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Issues:

Detectors size
Connections to the DAQ

G. El Fakhri, MGH-Harvard
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Detectors size: SiPM + SSLE
Sub-Surface Laser Engraving for scintillators

• SSLE Nd:YAG laser and GAMOS simulations
• Scintillator pixelation without external reflectors
• Depth of interaction have been achieved.

Advantages:
-Design flexibility
-Higher packing fraction and sensitivity
-Light sharing necessary for Anger logic
-Cost effectiveness.



• How far out of the MRI is far enough?

• What wavelength could do the trick?

• How much electronics can we keep outside?

• What are the drawbacks?

Connections: wireless detector

Insert base station

Can this be wireless?



Initial experimental setting

•Necessary measurements for PET: 

•Transmission jitter  ~80 ps, within specifications

•Transmission bandwidth  higher than 250 MHz 

(sufficient)



• Amplified output (red Tx, blue Rx)

• SiPM output (red Rx, blue Tx)

• Profile with conventional and OWC 

channels

Testing
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First ideas

• Innovative, cost-effective, miniaturized, versatile MR-
compatible front-end scintillation detector.

• Handheld gamma camera

Wireless analog front-end

Gamma camera
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Current status

 Studies on the  application of shorter scintillator 
crystal treated with SSLE techniques

 Prototyping with SiPM

 Studies on feasibility of analog OWC

What about data processing?
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Nutaq PicoDigitizer-125

Key Features:

-Up to 64 channels coupled to a large Virtex-6 FPGA

-125 MSPS ADCs, 14 bit resolution
-Phase aligned channels and phase coherent sampling

- GigE and PCIe 4x high speed interfaces

-AC-DC coupling options, single-ended or differentia
-l 
-Model-based design integration

-Optional DACs, 1000 MSPS (Int. Modes), 16-bit
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Event rate calculation

Focusing on the subject under study:
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Event rate calculation

Focusing on the subject under study:
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Event rate calculation

Theoretical model:

 Radioactive source with spatial 
distribution of spherical (or 
spheroid, depending on the 
considered shape of source) field.

 The intensity of the field is a 
function of the radiotracer dose. 

 The detector (square of area 𝑎2) 
has a given distance h from the 

center, thus a solid angle of Ω =
𝑎2

ℎ2

maximum.

 The radiant intensity equals ΙΕ =
𝜕Φ

𝜕Ω
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Event rate calculation

Theoretical model:

 Taking into account the dead time in order to avoid pile-up 
for 95% of events (also cosmic, singles) we choose the 
Maximum Accquired Rate (MAR) from expected radiant 
intensity.

 MAR<1Mhz limits ΙΕ and Ω, thus α2<6cm2, for each
independent readout.

 With this modular dimension, we build our detector 
architecture.
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Geometry calculation

To build a cylindrical insert, the diameter D of which is
dictated by the dimensions of the MRI bore and the thickness
of the module ℎmodule. To evaluate the number of modules per
ring we follow the equation:

Ndetectors = ⌊
2𝜋

arcsin(
𝑎

𝐷 − 2 ∗ ℎmodule
)
⌋

For the height of the cylinder, since not the whole length of
the bore is necessary, we take the dimensions of the desired
field of view

Nrings = ⌈
ℎFOV
𝑎

⌉

Realistic example:
D=20 cm,

ℎFOV=20cm Ndetectors= 16 and Nrings= 4 64 modules

a=5.8cm,

ℎmodule=2.2cm
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Readout of detector element: pulse model

 Scintillation event:

 Described by bi-exponential model: 𝑒  −𝑡
0.72 − 𝑒  −𝑡

43

 Duration ~200 ns

 Spectrum: Depends on the bandwidth of 
electronics (theory infinite, practice changes the 

model)

 Digitalization Rate of ~200 Mhz possible and 
sufficient (~5 ns step)

 Digital pulse duration: ~40 words

 Digitalization in 12bits/word

 Pulse digital size: 16 bits.

Deterioration of fast element due 
to high frequency filtering
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Readout of detector element

Event information:
Timing

Fine position (pixel ID), X and Y)

Event Energy

1 4

1
4

1 4

2
3

2 3

1
4

2 3

2
3

3 2

1
4

3 2

2
3

4 1

1
4

4 1

2
3

1 4

3
2

1 4

4
1

2 3

3
2

2 3

4
1

3 2

3
2

3 2

4
1

4 1

3
2

4 1

4
1

X1

X2
Y1

Y2
Constant fraction discriminator

This is not relevant for the Gamma camera

Charge addition network (Anger logic)
codifying position and energy from the
integrals of pulses:

𝑋 =
𝑋1 − 𝑋2
𝑋1 + 𝑋2

𝑌 =
𝑌1 − 𝑌2
𝑌1 + 𝑌2

𝐸 = 𝑋1 + 𝑋2 + 𝑌1 + 𝑌2
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Readout of detector element- timing (CFD)

Since anyway four pulses are recorded for energy
measurement, why not evaluate all four and take a mean?

Another idea, take a weighted mean, depending on
predominant channel (more energy, event closer to the given
channel pair, timing more accurate)

X1

X2

Y1

Y2
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Readout of detector element- timing

 Zero crossing point results
from linear interpolation
between bigger negative
and smaller positive value.

 By scaling the values to
the MSB a small look up
table can be created to
avoid the division
necessary for interpolation

 26 values  fine time
<100ps.
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Readout of detector element-energy/position

Integration by addition of 
words of pulse duration: Can 
be rounded (no need for 216

different values).

How many bits are necessary 
for the results (generously)?
512 values for X, Y

256 values for Energy

Thus 216 29

• X,Y can be calculated through a 
LUT, to avoid digital division…

• Furthermore, once a detector 
image has been analyzed, X,Y can 
be given directly in pixel ID, 
needing 11 bits (pixel size ~1 
mm)…
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Firmware architecture
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Firmware architecture-multiple detectors
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Workplan

• We need to evaluate the size of the architecture, but initial goal
is a small FPGA (Artix, Zynq PL, Cyclone).

• The possibility of more than one front-end modules connected
to one FPGA will be also evaluated.

• Most of the independent entities have been algorithmically
developed.

• A big number of pre-recorded pulses exist and will be used for
test benching.

• Secondment will be undertaken in INFN Pisa in November,
supervised by Giancarlo Sportelli as an FPGA specialist.



The end
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Firmware architecture- Gamma camera
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