

Reminder: the current CMS pixel detector

Barrel Pixels (BPIX):

3 barrel layers at 4.4, 7.3, 10.2cm 768 modules

Present detector designed for 10³⁴cm⁻²s⁻¹ and 25ns bunch spacing

- 1m² of n⁺-in-n silicon sensors
- Excellent resolution and efficiency
- Excellent good-channel fraction and uptime in Run1 and Run2 so far

Phase1 pixel detector design

- Installation during extended year-end technical stop 2016/17 in February'17
- Smooth transition needed from installation to physics data taking; not much time for in-situ calibrations
 - Sensor technology, pixel size and module concept very similar; need to fit into existing infrastructure
 - Move from analog to digital readout chip (ROC) → reduced buffer overflow and inefficiency
 - Move from 3- to 4-hit coverage → increase redundancy and track finding efficiency
 - Move closer to the beam → improve vertexing and b-tagging
 - Move from single-phase fluorocarbon (C6F14) to evaporative, bi-phase CO₂ cooling

Phase1 upgrade improvements

- Present detector designed for 10³⁴cm⁻²s⁻¹ and 25ns bunch spacing
- Expect twice as much before LS3 (2024)
 - 50 pileup events, hit rates of ~600MHz/cm²
- Improve redundancy: from 3 to 4 layers (BPIX), from 2 to 3 disks on each end (FPIX); impacting tracking efficiency and purity
- Move closer to beam: improve vertexing and btagging
- Avoid hit inefficiency of up to 16% due to buffer overflow in readout chip (ROC) with new digital ROC
- Reduce mass: use CO₂ cooling instead of water-glycol

BPIX & FPIX exploded view

Pixel Modules

- FPIX:
 - Bump bonding done at vendor (RTI)
 - Module assembly done in house at two institutions
- BPIX:
 - Bump bonding and module assembly done at vendors and in-house at several institutions
- Module = Sandwich{ROCs+SiSensor+HDI}
 - 16 ROCs = >66k pixels

Readout Chip

- New, digital readout chip based on present analog PSI46
- Same technology (0.25µm CMOS) and column drain architecture
 - 40MHz analog → 160 Mbits/s digital (8 bit ADC)
 - Increase of hit (32 \rightarrow 80) and time stamp (12 \rightarrow 24) buffer depth
 - Additional readout buffer
 - Smaller cross talk + improved comparator → threshold reduced from $3200e^{-}$ to $\sim 2000e^{-}$ better efficiency, resolution and longevity
- Final version for BPIX L2,3,4 and FPIX performing very well
- Special version for L1 (580 MHz/cm²) with cluster readout

Layer 1 PROC600 Innovations

Design parameters:!

- chip size 7860 m x 10'550 m
- pixel size 100 m x 150 m #
- 339 transistors / pixel (268 L24 ROC)#
- pixel array 52 x 80#
- DCCD transfer in DC at 40MHz#
- Data Buffer Cluster Cells (4x) 56#
- Timestamp Buffer 40#
- ROC Read-out Buffer 64#
- Total transistor count: 2.2 M#
- analog pulse height: 8 bit ADC#
- pixel rate ~600MHz/cm² ~FEI4!
- expect rad. hardness ~500Mrad#
- power consumption#
 - analog power identical to L24 ROC#
- digital power probably less than L24 #

High rate x-ray test of PROC600v2

High rate x-ray tests confirm excellent behavior of v2 chip

PROC600 irradiation studies

Irradiation dose [Mrad]	Fluence [1MeV Neq/cm ²]	# samples	Equivalence
0	0	15	/
66	$0.44 \cdot 10^{15}$	4	Layer 2
137	$0.91 \cdot 10^{15}$	5	Layer 1
265	$1.77 \cdot 10^{15}$	3	/
495	$3.3 \cdot 10^{15}$	3	/

- irradiation study of PROC600(v1) samples, some with sensor
- irradiated with 23 MeV protons up to 480 Mrad
- dynamic range of DACs studied after irradiation
- electrically operational up to 480 Mrad
- HR efficiency checked for 60 and 120 Mrad samples

High rate test beam with protons

PIF = PSI proton Irradiation Facility

- high rate (up to 1.2 GHz/cm2) beam test with PROC600v2 chip with protons
- efficiency of ~97.5-98% at 600 MHz/cm2 for cluster sizes of ~2 pixels measured

Module production

Module Production and Quality

Number of defects

FPIX modules @ 300V (instead of 150V)

- Half of last batch of sensor wafers shows effects of surface traps that limit charge collection efficiency
- We have not found a cure for these modules
- Some installed in FPIX, operate 1 disk at 300 V
- What happens with irradiation?

Irradiation helps!

174.2

36.23

- Have irradiated single chip assemblies (and control samples) to doses corresponding to 10 fb⁻¹, 70fb⁻¹ and 300 fb⁻¹
 - Many thanks to the Karlsruhe group for the irradiation and for letting us use their facilities for the measurements

FPIX Detector Assembly at Fermilab

FPIX shipping and reassembly at CERN

- 1st and 2nd half cylinder at CERN, reassembled and tested
- 3rd half cylinder will be shipped this week, its disks on 11/2
- 4th half cylinder plus disks will be shipped week of 11/9

BPIX Detector Assembly at PSI

Cooling pipes running in groove below CF

Thermal cycling of mechanical structures

thermal cycling of BPIX mechanics design!

- check for delamination due do CTE missmatch!
- L1 half shell cycled 5 times $[+25^{\circ}C, -18^{\circ}C] \rightarrow ok!!$
- → consider basic CTE design as sound!
- L2 half shell cycled 3 times $[+25^{\circ}C, -18^{\circ}C] \rightarrow \text{ok!!}$
- continue thermal cycling of all half shells as QC!!

L2 module mounting

module mounting rate ~ 80 modules/day! (based on L2 and L3 module mounting)!

Completed L2

Commissioning and µTCA DAQ

CMS

- All modules are fully qualified and calibrated at -20°C on the bench
- Full readout chain tested with final components in situ after assembly
- New DAQ system (μTCA instead of VME)
- Time for calibration inside CMS very short/non-existent before LHC turns on
- Close to final calibrations performed in cleanroom at CERN before installation
- Might include one quarter of FPIX into CMS cDAQ (from surface) to exercise whole chain
- Already gained invaluable experience with pilot system (a few FPIX modules installed in 3rd disk position of current detector (since LS1)

Summary

- CMS will replace its pixel detector in early 2017
- This will maintain high quality physics data taking until HL-LHC upgrades
- Newly designed readout chip, CO₂ cooling, almost double the number of pixels, new DAQ technology; all within the framework of the existing infrastructure and power supplies
- Module production almost finished
- Detector assembly progressing well, scheduled to finish next month

