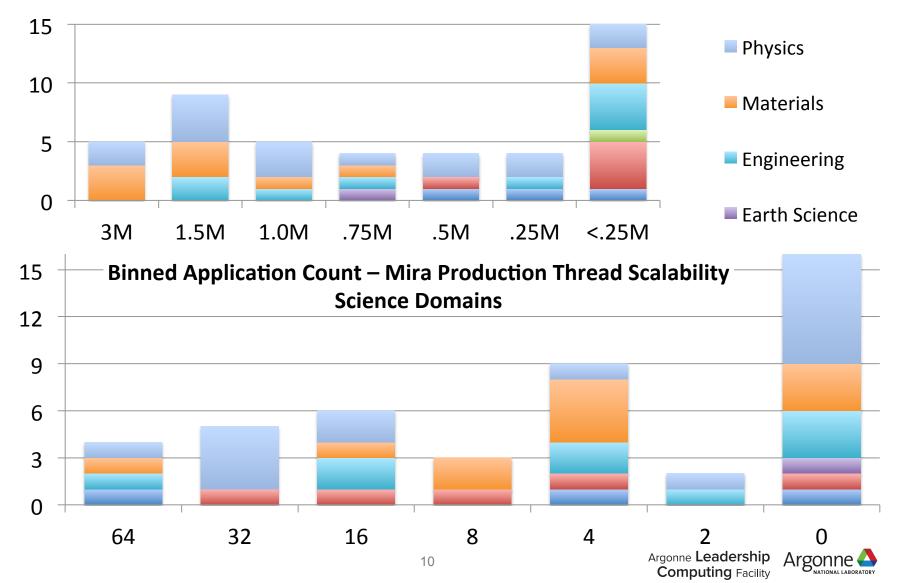
Performance Engineering – optimize the science applications
Operations – support all aspects of HPC hardware and software
Data Analytics and Visualization – help to explore the results
User Experience – support users and tell their stories

APPLICATIONS STATUS ON MIRA

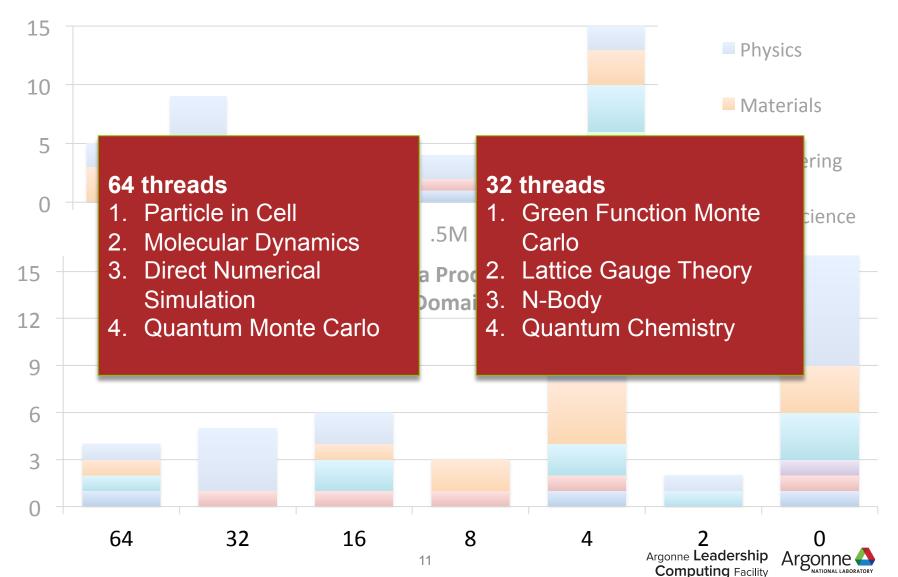

- Summary: applications from all domains have been able to exploit high levels of concurrency for their productions runs, using MPI plus OpenMP for threading or MPI only
- Examined characteristics of 46 INCITE applications in the first 14 months since Mira production started
 - Approximately 59 INCITE codes; did not include some codes due to lack of complete information or because they played minor role in project
- Information gathered on codes configured for runs at production scale
 - Not benchmark runs or scaling exercises
- Reporting 'threads' generically on 30 apps 65% of apps
 - 26 projects used OpenMP for threading
 - 4 used pthreads (at 32 or 64 threads/rank)

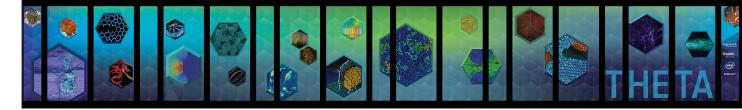
APPLICATIONS REVEAL A LOT OF SCALABILITY

Binned Application Count - Mira Production MPI Rank Scalability



Binned Application Count - Mira Production Thread Scalability


NO APPLICATION DOMAIN DOMINATES


Binned Application Count – Mira Production MPI Rank Scalability Science Domain

NO APPLICATION DOMAIN DOMINATES

Binned Application Count – Mira Production MPI Rank Scalability Science Domain

THETA

Theta is the first of two pre-exascale systems coming to Argonne

- Serves as a bridge between Mira and Aurora, transition and data analytics system
- Vendor: Intel (Prime) / Cray (Integrator)

System	Config	Comments
KNL Compute Nodes	3240	7230 SKU, 64cores 1.3GHz
KNL DDR4 Memory	607.5 TB	192 GB/node DDR4-2400
KNL MCDRAM Memory	50.6 TB	16 GB/node
SSD Capacity	414.7 TB	128 GB/node
Aries Global Links	336 Optical Links	
Aries Bi-section BW	7.2 TB/s Bi-directional	
Racks	18	
Lustre LNET Nodes	30	
DVS – GPFS Nodes	60	

CRAY XC40 BUILDING BLOCKS

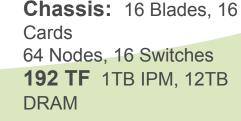
Up to

72 cores

DRAM MCDRAM MCDRAM MC

Node: KNL Socket

2.66 TF 16GB IPM

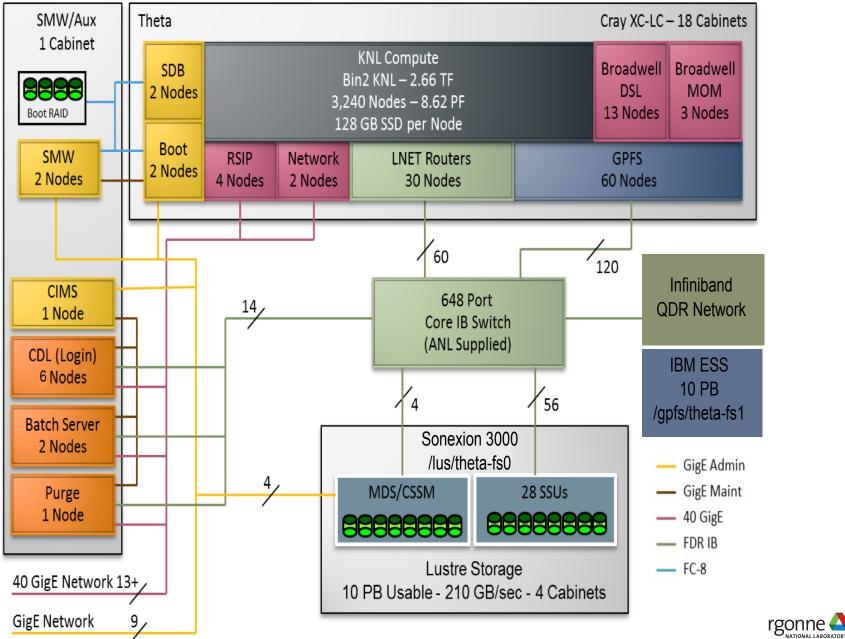

192 GB DDR4 (6 channels)

DDR4

Cabinet: 3 Chassis, 129 kW liquid cooled Local Group 384 Nodes 510.72 TF 3TB IPM, 36TB DRAM

System: 18 Cabinets 3240 Nodes, 810 Switches Dual-plane, 9 Groups, Dragonfly 7.2 TB/s Bi-Sec 8.62 PF 50.6 TB IPM, 607.5 TB DRAM

Aries

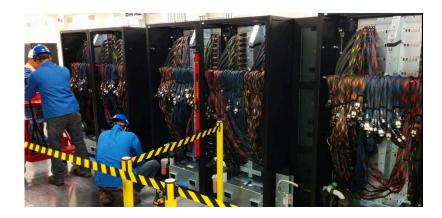


Compute Blade: 4 Nodes/Blade + Aries switch 128GB SSD 10.64 TF 64GB IPM, 768GB DRAM

Argonne Leadership Computing Facility

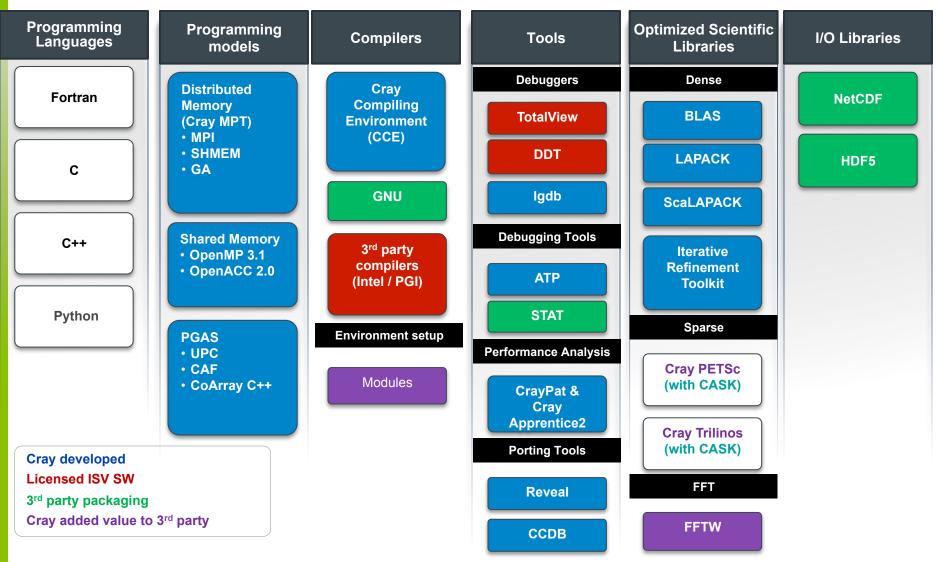
THETA SYSTEM

THETA SSD


Node local storage

- Theta compute nodes contain a single SSD with a raw capacity of 128 GB
- A local volume is presented to the user as an ext3 system on top of an LVM volume
- Userspace applications can access the SSD via standard POSIX APIs
- The final capacity available to the end user is still TBD
- The ALCF is experimenting with different programming models for the SSD
- Example Use Cases
 - Temporary files used during execution but not saved
 - Dynamic Libraries
 - File system communication for multiple application workflows

THETA



CRAY PROGRAMMING ENVIRONMENT

PORTING FOR PERFORMANCE

Enable High Performance Computational Science

De	bu	gg	er	S
	~ ~	00		-

- Allinea (C. January)
- RogueWave (J. DelSignore, C. Schneider, S. Lawrence)

Performance Tools

- HPCToolkit (J. Mellor-Crummey, Rice U.)
- TAU (S. Shende, ParaTools)
- PAPI (H. McCraw, UTK)

Compilers

• LLVM (Hal Finkel, ALCF)

OS

Argo

(K. Iskra, K. Yoshii, ANL)

Libraries

- PetSC
- Elemental
- Intel MKL ScaLAPACK (Intel)
- LIBXSMM
- ELPA
- NWChem packages (Intel)

Programming Models

- MPICH
- (P. Balaji, ANL)

(Intel)

(Intel)

(B. Smith, ANL)

(J. Poulson, Stanford)

 BerkelyUPC (P. Hargrove, Y. Zheng, LBNL)

(Intel)

- ARMCI-MPI (Intel)
- CommAgent MPI (Intel)
- EP-lib

1/0

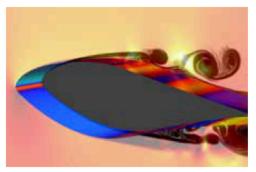
- GLEAN (V Vishwanath, ANL)
- ADIOS (S. Klasky, N. Podhorszki, Q. Liu, H. Abbasi, J. Choi, ORNL; M. Parashar, Rutgers)
- HDF5 (Q. Koziol , M. Chaarawi, J. Soumagne, S. Breitenfeld, N. Fortner, UIUC)
- Mercury (R. Ross, ANL)
- MPI (R. Latham, ANL)
- Darshan (P. Carns, ANL)
- Parallel I/O library (PIO) (J. Edwards, J. Dennis, NCAR; J. Krishna, ANL)

Other

- Model Coupling Toolkit (R. Jacob, ANL)
- Common Infrastructure for Modeling the Earth (CIME) (M. Vertenstein, J. Edwards, NCAR; R. Jacob, ANL)
- Shifter (S. Canon, D. Jacobsen, NERSC)

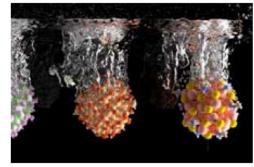
THETA EARLY SCIENCE PROGRAM

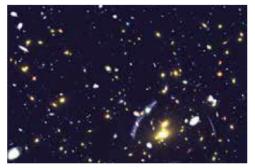
- Part of the process of bringing a new machine into production
- Based on the successful Mira ESP
- Brings together computational scientists, code developers, and computer hardware experts
- Optimizes key applications for Theta
- Solidifies libraries and infrastructure
- Enables breakthrough science and engineering research

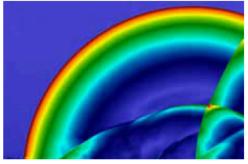

Six "Tier One" computational science projects

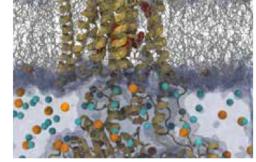
- Selected by peer review
- Represent a range of scientific areas and numerical methods.
- Prepares Theta for science on day one!

19


THETA'S EARLY SCIENCE PROJECTS


Scale-Resolving Simulations of Wind Turbines with SU2 Juan J. Alonso Stanford University Code: SU2


Large-Scale Simulation of Brain Tissue: Blue Brain Project, EPFL Fabien Delalondre EPFL Code: CoreNeuron


First-Principles Simulations of Functional Materials for Energy Conversion Giulia Galli The University of Chicago Codes: Qbox, WEST

Next-Generation Cosmology Simulations with HACC: Challenges from Baryons Katrin Heitmann Argonne National Laboratory Code: HACC

Direct Numerical Simulations of Flame Propagation in Hydrogen-Oxygen Mixtures in Closed Vessels Alexei Khokhlov The University of Chicago Code: HSCD

Free Energy Landscapes of Membrane Transport Proteins Benoît Roux The University of Chicago Code: NAMD

HACC FULL APPLICATION: 5X CORE-TO-CORE

3203: 16 cores, 1 node of BG/Q, 1/4 of the node of KNL

Cores	RPN	OMP	TH	BG/Q	KNL B0,	Ratio
				Time, s	Time, s	
16	4	4	16	4297	616.3308	6.98
16	4	8	32	2677	543.7294	4.92
16	4	16	64	2504	530.2267	4.72
16	8	2	16	4362	544.7519	8.00
16	8	4	32	2571	459.5265	5.59
16	8	8	64	2278	437.2058	5.18
16	16	4	64	2581	468.5037	5.50

512³: 64 cores, 4 nodes of BG/Q, 1 node of KNL

Cores	RPN	OMP	TH	BG/Q Time, s	KNL B0, cache mode Time, s	KNL B0, flat mode Time, s	Ratio
64	16	4	64	4542	678.7571	678.2269	6.69
64	16	8	128	2823	606.1815	609.2007	4.66
64	16	16	256	2556	587.2716	587.4443	4.35
64	32	2	64	4747	620.7261	621.2356	7.65
64	32	4	128	2824	536.1650	534.9907	5.27
64	32	8	256	2503	503.0927	501.8637	4.98
64	64	4	256	2539	510.3745	506.7107	4.98

ALCF DATA SCIENCE PROGRAM (ADSP)

- "Big Data" science problems that require the scale and performance of leadership computing resource
- Projects will cover a wide variety of application domains that span computational, experimental and observational sciences
- Focus on data science techniques including but not limited to statistics, machine learning, deep learning, UQ, image processing, graph analytics, complex and interactive workflows
- Two-year proposal period and will be renewed annually. Proposals will target science and software technology scaling for data science
- Proposal Deadline: June 3, 2016 (Expected yearly call for proposals) <u>https://www.alcf.anl.gov/alcf-data-science-program</u>

SUPPORT

- Funded postdoctoral appointee
- ALCF staff support

COMPUTE RESOURCES

- Theta
- Sage (Urika-GX Cluster)
- Cooley and Mira
- Aurora (Future)

Argonne Leadersnip Computing Facility

AURORA – COMING 2018

- Over 13X Mira's application performance
- Over 180 PF peak performance
- More than 50,000 nodes with 3rd Generation Intel® Xeon Phi[™] processor
 - codename Knights Hill, > 60 cores
- Over 7 PB total system memory
 - High Bandwidth On-Package Memory, Local Memory, and Persistent Memory
- 2nd Generation Intel® Omni-Path Architecture with silicon photonics in a dragonfly topology
- More than 150 PB Lustre file system capacity with > 1 TB/s I/O performance

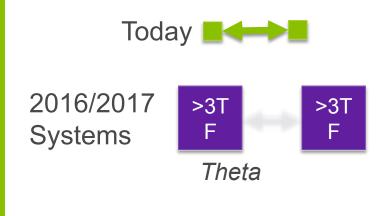
Call for Aurora ESP just closed at the beginning of the month!

Argonne Leadership Computing Facility

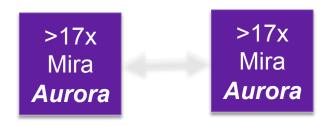
MIRA TO AURORA TIMELINE

From Mira to Aurora

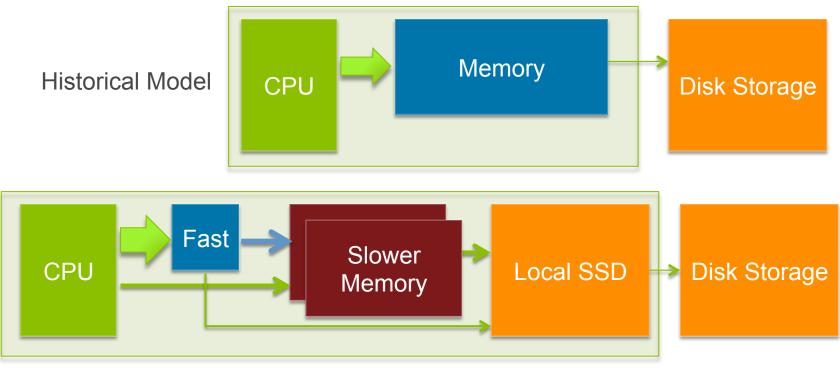
	CY2	2015			CY2	2016			CY2	2017			CY2	2018			CY2	019
Milestones*	Q1	Q2	Q3	Q4	Q1	Q2												
Mira Production																		
Theta ESP Call for Proposals																		
Theta ESP Projects Announced																		
Theta ESP Application Preparation																		
Theta Early Science Period																		
Theta Production							_											
Aurora ESP Call for Proposals																		
Aurora ESP Projects Announced																		
Aurora ESP Application Preparation																		
Aurora Early Science Period																		
Aurora Production																		


* Dates are subject to change.

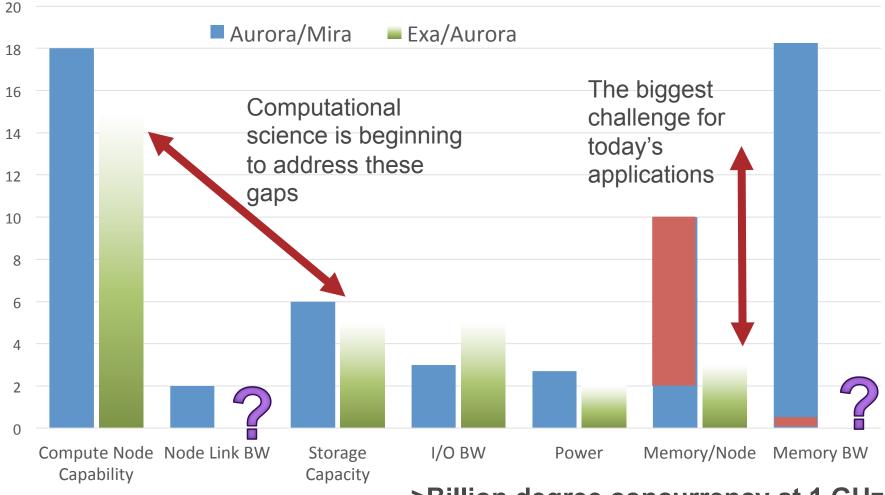
MIRA, THETA, AURORA TRANSITION


System Feature	Mira (2012)	Theta (2016)	Aurora (2018)
Peak performance	10 PF	8.6 PF	180 PF
Number of nodes	49,152	3240	>50,000
Aggregate high-bandwidth, on- package memory, local memory, and persistent memory	786 TB	650 TB	>7 PB
File system capacity	26 PB	10 PB	>150 PB
File system throughput	300 GB/s	200 GB/s	>1 TB/s
Peak power consumption	4.8 MW	1.7 MW	13 MW
GFLOPS/watt	2.1	>5	>13
Machine footprint	1,536 sq. ft.	~1,000 sq. ft.	~3,000 sq. ft.

NODE CAPABILITY GROWING FAST


- Node level parallelism in the 100s now
- Node growth is not matched by interconnect
- Reliance on vectorization will continue increase

NODE CAPABILITY INCLUDES MEMORY HIERARCHY


Model of application memory use has changed

New model for many core or accelerated

ATIONAL LABORATORY

PROJECTED EXASCALE SYSTEMS (2022) RELATIVE TO AURORA (2018), *TREND ILLUSTRATION*

>Billion degree concurrency at 1 GHz Mira \Rightarrow Exascale roughly 200x capability

JLSE: LCF-MCS JOINT LABORATORY FOR SYSTEM EVALUATION

OBJECTIVE: Evaluate future hardware and software platforms for computing and computational science activities at Argonne. Jointly managed by LCF and MCS.

GOALS:

- Improve science productivity on current & future LCF platforms
- Investigate alternative approaches to current & future deployments (hardware & software)
- Maintain a range of hardware & software test beds
- Help to drive standards in technologies, programming models, languages etc.

IMPLEMENTATION:

11

- Manage variety of test beds for hardware & software evaluation
- Coordinate interactions with vendors
- Engage in joint research on performance modeling, application optimization, programming models etc.

applied

JLSE RESOURCES

System Name	Description	Hostname(s)	Status	Service Date
Sage	Cray uREKA-GX Analytics Cluster - 32x Haswell-EP E5-2697v3, 256GB RAM, 800GB NVMe SSD, Aries Interconnect Access Restricted	 sagelogin1 sagelogin2 sage00-27 sageinet1 sageinet2 	Waiting configuration	
KNL	Gty: 10 Intel Adam's Pass S7200AP, (8 - KNL 7230 64c 1.3Ghz, 2 KNL 7250), 1926B RAM, OmniPath HCA Access restricted	 knl00-10 	In Service	
R	Qty: 13 Intel HNS2600KPR, 2x E5-2699v4 22c 2.2Ghz, 128GB RAM, OmniPath HCA	• it00-12	In Service	2016- 05-25
Gomez	Cty: 5 - SuperMicro 40488-TR4FT, 4 Socket - Intel Haswell-EX E7-8867v3 16c 2.5Ghz. 1TB RAM, 2x Mellanox EDR, 1x OmniPath, 4RU.	 gomez00-04 	In Service	2016- 05-25
Pugsley	Qty: 6 - IBM x3650 M4, previously IBM QSS file servers, now for Lustre testbed Access Restricted	 pugsky- mds0-1 pugsky- oss0-3 	Waiting on provisioning	
Lurch	Qty: 8 - IBM x3650 M4, previously IBM GSS file servers, now for JLSE general use and high-end Filesystem Benchmark clients	 lurch00-07 	Waiting on provisioning	
Firestone	City: 1 - IBM S822LC, OpenPower, Power8 10c 2.92Ghz, 1xEDR, Nvidia K80 GPU, 128GB RAM	 frestone 	In Service	2016- 04-11
Tubes2	Qty: 1 - IBM x3650 M4, 40GbE DTN Testbed. Access Restricted	+ tubes2	In Service	2016- 02-05
Petrel v2	Qty: 1 - IBM ESS GL6, 2PB raw, 1.6PB GPFS, 10xFDR10 Vesta Fabric connectivity Qty: 2 - Intel HNS2600KPF, E5-1660v3, 4-Nodes in 2RU chassis, 1x40GbE WAN, 1xQDR for GPFS. Access Restricted	 petrel1-2 petrelmgmt1 petreldtn1-8 	In Service	2016- 01-22
Fester	Qty: 1 - Intel R1208W2GS, production JLSE Monitoring server	 fester 	Waiting configuration	
Mustang	Oty: 2 AppliedMicro X-C1 Development Kit Plus (X-Gene ARM64), https://www.apm.com/products/data-center/x-gene- family/x-c1-development-kits/x-c1-development-kit-plus/	 mustang00- 01 	In Service	2015- 02-06
Thing	Gty: 8 - SuperMicro X10DRi, Intel Haswell-EP E5-2699v3, 4RU	 thing00-07 	In Service, Thing07 dedicated to projects	2014- 12-12

How to gain access?

Fill in your project request and request account on our website

