

Development of HV-CMOS sensors at University of Liverpool

Chenfan Zhang

Department of Physics, University of Liverpool, chenfan@HEP.ph.liv.ac.uk

*Supported by the EU FP7-PEOPLE-2012-ITN project nr 317446, INFIERI, "INtelligent Fast Interconnected and Efficient Devices for Frontier Exploitation in Research and Industry"

Outline

- ➤ Introduction to the HV-CMOS sensor technology
- Status of HV-CMOS developments and its application fields
- ➤ Previous work at Uni. Liverpool and the new submission in LFoundry 150 nm
- ➤ My work the biasing block
- Conclusion and future plans

Pros: • Fabricated in commercial CMOS technologies —> high performance and low cost

• In-pixel processing electronics is possible

Cons: • The lightly doped p-type epitaxial layer in CMOS sensors is not fully depleted as only low-voltage is supported

- Charge collection is mainly by **diffusion** (< 100 ns)
- Limited radiation tolerance (< 1 Mrad)

- ➤ Future HEP experiments (ATLAS ITk upgrade, CLIC, Mu3e) demand higher data rates, finer granularity, better radiation tolerance
- HV-CMOS supports *high negative voltages* (<120V) to form a *wide depletion region* as a deep N-well / P-substrate diode that result in **higher speed** and **better** radiation tolerance
- HV-CMOS is also a Mature industry-standard technology and commercially available

- ➤ Future HEP experiments (ATLAS ITk upgrade, CLIC, Mu3e) demand higher data rates, finer granularity, better radiation tolerance
- HV-CMOS supports high negative voltages (<120V) to form a wide depletion region as a deep N-well / P-substrate diode that result in higher speed and better radiation tolerance
- HV-CMOS is also a Mature industry-standard technology and commercially available

- ➤ Future HEP experiments (ATLAS ITk upgrade, CLIC, Mu3e) demand higher data rates, finer granularity, better radiation tolerance
- HV-CMOS supports high negative voltages (<120V) to form a wide depletion region as a deep N-well / P-substrate diode that result in higher speed and better radiation tolerance
- HV-CMOS is also a Mature industry-standard technology and commercially available

- ➤ Future HEP experiments (ATLAS ITk upgrade, CLIC, Mu3e) demand higher data rates, finer granularity, better radiation tolerance
- HV-CMOS supports high negative voltages (<120V) to form a wide depletion region as a deep N-well / P-substrate diode that result in higher speed and better radiation tolerance
- HV-CMOS is also a Mature industry-standard technology and commercially available

- ➤ Future HEP experiments (ATLAS ITk upgrade, CLIC, Mu3e) demand higher data rates, finer granularity, better radiation tolerance
- HV-CMOS supports high negative voltages (<120V) to form a wide depletion region as a deep N-well / P-substrate diode that result in higher speed and better radiation tolerance
- HV-CMOS is also a Mature industry-standard technology and commercially available

- ➤ Future HEP experiments (ATLAS ITk upgrade, CLIC, Mu3e) demand higher data rates, finer granularity, better radiation tolerance
- HV-CMOS supports high negative voltages (<120V) to form a wide depletion region as a deep N-well / P-substrate diode that result in higher speed and better radiation tolerance
- HV-CMOS is also a Mature industry-standard technology and commercially available

- 1. Wide depletion helps to improve both position and time resolution
 - High negative bias voltage (~ 120 V) generates a high electric field in the depletion area -> Fast charge collection via drift (~ 200 ps) -> good time resolution (< 20 ns)
 - Small sensor capacitance -> excellent noise performance -> high SNR
 - More charges generated in wider depletion area (wider with higher substrate resistivity) -> large charge signal amplitude -> high SNR
 - Lower leakage current in high radiation -> Better radiation tolerance

2. Embedded CMOS electronics within the sensing area

2. Embedded CMOS electronics within the sensing area

- 2. Embedded CMOS electronics within the collecting electrode -> monolithic pixel
 - ➤ Possible to embed complex electronics in the sensor layer (biasing circuit, CSA, shaper, comparator and even digital readout electronics) -> higher integration density of silicon
 - ➤ CMOS electronics can be isolated from the high-voltage-biased sensing junction when enough layers are available in the technology -> small crosstalk noise
- 3. Small individual pixels ($\sim 50 \ \mu m \times 50 \ \mu m$) -> good granularity
- 4. Thin sensors (\geq 50 µm) -> reduce particle multi-scattering and good position resolution
- 5. Compatibility with existing readout chips (FE-I4)

Comparator Latch Bus driver

HV-CMOS sensors - Available foundries

	AMS	LFoundry	ESPROS	XFAB	TowerJazz
Feature node	0.35µm/180nm	150nm	150nm	180nm	180nm
HV	≤100V/≤150V	≤60V	≤15V	≤200V	≤5V
HR	2016/Yes	Yes	Yes	Yes	Yes
Quadruple-well	No (triple)	Yes	Yes	No (BOX)	Yes
Metal layers	6/4	6	6	6	6
Backside processing	No	Yes	Yes	No	Yes
Stitching	No	Yes	No	No	Yes
TSV	Yes	No	No	No	No

Status of HV-CMOS developments

- > First HV-CMOS chip was submitted in HV-AMS 0.35 μm by Ivan Peric in 2006, which proved the concept of HV-CMOS sensors having complex CMOS electronics implemented inside the charge-collecting DNWELL
- Many developments have been under way since then:
 - in different technologies: mostly in HV-AMS 0.35 μm / 180 nm and LFoundry 150 nm, also in ESPROS 150 nm, XFAB 180 nm, TJ 180 nm and etc.
 - targeting at various applications: Particle Physics (ATLAS upgrade, ILC / CLIC and Mu3e (the first real application of HV-CMOS sensors)), Astro-Physics, Medical imaging
 - by several groups: CERN, IFAE, KIT, SLAC, Uni. Bonn, Uni. Liverpool, Uni. Geneva and etc.

Evolvement of CCPD in AMS H18 HVCMOS

Monolithic Sensors in LFA15 Process $1 \text{ cm} \times 1 \text{ cm}$, August 2016

Previous work in Liverpool - H35DEMO

- ➤ The University of Liverpool started developing HV-CMOS sensors in 2014
- First submission: **H35DEMO** in AMS 0.35 μm High-Voltage CMOS technology
 - submission in October 2015 and wafer delivered in December 2015
 - different substrate resistivity to test its impact on SNR 20 Ω ·cm (standard), 80 Ω ·cm, 200 Ω ·cm, 1 $K\Omega$ ·cm
- ➤ Four arrays with different features:
 - 1. standalone nMOS matrix
 - digital pixels with in-pixel nMOS comparators
 - standalone digital readout
 - 2. two analog matrices
 - 2 identical arrays with different gain and speed
 - 3. standalone CMOS matrix
 - analog pixels with off-pixels CMOS comparators in the Periphery
 - standalone digital readout

Previous work at Liverpool - H35DEMO

Probe station in University of Liverpool clean room

$$I_{LEAK} < 10 \text{ nA}$$

 $I_{LEAK} < 2.2 \text{ nA} / \text{cm}^2$

Previous work at Liverpool - H35DEMO

➤ On-going measurements are taking place in parallel in different institues

New submission in LFoundry 150 nm

- ➤ Design of an HV-CMOS sensor prototype in LFoundry 150 nm is now ready for submission and will be submitted by the end of October 2016
- ➤ The prototype includes 2 matrices of different features:
 - Matrix 1: 50 $\mu m \times$ 50 μm pixels with FE-I3 readout circuit inside the pixel area
 - Matrix 2: 75 μ m \times 75 μ m pixels with counters for photon counting
- ➤ Fabrication in different substrate resistivity (HR) are foreseen
- ➤ Prototype area will be 5 mm×5 mm (MPW)

My work - Design of the biasing block

- ➤ A biasing block in general produces the biasing voltages and currents for the whole sensor to keep it in the proper working condition
- ➤ It is made up of 3 parts: DACs, Current Regulators, and the LDO

The biasing block - DAC

- ➤ Its output changes according to the digital input control bits SEL<5:0>
- ➤ It takes the reference voltage from LDO

The biasing block - DAC

 \blacktriangleright With VP = 1.123 V, its output current range is 0 \sim 34.5 μ A

The biasing block - Current Regulator

- ➤ Current Regulators are basically combinations of current mirrors that regulate the currents generated by DACs to the desired range of each bias channel.
- ➤ The regulating ratio can be adjusted by changing the sizes and numbers of transistors in the current mirrors
- ➤ Each channel has its own current regulator of different ratios.

The biasing block - Current Regulator

The relationship between the current biased by VNCOMP and its input SEL value as an example is shown below (0 \sim 17.5 μ A):

The biasing block - LDO

- ➤ To improve performance of bias circuits, introduce a Low-Dropout (**LDO**) voltage regulator, its output biasing voltage VOUT keeps the output currents from DACs stable despite changes in the power supply voltage
- ➤ If there is variation in VDD, VOUT can change correspondingly to keep the current through M1 transistor constant

The biasing block - LDO

- ➤ To improve performance of bias circuits, introduce a Low-Dropout (**LDO**) voltage regulator, its output biasing voltage VOUT keeps the output currents from DACs stable despite changes in the power supply voltage
- ➤ If there is variation in VDD, VOUT can change correspondingly to keep the current through M1 transistor constant

The biasing block

The biasing block transient simulation result

My work - Design of the biasing block

- ➤ The bias block will be assembled into the particle sensor together with other parts designed by my colleagues
- ➤ The bias block takes the job of biasing other blocks with appropriate voltages to help them achieve the desired gain or shaping time

Conclusion

- ➤ HV-CMOS sensor technology is a very feasible and advantageous option for particle physics experiments and other related applications in the future
- ➤ Liverpool has started an R&D program to develop HV-CMOS sensors for HEP experiments:
 - design of a pixel demonstrator in 0.35μm HV-AMS technology (H35DEMO)
 - New submission in LFoundry 150 nm will be in October 2016

Future plans

- ➤ Submission of the prototype in LFoundry will be in October 2016
- ➤ Chip (MPW) delivery will be in less than 3 months after submission
- ➤ PCB and FPGA (HW / SW) will be designed in the meantime to verify the fabricated chips

Thank you for your attention!

Questions?

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n [317446] INFIERI "INtelligent Fast Interconnected and Efficient Devices for Frontier Exploitation in Research and Industry"

The biasing block - LDO (backup)

conventional VP generating structure

Application fields of HV-CMOS sensors (backup)

➤ Astro-physics

HV-CMOS sensors provide the measurement of mixed particles in the high-radiation space environment with advantages of being low-sized, low-weighted and low-power-consuming

➤ Medical imaging

HV-CMOS sensors can be used for positron emission tomography (PET) scans

➤ Particle physics

HV-CMOS sensors can be used to track high-energy particles with high-position-resolution, high-time-resolution, high-radiation-tolerance and high Signal-to-Noise Ratio (SNR)

Previous work at Liverpool (backup)

TCAD simulation

- ➤ Back-side biasing versus top-side biasing:
 - back-side biasing forms a more uniform E-field
 - AMS does not support back-side biasing

Take the inverter as an example:

1. schematic (sizing and connection of devices)

Take the inverter as an example:

2. simulation (create a testbench to test the performance of the circuit by simulation, DC, AC, transient, etc.)

Take the inverter as an example:

3. layout (schematic driven)

Take the inverter as an example:

- 4. physical verification on the layout (DRC, LVS, Parasitic extraction)
- 5. post-layout simulation
- **6. Stream out** (translate graphical layout to standard exchangeable formate, like GDSII, OASIS etc, which is sent to the foundry for fabrication)

