
Use of Machine Learning Techniques for improved
Monte Carlo Integration

Josh Bendavid (Caltech)

September 23, 2016
Beyond Leading Order Calculations on HPCs

FNAL

Josh Bendavid (Caltech) ML MC Integration 1

Introduction

R&D Project Growing out of work on Multivariate Regression:
New algorithm for Monte Carlo integration and event
generation

Outline

Brief intro to Monte Carlo integration/generation and
(non-exhaustive) look at existing algorithms (VEGAS and
FOAM)
Brief intro on Boosted Decision Trees and their conventional
classification/regression applications
Adaptation to Monte Carlo integration/generation
Some very preliminary comparisons with existing algorithms
Discussion of alternative approaches with deep neural networks

Josh Bendavid (Caltech) ML MC Integration 2

Monte Carlo Integration and Generation

Monte Carlo integration: Given an arbitrary/black box
multidimensional function f (x̄), find the integral

∫
f (x̄)dx̄

Monte Carlo generation: Given an arbitrary/black box
multidimensional function f (x̄), generate an unweighted set of
vectors x̄ with a probability density p(x̄) = f (x̄)/

∫
f (x̄)dx̄

Typical HEP use case: Given a numerical implementation for
a matrix element fully differential in incoming/outgoing
four-vectors, compute the total cross section (integral), and
generate a set of unweighted events

Josh Bendavid (Caltech) ML MC Integration 3

Monte Carlo Integration and Generation: Example
Function

S. Jadach, physics/0203033

This is the “camel” function from the original VEGAS paper,
which can be generalized to N dimensions
Factorized approach will not work well
Significant low-density regions which cannot be easily
excluded a-priori

Josh Bendavid (Caltech) ML MC Integration 4

Monte Carlo Integration: Brute Force Approach

Simplest possible algorithm:

Randomly sample from a (multidimensional) Uniform
distribution
Integration weight w = Vf (x̄) (where V is the total volume of
the space)
Integral I = (1/N)

∑
w , σI = σw/

√
N

Generation: Use simple accept-reject sampling
(ε = wmax/ < w >)

End result: Huge variance for weights → need a huge number
of samples to get reasonable numerical precision (and very low
unweighting efficiency for generation)

Josh Bendavid (Caltech) ML MC Integration 5

Monte Carlo Integration: Importance Sampling

General idea, sample from some generating probability density
g(x̄) instead of uniformly:

Integration weight w = f (x̄)/g(x̄)
Integral I = (1/N)

∑
w , σI = σw/

√
N

Generation: Use accept-reject sampling (ε = wmax/ < w >)

Ideal case: g(x̄) = f (x̄)/
∫
f (x̄)dx̄ → try to construct some

g(x̄) that is easy to sample from and well approximates f (x̄)

Different considerations for integration (minimize variance) vs
generation (balance between variance and maximum weight)

Josh Bendavid (Caltech) ML MC Integration 6

Monte Carlo Integration: Importance Sampling

Typical algorithm divided in two stages
1 Construct appropriate sampling function g(x̄) which

approximates f (x̄)
2 Generate a large number of events to evaluate the integral with

maximum precision (or unweight with maximum efficiency)

Josh Bendavid (Caltech) ML MC Integration 7

VEGAS

G.P. Lepage, A New Algorithm for Adaptive Multidimensional Integration,

Journal of Computational Physics 27, 192-203, (1978)

Iterative algorithm

Start from uniform sampling distribution

At each iteration, build an adaptive-binned histogram to
approximate f (x̄)

Multidimensional functions are handled as a simple product of
one-dimensional histograms

Building histograms is fast and relatively simple, but for
higher-dimensional functions with non-trivial correlations there
is a hard limit to the achievable weight variance/unweighting
efficiency

Carefully choosing/transforming integration basis can help
(but not always possible)

Josh Bendavid (Caltech) ML MC Integration 8

Foam

S. Jadach, physics/0203033

Improving on limitations of VEGAS requires true multi-dimensional
sampling function

Foam algorithm based on a single decision tree → divide up phase space
into hyper-rectangles with optimized boundaries

Phase-space is sampled uniformly within each hyper-rectangle to
determine the next binary split until the stopping condition is reached

Josh Bendavid (Caltech) ML MC Integration 9

Foam

Assign a weight to each hyper-rectangle (proportional to estimated
integral inside)

For each event: randomly choose a hyper-rectangle (probability
proportional to its weight) then randomly sample within hyper-rectangle

Josh Bendavid (Caltech) ML MC Integration 10

Boosted Decision Trees for Classification

p(sig) p(sig)

p(sig) p(sig)

p(sig)

Decision Tree is a simple
structure consisting of a set of
connected “nodes”

Intermediate nodes where a
variable and cut value is
selected to split events into two
subsets

Terminal nodes are assigned a
response, in this case the

relative signal probability Ls (x̄)
Lb(x̄)

Multidimensional likelihood
ratio is therefore approximated
by a piecewise-continuous
function over the multivariate
input space

Boosting: Construct a series
of decision trees to improve the
overall response

Josh Bendavid (Caltech) ML MC Integration 11

Boosted Decision Trees for Regression

Boosted Decision Trees can
also be used for multivariate
regression problem

Replace log likelihood ratio
with generic function f (x̄)

Minimize deviation between
training sample and
regression function

Decision trees form a series
of piecewise continuous
approximations for the
function f (x̄) in the
multidimensional input space

Josh Bendavid (Caltech) ML MC Integration 12

Boosted Decision Trees for Monte Carlo Integration (aka
GBRIntegration)

Evaluating amplitudes is the critical computational step for
phase space integration or unweighting in MC generators

Number of required phase space points depends on weights
variance and/or unweighting efficiency

Insight: Foam is based on a single decision tree, performance
of MC integration can be improved by boosting as for
classification and regression

Basic limitation of Foam is that huge number of
hyper-rectangles are needed for good performance

Boosting allows to exploit combinatorics of terminal nodes
between different decision trees

Initial implementation based on GBRLikelihood tool developed
for CMS photon energy regression

Josh Bendavid (Caltech) ML MC Integration 13

Boosted Decision Trees for Monte Carlo Integration (aka
GBRIntegration)

Basic Principle: Use a boosted decision tree to directly
estimate function value f (x̄) such that

g(x̄) =
∑

gi (x̄) ≈ f (x̄) (1)

Where each gi (x̄) is an individual decision tree with some
value assigned to each terminal node

Trivial to compute integral for each tree (and for sum):∫
gi (x̄) =

∑
Vijgij , where Vij and gij are the volume and

value assigned to each hyper-rectangle/terminal-node)

Josh Bendavid (Caltech) ML MC Integration 14

Sampling from a Boosted Decision Tree

Sampling from a Boosted Decision tree is
straightforward/efficient:

Randomly choose a tree from the series with probability
proportional to its integral
Randomly choose a terminal node on the tree with probability
proportional to its integral
Uniformly sample within the hyper-rectangle of the chosen
terminal node

Critical limitation: Any transformation breaks the above logic
(ie cannot efficiently sample from f (x̄) if
g(x̄) =

∑
gi (x̄) ≈ ln f (x̄))

Critical limitation: Only works for positive-definite tree
values

Josh Bendavid (Caltech) ML MC Integration 15

Constructing the Boosted Decision Tree

Positive-definite limitation means that slow convergence is
required (later trees cannot correct with negative values)

Train two BDT’s in parallel, one for sampling, and one to aid
convergence (with transformation h(x̄) ∼ ln f (x̄) and no
positive-definite constraint)

BDTs for MC integration constructed iteratively (start with
uniform sampling distribution in first iteration with primary
and secondary BDT’s initialized to a common small value)

Sample N events from current secondary (sampling) BDT
series g(x̄)
Train tree for primary BDT h(x̄)
Train tree for secondary BDT g(x̄)
Repeat

Josh Bendavid (Caltech) ML MC Integration 16

Some results - 4D Camel Function Integration

Comparing Vegas, GBRIntegrator, Foam for 4-dimensional camel function
(since this appears in both VEGAS and Foam papers).

Given relative weight variance σw/ < w > after training/grid building,
relative uncertainty on integral evaluated with N additional events is σI/I
= 1√

N
σw/ < w >

Algorithm # of Func. Evals σw/ < w > σI/I
(2e6 add. evts)

VEGAS 300,000 2.820 ±2.0× 10−3

Foam 3,855,289 0.319 ±2.3× 10−4

GBRIntegrator 300,000 0.0819 ±5.8× 10−5

GBRIntegrator (staged) 300,000 0.077 ±5.4× 10−5

3x smaller weight variance to foam with 10x less function evaluations

Substantially improved performance with respect to initial version of GBRIntegrator algorithm (lacking
primary/secondary BDT paradigm)

For this particular function VEGAS performance saturates at relatively poor weight variance

Josh Bendavid (Caltech) ML MC Integration 17

Diagnostic Plots - 4D Camel Function

d, distance along multidimensional diagonal (a.u.)
0 0.2 0.4 0.6 0.8 1

fu
nc

tio
n

va
lu

e
(a

.u
.)

0

100

200

300

400

500

Graph

) (Camel)xf(

 (Primary BDT))xh(e

) (Secondary BDT)xg(

Graph

(a) linear

d, distance along multidimensional diagonal (a.u.)
0 0.2 0.4 0.6 0.8 1

fu
nc

tio
n

va
lu

e
(a

.u
.)

16−10

14−10

12−10

10−10

8−10

6−10

4−10

2−10

1

210

Graph

) (Camel)xf(

 (Primary BDT))xh(e

) (Secondary BDT)xg(

Graph

(b) log

Secondary sampling BDT approximates function slightly worse
in very low probability regions (related to initialization values,
positive definite constraint during training, and lack of
transformation). For this particular case, effect is small. (but
this is the reason staged variation achieves slightly better
precision)

Josh Bendavid (Caltech) ML MC Integration 18

Diagnostic Plots - 4D Camel Function - Integration
Weights

)x)/g(xSecondary weight f(
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

nu
m

be
r

of
 e

ve
nt

s

0

1000

2000

3000

4000

5000

htgtratiointerfull
Entries 20000
Mean 0.9931
RMS 0.08134
Underflow 0
Overflow 0

(a) linear

htgtratiointerfull
Entries 20000
Mean 0.9931
RMS 0.08134
Underflow 0
Overflow 0

)x)/g(xSecondary weight f(
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

nu
m

be
r

of
 e

ve
nt

s

1

10

210

310

htgtratiointerfull
Entries 20000
Mean 0.9931
RMS 0.08134
Underflow 0
Overflow 0

(b) log

Excellent weight distribution for integration purposes
(symmetric, small variance)

Josh Bendavid (Caltech) ML MC Integration 19

Conclusions/Todo

Very promising performance/potential for speedup of MC
integration (and eventually generation) with BDT-based
algorithm

Also exploring alternatives based on generative neural
networks (sample trivial input distribution, train appropriate
transformation based on Jacobian)
Todo:

More systematic tests at higher dimensions
Tests with real physics examples
Further optimization or improvements to tree growth and
fitting procedure (consider reoptimizing previous trees,
alternate loss function, stochastic gradient descent, exploit
existing widely used packages like XGBoost, etc)
Implementation for unweighting (modified loss function)
Understand if/how to best combine with multi-channelling and
related techniques

Paper and standalone implementation coming soon

Josh Bendavid (Caltech) ML MC Integration 20

Backup

Josh Bendavid (Caltech) ML MC Integration 21

Diagnostic Plots - 4D Camel Function - Integration
Weights - Staged case

htgtratiobase
Entries 20000
Mean 1.002
RMS 0.06863
Underflow 0
Overflow 9

)x/f(
)xh(

Primary weight e
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

nu
m

be
r

of
 e

ve
nt

s

1

10

210

310

htgtratiobase
Entries 20000
Mean 1.002
RMS 0.06863
Underflow 0
Overflow 9

(a) Primary Weight

Primary weight for integral evaluation, intermediate weight is
for intermediate unweighting (primary vs secondary bdt)

Josh Bendavid (Caltech) ML MC Integration 22

Some results - 9D Camel Function Integration

Comparing Vegas, GBRIntegrator, Vegas for 9-dimensional
camel function

Algorithm # of Func. Evals σw/ < w > σI/I
(2e6 add. evts)

VEGAS 1,500,000 19 ±1.3× 10−2

GBRIntegrator 3,200,000 0.63 ±4.5× 10−4

GBRIntegrator (staged) 3,200,000 0.31 ±2.2× 10−4

50x smaller weight variance to Vegas with 2x function
evaluations

Larger performance difference between staged and non-staged
variations in this case

For this particular function VEGAS performance saturates at
relatively poor weight variance

Josh Bendavid (Caltech) ML MC Integration 23

Diagnostic Plots - 9D Camel Function

d, distance along multidimensional diagonal (a.u.)
0 0.2 0.4 0.6 0.8 1

fu
nc

tio
n

va
lu

e
(a

.u
.)

0

500

1000

1500

2000

2500

3000

310×
Graph

) (Camel)xf(

 (Primary BDT))xh(e

) (Secondary BDT)xg(

Graph

(a) linear

d, distance along multidimensional diagonal (a.u.)
0 0.2 0.4 0.6 0.8 1

fu
nc

tio
n

va
lu

e
(a

.u
.)

35−10

31−10

27−10

23−10

19−10

15−10

11−10

7−10

3−10

10

510
610

Graph

) (Camel)xf(

 (Primary BDT))xh(e

) (Secondary BDT)xg(

Graph

(b) log

Deficiencies of secondary sampling BDT with respect to
primary BDT are larger in higher dimensional case

Josh Bendavid (Caltech) ML MC Integration 24

Diagnostic Plots - 9D Camel Function - Integration
Weights

)x)/g(xSecondary weight f(
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

nu
m

be
r

of
 e

ve
nt

s

0

100

200

300

400

500

600

700

htgtratiointerfull
Entries 20000
Mean 1.128
RMS 0.3724
Underflow 0
Overflow 845

(a) linear

htgtratiointerfull
Entries 20000
Mean 1.128
RMS 0.3724
Underflow 0
Overflow 845

)x)/g(xSecondary weight f(
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

nu
m

be
r

of
 e

ve
nt

s

10

210

310

htgtratiointerfull
Entries 20000
Mean 1.128
RMS 0.3724
Underflow 0
Overflow 845

(b) log

Visible also in the weight distribution

(Checking staged case now)

Josh Bendavid (Caltech) ML MC Integration 25

Diagnostic Plots - 9D Camel Function - Staged Case

d, distance along multidimensional diagonal (a.u.)
0 0.2 0.4 0.6 0.8 1

fu
nc

tio
n

va
lu

e
(a

.u
.)

0

500

1000

1500

2000

2500

3000

310×
Graph

) (Camel)xf(

 (Primary BDT))xh(e

) (Secondary BDT)xg(

Graph

(a) linear

d, distance along multidimensional diagonal (a.u.)
0 0.2 0.4 0.6 0.8 1

fu
nc

tio
n

va
lu

e
(a

.u
.)

35−10

31−10

27−10

23−10

19−10

15−10

11−10

7−10

3−10

10

510
610

Graph

) (Camel)xf(

 (Primary BDT))xh(e

) (Secondary BDT)xg(

Graph

(b) log

Deficiencies of secondary sampling BDT with respect to
primary BDT are larger in higher dimensional case

Josh Bendavid (Caltech) ML MC Integration 26

Diagnostic Plots - 9D Camel Function - Integration
Weights - Staged case

htgtratiobase
Entries 20000
Mean 1.019
RMS 0.2126
Underflow 0
Overflow 265

)x/f(
)xh(

Primary weight e
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

nu
m

be
r

of
 e

ve
nt

s

1

10

210

310

htgtratiobase
Entries 20000
Mean 1.019
RMS 0.2126
Underflow 0
Overflow 265

(a) Primary Weight

Staged approach corrects obvious issues with weights in 9D
case

Josh Bendavid (Caltech) ML MC Integration 27

