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from CMOS to HV-CMOS

Pros: e Fabricated in commercial CMOS technologies —> high performance and low cost
® In-pixel processing electronics is possible

Cons: ® The lightly doped p-type epitaxial layer in CMOS sensors is not fully depleted as
only low-voltage is supported

® Charge collection is mainly by diffusion (< 100 ns)

® Limited radiation tolerance (< 1 Mrad)
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from CMOS to HV-CMOS

» Future HEP experiments (ATLAS ITk upgrade, CLIC, Mu3e) demand higher data
rates, finer granularity, better radiation tolerance

® HV-CMOS supports high negative voltages (<120V) to form a wide depletion region
as a deep N-well / P-substrate diode that result in higher speed and better
radiation tolerance

® HV-CMOS is also a Mature industry-standard technology and commercially available
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HV-CMOS sensor technology

1. Wide depletion helps to improve both position and time resolution

® High negative bias voltage (~ 120 V) generates a high electric field

in the depletion area -> Fast charge collection via drift (~ 200 ps) ->
good time resolution (< 20 ns)

® Small sensor capacitance -> excellent noise performance -> high SNR

® More charges generated in wider depletion area (wider with higher
substrate resistivity) -> large charge signal amplitude -> high SNR

® Lower leakage current in high radiation -> Better radiation

tolerance
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HV-CMOS sensor technology

2. Embedded CMOS electronics within the sensing area

-> monolithic pixel
3.3V
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HV-CMOS sensor technology

2. Embedded CMOS electronics within the sensing area

-> monolithic pixel
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HV-CMOS sensor technology

2012-FP74TN-317446 ‘
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2. Embedded CMOS electronics within the collecting electrode -> monolithic pixel

» Possible to embed complex electronics in the sensor layer (biasing circuit, CSA,
shaper, comparator and even digital readout electronics) -> higher integration

density of silicon

» CMOS electronics can be isolated from the high-voltage-biased sensing
junction when enough layers are available in the technology -> small crosstalk

noise

3. Small individual pixels (~ 50 pm X 50 pm) -> good granularity

resolution

5. Compatibility with existing readout chips (FE-14) , $ |
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. Thin sensors (= 50 ym) -> reduce particle multi-scattering and good position
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Feature node 0.35pm/180nm

HV <100V/<150V

HR 2016/Yes

Quadruple-well | No (triple)

Metal layers 6/4

Backside processin No

Stitching No

TSV
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Status of HV-CMOS developments -

» First HV-CMOS chip was submitted in HV-AMS 0.35 pm by Ivan Peric in 2006, which proved the
concept of HV-CMOS sensors having complex CMOS electronics implemented inside the charge-
collecting DNWELL

> Many developments have been under way since then:
® in different technologies: mostly in HV-AMS 0.35 pm / 180 nm and LFoundry 150 nm, also in ESPROS 150 nm,
XFAB 180 nm, TJ 180 nm and etc.

® targeting at various applications: Particle Physics (ATLAS upgrade, ILC / CLIC and Mu3e (the first real application
of HV-CMOS sensors)), Astro-Physics, Medical imaging

® by several groups: CERN, IFAE, KIT, SLAC, Uni. Bonn, Uni. Liverpool, Uni. Geneva and etc.

{

CCPDv1 CCPDv2 CCPDv3 CCPDv4
CCPDv5

CCPDv6
CCPDv7

Evolvement of CCPD in AMS H18 HVCMOS
(&4 UNIVERSITY OF Monolithic Sensors in LFA15 Process
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Previous work in Liverpool - H35DEMO
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» The University of Liverpool started developing
HV-CMOS sensors in 2014

» First submission: H35DEMO in AMS 0.35 pm
High-Voltage CMOS technology

® submission in October 2015 and wafer delivered in
December 2015

® different substrate resistivity to test its impact on SNR
- 20 Q-cm (standard), 80 Q-cm, 200 Q-cm, 1 KQ-cm

» Four arrays with different features:
1. standalone nMOS matrix
- digital pixels with in-pixel nMOS comparators
- standalone digital readout
2. two analog matrices
- 2 identical arrays with different gain and speed
3. standalone CMOS matrix

- analog pixels with off-pixels CMOS comparators in
the Periphery

- standalone digital readout

10



0
-50
-100
-150
-200
-250
-300
-360 —e— 200-400 OQ-cm
—¥— 20 Q-cm
450 —a—600-2000 Q-cm
o % A
-500 — 71 r 1 1 1 1 1 " 1 v 1 " T ' 1
200 -180 -160 -140 -120 -100 -80 -60 40 -20 0

v, (V)

Probe station in University I < 10 nA

of Liverpool clean room

’%°d UNIVERSITY OF

& LIVERPOOL

I gak < 2.2 nA/ cm’

11



» On-going measurements are taking place in parallel in
different institues
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» Design of an HV-CMOS sensor prototype in LFoundry 150
nm is now ready for submission and will be submitted by the
end of October 2016

» The prototype includes 2 matrices of different features:

® Matrix 1: 50 pm X 50 pm pixels with FE-I3 readout circuit inside
the pixel area

® Matrix 2: 75 pm X 75 pm pixels with counters for photon counting
» Fabrication in different substrate resistivity (HR) are foreseen

> Prototype area will be 5 mmXx5 mm (MPW)
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> A biasing block in general produces the biasing voltages and currents for the
whole sensor to keep it in the proper working condition

» It is made up of 3 parts: DACs, Current Regulators, and the LDO
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The biasing block - DAC
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> Its output changes according to the digital input control bits SEL<5:0>

> It takes the reference voltage from LDO
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The biasing block - DAC

» With VP = 1.123 YV, its output current range is 0 ~ 34.5 pA
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» Current Regulators are basically combinations of current mirrors that regulate the
currents generated by DACs to the desired range of each bias channel.

» The regulating ratio can be adjusted by changing the sizes and numbers of
transistors in the current mirrors

» Each channel has its own current regulator of different ratios.
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> The relationship between the current biased by VNCOMP and its input SEL value
as an example is shown below (0 ~ 17.5 pA):
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The biasing block - LDO

» To improve performance of bias circuits, introduce a Low-Dropout (LDO)
voltage regulator, its output biasing voltage VOUT keeps the output
currents from DACs stable despite changes in the power supply voltage

» If there is variation in VDD, VOUT can change correspondingly to keep
the current through M1 transistor constant
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The biasing block - LDO
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The biasing block
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» The bias block will be assembled into the particle sensor together
with other parts designed by my colleagues

» The bias block takes the job of biasing other blocks with appropriate
voltages to help them achieve the desired gain or shaping time
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Conclusion

» HV-CMOS sensor technology is a very feasible and

advantageous option for particle physics experiments and other
related applications in the future

» Liverpool has started an R&D program to develop HV-CMOS
sensors for HEP experiments:

® design of a pixel demonstrator in 0.35pm HV-AMS
technology (H35DEMO)

® New submission in LFoundry 150 nm will be in October 2016
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Future plans
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» Submission of the prototype in LFoundry will be in October 2016

» Chip (MPW) delivery will be in less than 3 months after
submission

» PCB and FPGA (HW / SW) will be designed in the meantime to
verify the fabricated chips

Thank you for your attention!

Questions?
The research leading to these results has received funding from the People * % % 2012.FP74TN317406.
Programme (Marie Curie Actions) of the European Union's Seventh * * "W >
Framework Programme FP7/2007-2013/ under REA * HEB' )
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The biasing block - LDO (backup)
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Application ieds of HV-CMOS sensors (backup) [ e

» Astro-physics

HV-CMOS sensors provide the measurement of mixed particles in the high-
radiation space environment with advantages of being low-sized, low-weighted
and low-power-consuming

» Medical imaging
HV-CMOS sensors can be used for positron emission tomography (PET) scans
» Particle physics

HV-CMOS sensors can be used to track high-energy particles with high-position-
resolution, high-time-resolution, high-radiation-tolerance and high Signal-to-Noise Ratio
(SNR)
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TCAD simulation
» Back-side biasing versus top-side biasing:
® back-side biasing forms a more uniform E-field

® AMS does not support back-side biasing

E-Field Lines, fluence=0, res=1000, HV=-120 E-Field Lines, fluence=0, res=1000, HV=-120
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New submission in LFoundry - design flow

Take the inverter as an example:

1. schematic (sizing and connection of devices)

VDD

- GND
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Take the inverter as an example:

2. simulation (create a testbench to test the performance of the
circuit by simulation, DC, AC, transient, etc.)
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Take the inverter as an example

3. layout (schematic driven)
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New submission in LFoundry - design flow

Take the inverter as an example:

4. physical verification on the layout (DRC, LVS, Parasitic
extraction)

5. post-layout simulation

6. Stream out (translate graphical layout to standard
exchangeable formate, like GDSII, OASIS etc, which is sent to
the foundry for fabrication)
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