

FCP130, IFCP65 and incorporation in RD53A

F.Fahim,

G.Deptuch, T.Zimmerman, D.Braga, A.Shenai, J.Hoff, D.Christian

Basic CMS HL-LHC assumptions*

*RD 53 Collaboration

- Cluster size: ~4 (average)
 - Cluster size and shape varies significantly over pixel detector:
 - Middle barrel, End barrel, End cap disks, tracks from collision point, Machine background/halo, loopers, etc.
- Rate: Worst case HL-LHC (layer locations as in Phase1)
 - Layer 1 (3.0cm): ~500MHz/cm² tracks -> ~2GHz/cm² hits
 - Layer2 (6.8cm): ~½ of layer 1
 - Layer3 (10.2cm): ~½ of layer 2 -> ~¼ of layer 1
 - Layer4 16.0cm): ~½ of layer 3 -> ~1/10 of layer 1 (50MHz/cm² tracks, 200MHz/cm² hits)
 - End-caps ?
- Pixel chip: ~6.5 cm²
- Pixel size: ~25x100um = 2500um²
 - Or 50um x 50um (same area but square)
 - (50um x 100um if more area required per pixel, No major effect on readout rate)
- Pixel regions: 4 x 4 or 2 x 2
- Pixels per chip: ~256k
- Tracks/hits per chip per Bx:
 - Layer 1: 50KHz/pixel, 75 tracks/IC/Bx, 300hits/IC/Bx
 - Layer 4: 5KHz/pixel, 7.5 tracks/IC/Bx, 30hits/IC/Bx
- L1 Trigger: 1MHz, 20us (10us) now baseline for all new Phase2 detectors

Preliminary specification*

25x100um ² ; 30x100um ² ; 50x50um ²
2D, 3D, Diamond, MAPS?
> 2cm x 2cm
~1G
1-2 GHz/cm ²
>16Mb
1MHz (CMS)
6 - 20us
~5Gb/s per chip (inner)
1Grad
65nm ?
Digital
1/4 - 1/2 W/cm ² ?

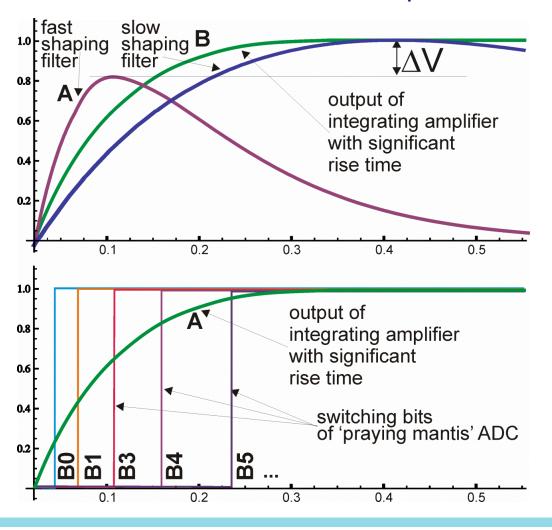
RD53:

- Common technology platform for 65nm pixel chips
- Working groups: Radiation qualification, Analog design, Basic building blocks (IP), Simulation and verification framework, top level, etc.
- R&D collaboration with clearly defined goals: Project.
- A common or two different pixels chips can be made for CMS & ATLAS

*RD 53 Collaboration
-Borrowed from
J.Christiansen

₹ Fermilab

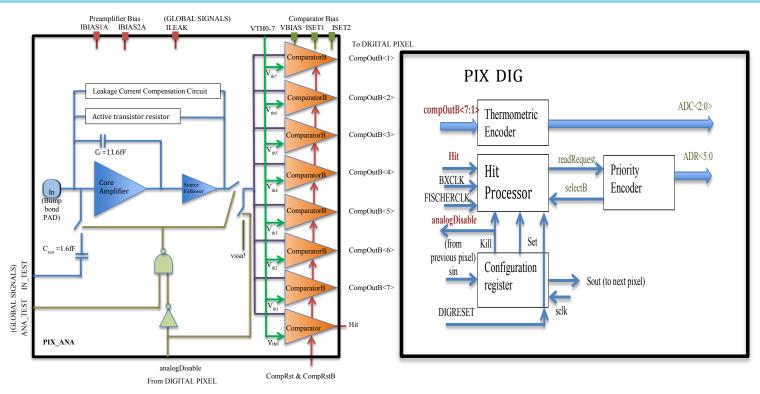
Fermi CMS Pixels (FCP130)


Fermi CMS Pixel (FCP130)- Design of a test CMS pixels chip

- Test platform of Synchronous frontend with an Asynchronous output data flow
- Technology platform: GF130nm Preliminary architectural investigation before 65nm.
- ASIC size: 5.5 mm x 8.5 mm
- Pixel size: 30 μm x 100 μm (Analog part: 20 μm x 100 μm; Digital Part: 10 μm x 100 μm)
- Rows x Columns: 48 x 160 (4 columns are grouped to create a superColumn (192 pixels))
- Each ASIC has 40 super columns.
- Analog Pixel options:
 - 1) Preamplifier + 3 bit Flash ADC + hit comparator (independent of ADC to get hit in the processing to be reviewed on final realizations)
 - 2) Preamplifier + 3 bit ADC based on asynchronous conversion using in-pixel oscillator triggered by signal (more power consumption but more compact + perspectives for other uses)
- Digital Pixel: 8:3 bit encoder, hit processor, priority encoder for data sparsification
- End of column: FIFO to daisy chain then asynchronous data transfer through CONFLUX

Basic concepts: Synchronous front-end?

✓ The Analog Front-End includes a charge preamplifier and synchronous comparators used
for A-to-D conversion within one BXClk period

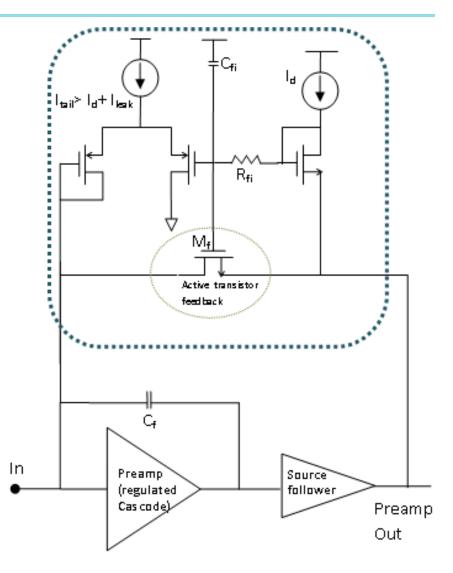


Fast shaping may worsen S/N due to ballistic deficit

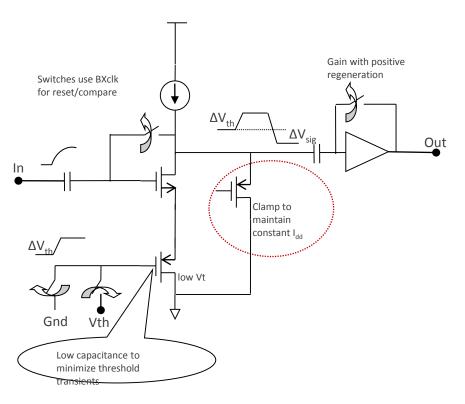
Conversion begins as soon as charge starts being integrated and continues until signal reaches maximum or conversion time is over.

→ no dead time for conversion
Fermilab

Pixel Architecture

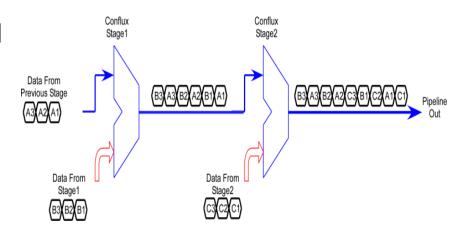


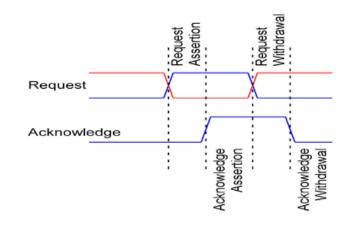
- Synchronous front-end (utilize BXClk time structure)
- No continuous time filtering
- Insensitivity to absolute design parameters (e.g. shaping time)
- Increased noise immunity digital conversion immediately after preamplifier
- Data Conversion within 1 BXClk cycle
- Processing insensitive to pileups


Preamplifier

- Dynamic range 0.25fC 2.5fC
- Power Consumption : 5μA x 1.5V
- Regulated Cascode design
- Feedback capacitor: 11.58fF
- Active transistor resistor feedback
 - Large signals behaves as a constant current source
 - Small signals Rf = 1/gm
- Leakage current compensation upto 5nA
- AC coupled to comparator
- Preamp, return to baseline is longer than 200ns, but only has to prevent output level from saturating

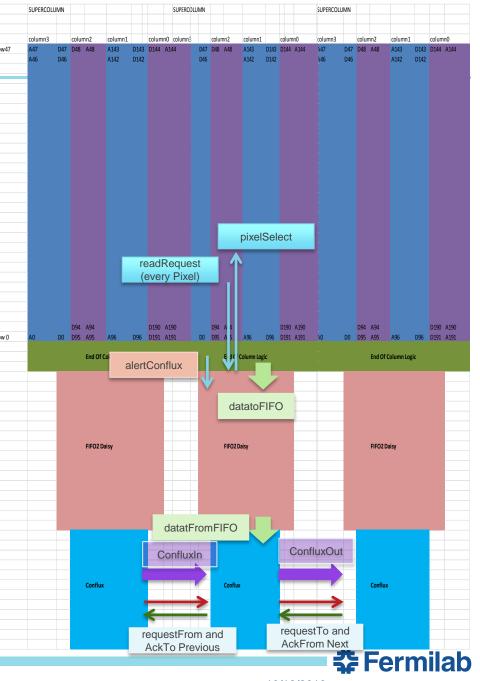
Comparator

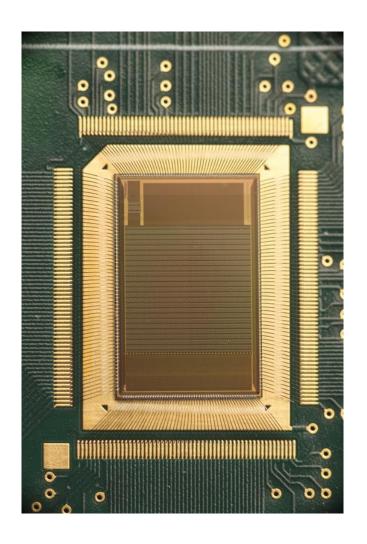


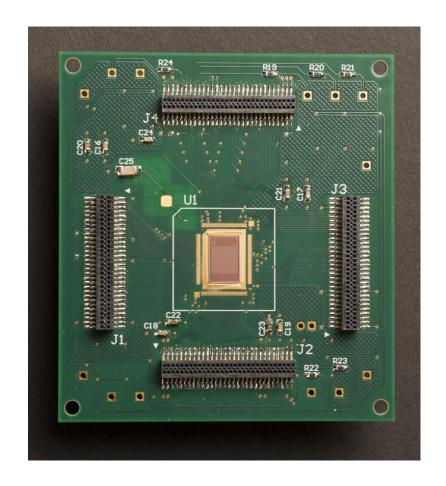

- Compact, single-ended architecture.
- Auto-zeroed, "lurk-trigger-done" praying mantis.
- Correlated double sampling
- Does not require trimming DACs
- 12.5ns reset phase; 12.5ns active comparison.
- Low-power, fast, insensitive to corners
- 2 stage design with additional gain and positive regeneration in 2nd stage.
- Require distribution of BXclk across a large chip

Conflux: Asynchronous Data transfer

- Conflux is based on a classic 4-phased bundled-data asynchronous protocol (Request Assertion → Acknowledge Assertion → Request Withdrawal → Acknowledge Withdrawal).
- Conflux blocks across several chips and/or boards can be chained together and no clock is necessary.
- No global control signals are necessary either.
- Each link in the chain passes on data from its predecessor to its successor and adds its own data to the stream.
- Each Conflux readout can be seen as an asynchronous 2-to-1 multiplexor for Time Division Multiplexing (TDM).





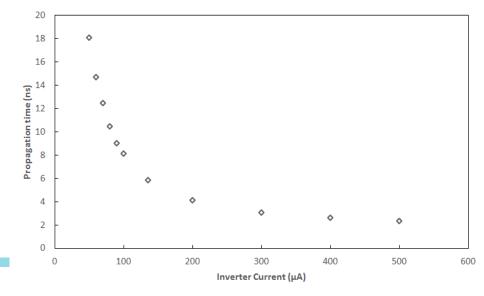

ASIC dataflow

- Hit signal from each pixel in a superColumn is "ORed" to create "alertConflux"
- Every pixel which is hit, generates a "readRequest"
- This is cancelled if the End of Column Logic issues a "selectPixel" signal at posedge of each "rStrobe"
- During 1 BXClk cycle, alertConflux remains active until all pixels which are active are read and data is transferred to FIFO2daisy. This then resets
- Data from FIFO2daisy is transferred to Conflux using a four phase asynchronous scheme

FCP130

FCP130: Single pixel tests

- Successful Preliminary Qualitative analysis
 - Preamplifier response can be monitored; change of current is feedback loop changes the return to baseline.
 - All comparator response times are changing with change in threshold voltage.



FCP130: other functional tests

- Configuration register is able to able to correctly program the pixels
- The serial mode of transfer in FIFO 2 daisy can correctly send data Out
- The Spy signals for last superColumn (Pixel Hit, ADC value and address can be correctly monitored)

Asynchronous data transfer (Conflux) was successfully

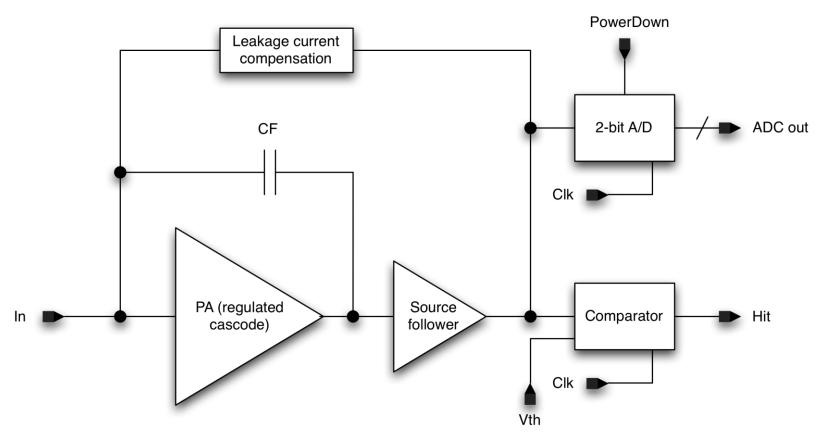
verified

FCP130: issues and next steps

- Antenna diodes were shorted to the substrate
- Floating deep nwell's
- Due to layout errors detailed analog tests of the entire matrix could not be characterized
- FCP130_v2 with bug fixes and enhanced versions of the preamplifier and comparator is being submitted Dec 2016

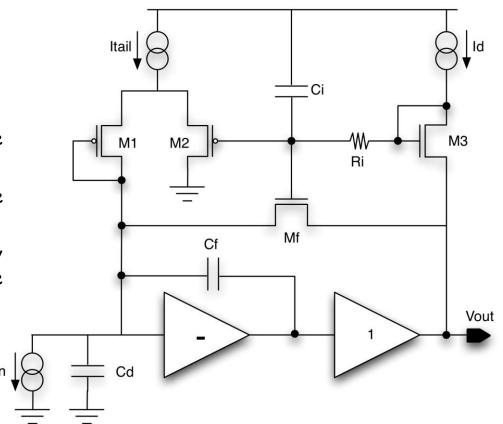
15

INFN - Fermi CMS Pixels (IFCP65)


Translation of FCP130 to 65nm by U. Bergamo (INFN)

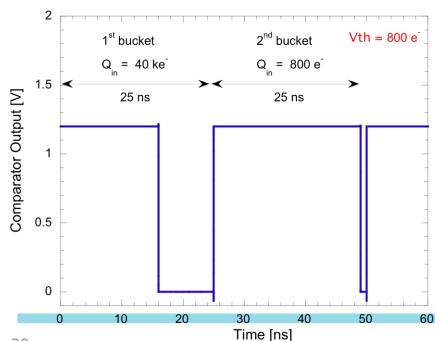
Adaptation of FCP130nm concept to 65nm: IFCP65 (collaboration with INFN (U.Bergamo))

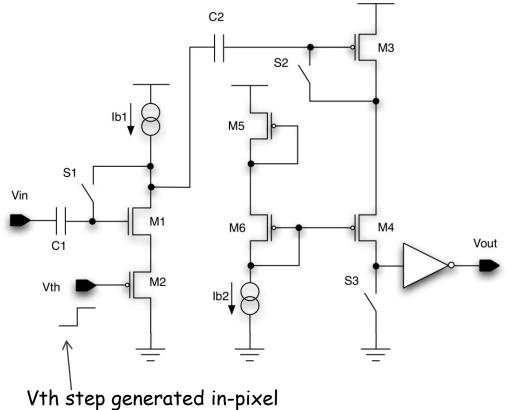
- ✓ Accurate time allocation of hits requires the discriminator to detect the smallest signal within the BXClk period
- \checkmark This may be difficult to achieve in a system with continuous time shaping \rightarrow hits just above threshold can improperly be assigned to the subsequent BXClk period
- √ToT systems may requires several BXClk periods in order to perform full A-to-D
 conversion
- ✓ Continuous time processing has to face baseline drifts due to charge pile-up or DC coupling of consecutive stages
- → This AFE exploits the synchronous environment of the LHC to detect and determine incoming particle energy within one BXClk period


Pixel analog front-end

- √ Synchronous front-end with zero dead time
- ✓ Preamplifier (Regulated cascode) featuring a leakage current compensation circuit
- ✓ Digital conversion immediately after the preamplifier
- √ No in-pixel charge injection circuit. 15fF injection capacitance connected to the PA input

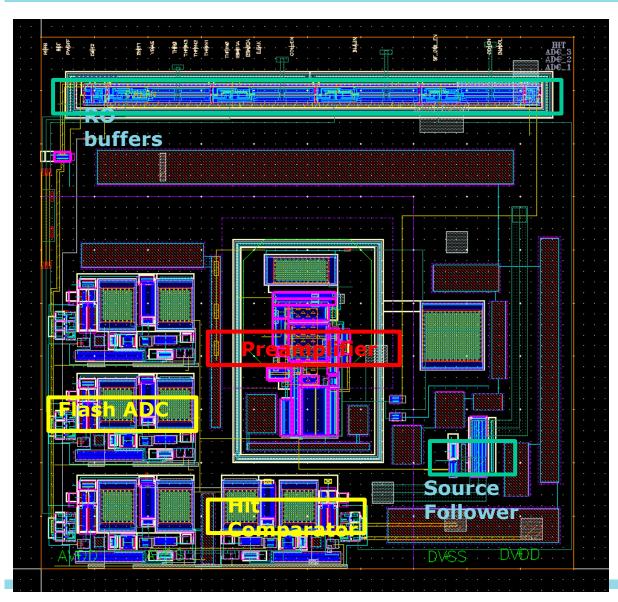
Charge sensitive amplifier


- √ Regulated cascode design
- ✓ Active feedback transistor Mf:
 - √ 1/gm resistor for small signals
 - √ Constant current source for large signal.
 - √M1 provides a DC path for the detector leakage current
 - √Ri + Ci ensures low frequency operation of the leakage compensation circuit
- ✓ Current consumption ~ $4.0 \mu A$

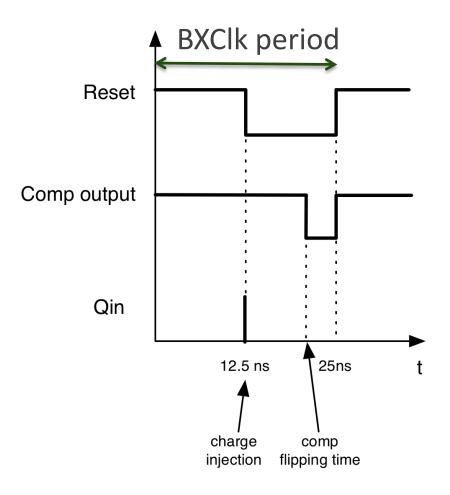


Comparator

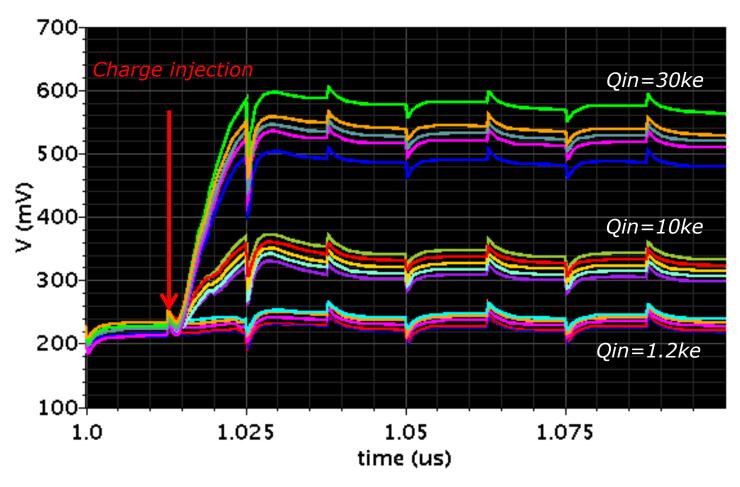
- ✓ Compact, single-ended architecture
- ✓ AC coupled to the preamplifier
- ✓ Correlated double sampling:
 - ✓ Auto-zeroed
 - ✓ Increased pileup immunity
 - ✓ No need for trimming DAC



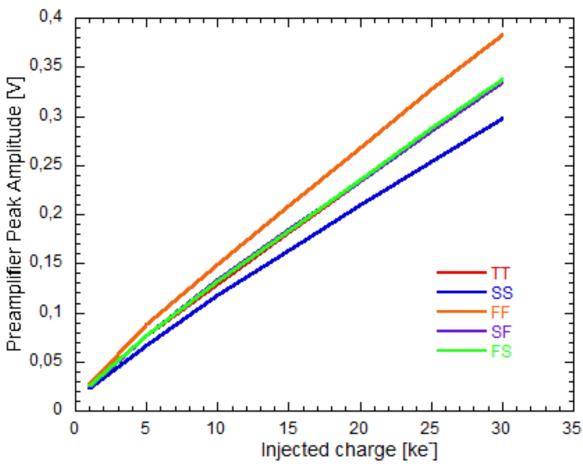
- ✓ 12.5ns reset phase; 12.5ns active comparison
- \checkmark ~ 1 μ A current consumption


Layout

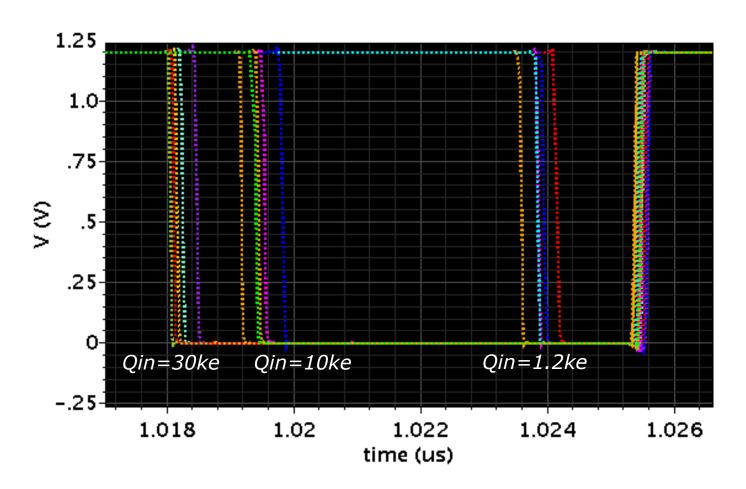
- √RO buffers and Source follower included in the miniasic version of the AFE
- ✓ All the devices in the global P-substrate
- √ MIM feedback cap
- √ Nwell guard ring surrounding the preamplifier


Timing Diagram

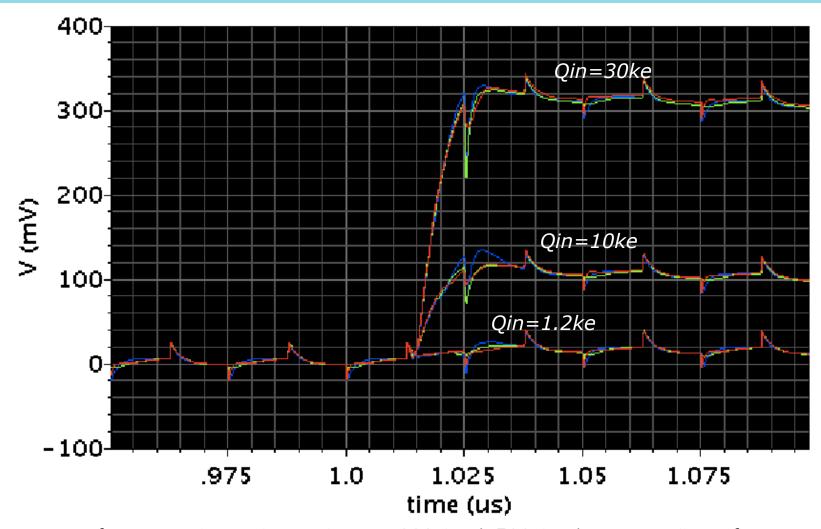
- Charge injection takes place as soon as the reset is released
- 40 MHz reset signal


Preamplifier output - 4C simulations

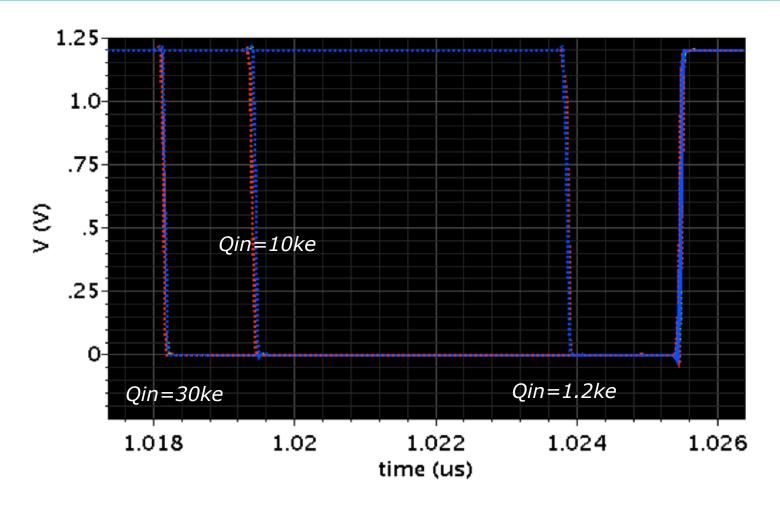
- PA output for Qin=1.2ke-, 10ke-, 30ke. CD=50fF, Qth=600e-
- \pm 14% variation (wrt TT) in the PA peak amplitude (mainly due to the MIM feedback cap)


Preamplifier peak amplitude - 4C simulations

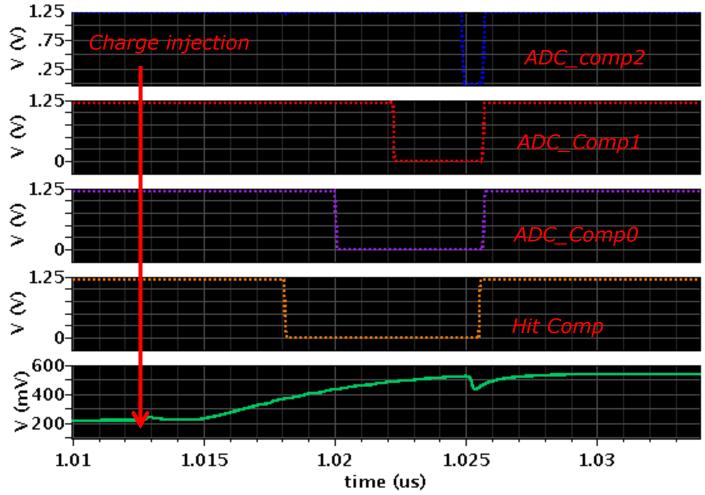
- PA peak amplitude as a function of the injected charge
- Good linearity in all the corners
- Non-negligible changes in charge sensitivity due to the MIM feedback cap


Comparator output - 4C simulations

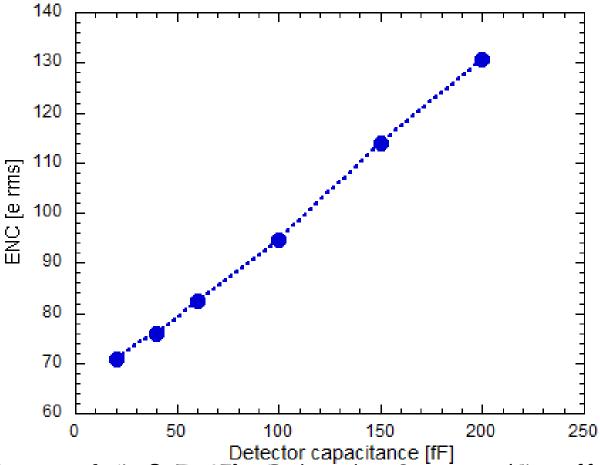
- Comparator output for Qin=1.2ke-, 10ke-, 30ke. CD=50fF, Qth=600e-
- $< \pm 400$ ps changes (wrt to TT) in comparator flipping time


Preamplifier output - Radiation corners

- PA output for Qin=1.2ke-, 10ke-, 30ke. TT+200Mrad+500Mrad corners. CD=50fF
- Negligible changes in PA output response in the different corners


Comparator output - 500 Mrad corner

- Comparator output for Qin=1.2ke-, 10ke-, 30ke-. TT + 500Mrad corners. CD=50fF, Qth=600e-
- Negligible changes in comparator flipping time



Hit Comparator and ADC comparator outputs

- Hit Comparator and ADC comparators outputs for Qin=30ke-
- Threshold for the different comparators can be set up independently by means of bias lines distributed through the matrix columns

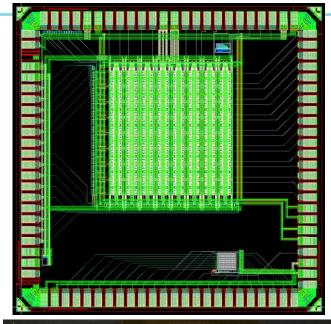
Equivalent Noise Charge

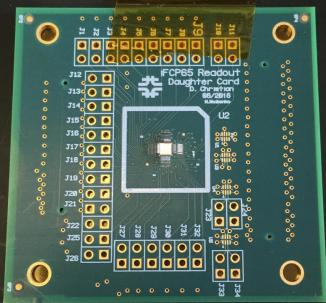
- ENC as a function of CD @ T=+27°. Evaluated at PA output (CDS effects not simulated here)
- ENC≈80e @ CD=50fF.
- ENC obtained with a proportional calibration constant for small input charges (0 to 2 keeprmilab

Recap Table #1

	TT	TT 500 Mrad	SS	FF	FS	SF	spec
Charge sensitivity [mV/ke]	10.3	10.2	9.1	11.7	9.9	10.4	-
ENC rms [e]	79	79	82	76	83	77	<<126
Threshold dispersion $\sigma(Qth)$ rms [e]	35						~126
$\int (ENC^2 + \sigma(Qth)^2) [e]$	86						≤126
In-time overdrive [e-]	Not applicable					≤ 600	
Current consumption $[\mu A/\text{pixel}]$	7.4*	7.2					<u> </u>
Delay time [ns]	10.8	12.1	11.0	10.5	10.8	10.9	-
ADC Conversion time [ns]	12.5	12.5	12.5	12.5	12.5	12.5	-

- Post-layout simulations, default configuration
- Detector capacitance CD=50 fF, T=27° C
- In-time overdrive → "0" in this AFE
- Delay time (comp flipping time charge inj time) → 600 e-, Qin=1200 e-
- * ~5 uA/pixel when in binary mode. Comparator dynamic current not included


Recap Table #2

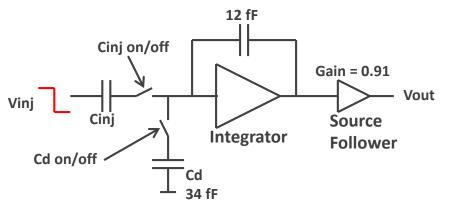

	27° C	- 20° C	spec
Charge sensitivity [mV/ke]	10.3	9.0	-
ENC rms [e]	79	82	<<126
In-time overdrive [e-]	Not ap	≤ 600	
Current consumption [µA/pixel]	7.4*	7.2	<u> </u>
Delay time [ns]	10.8	9.9	-
ADC conversion time [ns]	12.5	12.5	-

- Post-layout simulations, default configuration
- Detector capacitance CD=50 fF, T=27° C
- In-time overdrive → "0" in this AFE
- Delay time (comp flipping time charge inj time) \rightarrow 600 e-, Qin=1200 e-
- * ~5 uA/pixel when in binary mode

IFCP65 mini ASIC submission

- √16x16 matrix
- √ Charge injection and readout controlled via three independent SIPO shift registers
- √ 16 independent outputs (one for each row)
 to read out the pixel preamplifier output

- √ Test boards fabricated and populated
- √ ASIC's wire bonded
- √ Tests started last week

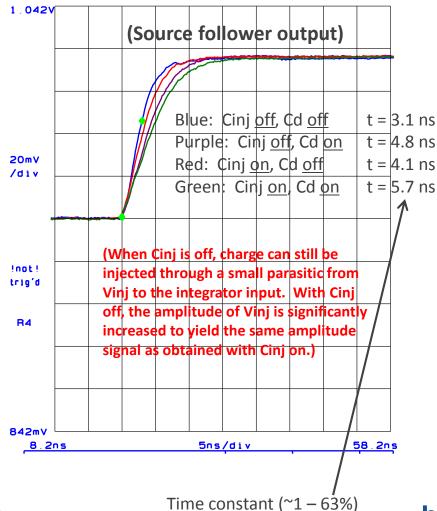


Initial FCP65 test results -Tom Zimmerman

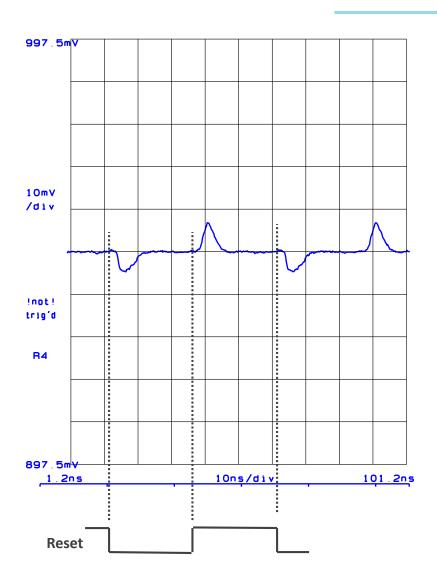
Integrator Gain

Assumptions:

Cfb = 12 fF, Source Follower gain = 0.91

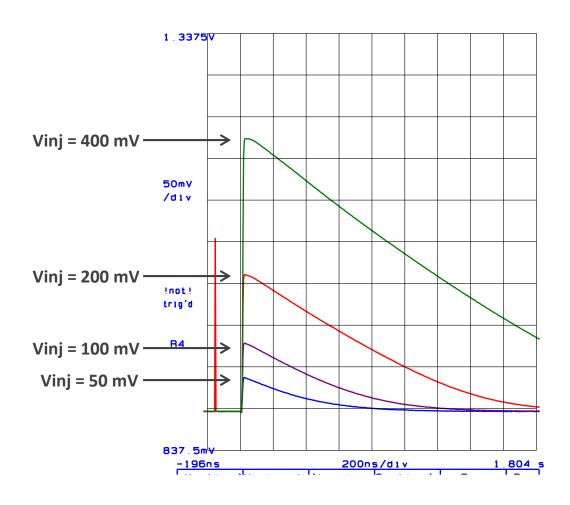

"Measure" Cinj:

Apply a step input and measure Vout: If Vinj = -146 mV, then Vout = 122.4 mV

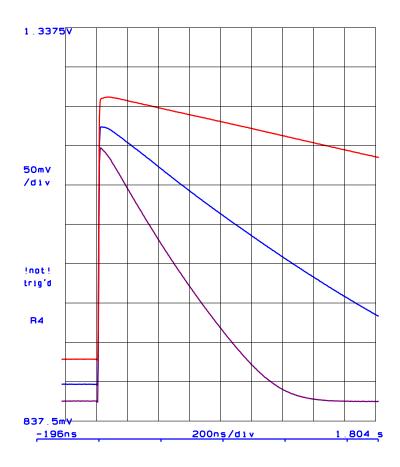

Therefore: (Cinj = 11.1 fF.)

Pixel-to-pixel gain variation across the array is less than 2% -- good.

Integrator Time Response (Vinj = 90 mV with Cinj on)



Integrator output while operating Reset (no signal)


Integrator return to baseline

(Ileak at nominal setting)

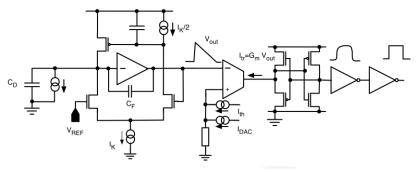
Vary Ileak

(Vinj = 400 mV)

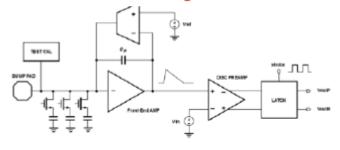
RD53A:

Following slides from RD53A design review

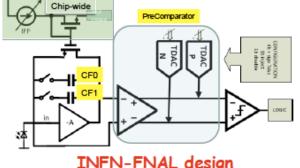
RD53A MUST demonstrate

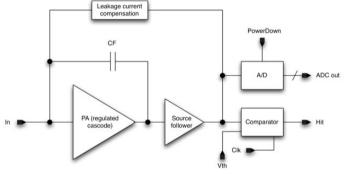

- Small pixels: 50 x 50um²
- Low in-time effective threshold: 1200e-
 - Very good digital/analog isolation
- ~4bit charge at high rate
- High hit rate: 3GHz/cm²
 - Dead time loss < 1%
- Time walk: < 25ns
- Digital buffering/processing: 12.5us
- Trigger rate: 1MHz
- Acceptable power consumption: < 3W + 1W SLDO (< 1W/cm²)
- Serial powering
- High radiation tolerance: 500Mrad
- Working with bump-bonded sensors in test beams

Defined in: https://cds.cern.ch/record/2113263



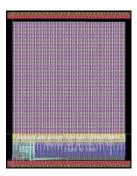
RD53A: Analog front-ends

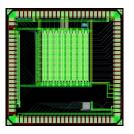

INFN Pavia/Bergamo design


INFN Torino design

LBNL design in FE65-P2

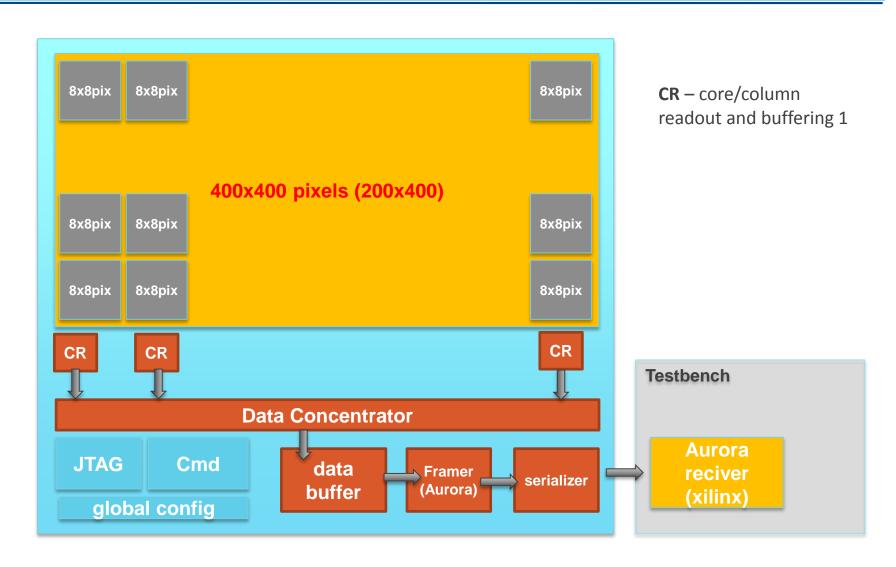
INFN-FNAL design

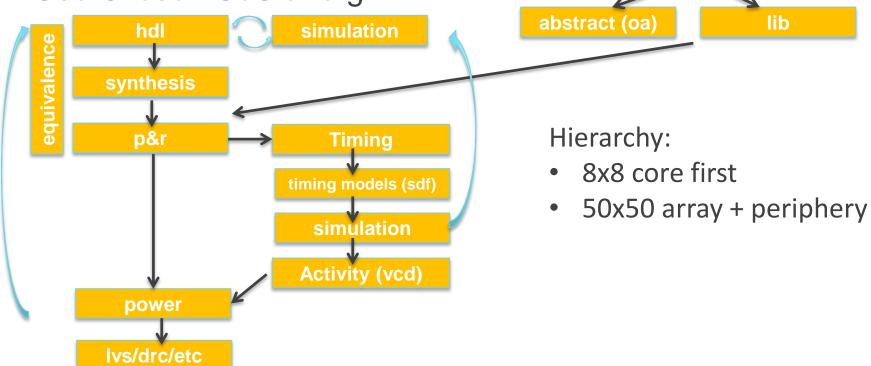



- 4 different AFEs. Test results on available prototypes look good (also after irradiation) -(INFN-FNAL design not yet tested)
- FE65-P2 and the CHIPIX65 demonstrators are going to provide essential information and experience in view of the integration of the analog FE in the RD53A chip. Test results on the FE65-P2 very encouraging
- The RD53A demonstrator will include several versions of the analog FE. They should be **fully** tested (also after irradiation) in their (almost) final version (schematic and layout) so that they qualify to be safely included in RD53A **❖** Fermilab

65 nm CMOS analog front-end prototypes

- INFN (Pavia, Torino) submitted (May 2015) small prototypes with two different versions (asynchronous, synchronous) of the analog frontend. Encouraging results from test
- These two different analog front-end will be included in the CHIPIX65 demonstrator (end of June)
- Another design for the analog front-end (asynchronous) is included in the FE65-P2 that is currently being tested, with promising results
- Fermilab/INFN recently submitted (May 2016) an analog front-end with zero dead time and Flash ADC; characterization has just started





Custom Design Methodology Flow

- OpenAccess mixed signal (modified flow CERN)
- Industry standard tools (complex and expensive)
- Hierarchical
- Use Cliosoft SoS and git

analog layout

Pixel sensor and bumpbonding

- Signal, charge, pixel size, etc.
- Bump pad layout
- ----

RD53A chip: Jorgen, Maurice

- Specifications
- Documentation
 - General organization

Test system: TBD (Bonn, CERN, Pisa, ?)

- Requirements, specifications
- Hardware, Firmware, Software
- Chip test/characterization: wafer level, chip level, beam tests
 - Radiation testing

RD53A chip integration/verification: Flavio, Deputy: Tomasz

Floorplan: Flavio, Dario

- Pixel array, Bump pad
- EOC
- Power distribution
- Bias distribution
- Analog/digital isolation
- Integration/verification

Analog FEs (3/4) with biasing: Luigi, Valerio, Ennio, Dario, IP designers

- Specification/performance
- Interface (common)
- Analog isolation
- Digital/timing model
- Abstract
- Verification of block: Function, radiation, matching, etc.
- Shared database
- Integration in design flow
- Distribution of global analog signals
- Verification of integration

Monitoring: Francesco, Mohsine, IP designers

- Specification/performance
- Interface
- Analog isolation
- Digital/ timing model
- Abstract
- Verification of block: Function, radiation, matching, etc.
- Shared database
- Integration in design flow
- Verification of integration

Digital: Tomasz

- Simulation Framework: Elia, Sara,
 - Framework
 - Hit generation/ import MC
 - Reference model / score board
 - Monitoring/verification tools
 - Generic behavioural pixel chip
 - SEU injection
- Architecture: Elia, Sara, (Andrea, Luca)
 - Evaluation choice: Performance, Power, Area, ,
 - Simulation/Optimization
 - Functional Verification
 - SEU immunity
- Pixel array/pixel regions: Sara, (Andrea)
 - Latency buffer
 - Core/column bus
- Readout/control interface: Roberto, Paris
 - Data format/protocol
 - Rate estimation / Compression
 - Implementation
- Configuration: Roberto, Mohsine, (Luca)
 - External/internal interface
 - Implementation
- Implementation: Dario, Sara, (Luca, Andrea),

Script based to "quickly" incorporate architecture/RTL changes

- RTL Synthesis
- Functional verification
- SEU verification
- P&R
- FE/IP integration
- Clock tree synthesis
- Timing verification
- Power verification
- Physical verification
- Final chip submission

Digital lib.:Dario, Sandeep, Mohsine

- Customized rad tol library
- Liberty files (function, timing, etc.)
 Characterized for radiation
- Custom cells (Memory, Latch, RICE)
- Integration with P&R
- Radiation tolerance
- Integration in design kit

Power: Michael, Sara, Stella, Flavio

- Shunt-LDO integration
 - On-chip power distribution
- Optimization for serial powering
- System level power aspects
- Power Verification

IO PAD frame: Hans

 Wirebonding pads, ESD, SLVS, Serial readout, Shunt-LDO, analog test input/output

Testing/Yield optim.: Sandeep, Luca

- Testability
- Scan path
- BIST
- Redundancy
- Bump-bonding test/verification

Support and services:

- Tools, design kit: Wojciech, Sandeep
- Cliosoft repository: Elia, Dario, Sandeep, Wojciech
- Radiation effects and models: **Mohsine**10/18/2016

Questions?

