
DOE Leadership
Computing
and
Lattice QCD

drhgfdjhngngfmhgmghmghjmghfmf

James C. Osborn

Argonne Leadership Computing Facility

INFIERI workshop
October 21, 2016
FNAL

THE LEADERSHIP COMPUTING FACILITY
 Funded by DOE Advanced Scientific Computing Research (ASCR)

 Operates as two centers, at Argonne and at Oak Ridge National Laboratory,
and are fully dedicated to open science.

 Operates two petascale architectures that are many times more powerful
than systems typically available for open scientific research.

 Available on competitive basis to researchers around the world

3

World’s top supercomputers (www.top500.org)

Rank Site System Cores Linpack
(Tflop/s)

Peak
(Tflop/s)

1 National Super-
computing Center
in Wuxi, China

TaihuLight
Sunway MPP
NRCPC

10,649,600 93,015 125,436

2 National Super
Computer Center
Guangzhou, China

Tianhe-2 - Intel
Xeon & Xeon Phi
NUDT

3,120,000 33,863 54,902

3 DOE/SC/Oak
Ridge National
Laboratory, USA

Titan - Opteron &
NVIDIA K20x
Cray Inc.

560,640 17,590 27,113

4 DOE/NNSA/LLNL
United States

Sequoia
Blue Gene/Q
IBM

1,572,864 17,173 20,132

5 RIKEN AICS
Japan

K computer
SPARC64
Fujitsu

705,024 10,510 11,280

6 DOE/SC/Argonne
National
Laboratory, USA

Mira
Blue Gene/Q
IBM

786,432 8,587 10,066

4

IBM Blue Gene line

● Blue Gene/L

– Grew out of QCDOC

– Lots of low power CPUs
(PowerPC 440)

– Balanced memory and network
bandwidth

● Blue Gene/P

● Blue Gene/Q

– LQCD co-designed prefetcher

● End of Blue Gene line

– Hard to compete with commodity
processors and networks

– Move toward high flop, low bandwidth
architectures

BG/L

BG/Q

5

Upcoming DOE Machines

6

Emerging HPC hardware

● FPGAs

– Growing interest in using as HPC accelerators

– Work being done at ANL (LCF & MCS)
● Prototyping OpenMP frontend

● Investigating reducing compile times

● Also exploring reduced precision

● Neuromorphic computing

– Modeled on brain neurons

– Mostly positioned for pattern matching, data processing
could make way into HPC eventually

● Quantum Computing

– Promising idea, but major technical challenges

● Above not likely major part of exascale computer, but could have some part (FPGA)

● Post-exascale era is very uncertain

– Plan to need to rewrite some components of framework (but not all)

7

Lattice QCD Software Design

8

Lattice QCD (Quantum Chromodynamics)

● Simulations of strong nuclear force
(quarks and gluons)

● Fields on 4d (space-time) lattice

● Gluons live on links
3x3 complex matrix (unitary)

● Quarks on sites
complex 3-vector (staggered)

● Logically everything represented as
fields with objects on sites of lattice

● Major kernel is large sparse solver
(Dirac equation)

9

Lattice field operations (i.e. data parallel interface)

● Logically think of fields as array (lattice sites)
of structures (vector, matrix, …)

● Data parallel abstraction takes care of distribution of sites to nodes

● Want to write high level expressions that generate efficient code
(avoid temporary fields as much as possible)

v2 += m1 * v1
(v1,v2 vector field, m1 matrix field)

● Can be done with C++ expression templates

– QDP++ (C++98 + PETE)

– Grid (C++11)

10

USQCD software framework developed under DOE SciDAC program

● Development of software “levels” started
in 2001

● Level 1 (lowest):

– QMP – message passing

– QLA – linear algebra
(perl code generator for C code)

● Level 2 (middle):

– QDP/QDP++ – data parallel

– QIO – I/O

● Level 3 (upper):

– Algorithms (sparse linear solvers,
forces, …)

● Top is application software

● Designed with 2001+ architectures
and algorithms in mind

– Limited support for
SIMD vectors and threading

– Single lattice size (no multigrid)

11

Adapting to new architectures

● GPU support

– Originally required special-purpose languages (shaders, CUDA, …)

– QUDA “level 3” library in CUDA: highly optimized solvers, etc.
using Python code generator

– LLVM gets JIT support for PTX
QDP++ expression template framework ported to use it

– Exploring GPU support from
OpenMP 4.0+, OpenACC

● Xeon Phi (Knights Corner)

– QPhiX library designed for KNC, extended to KNL and other CPUs

– Using C++ code generator to generate C++

● Ultimate goal of portable performance still a ways off

12

Adapting to new algorithms

● Multigrid solvers

– Support added later for multiple lattices

– Not as elegant as if in original design

● Mixed (reduced) precision

– GPU fast support for 16 bit fixed and floating point -
supported in QUDA

– Developed new algorithms to improve stability

● Reduce communications

– Block Jacobi, Schwartz preconditioners

– Mostly done in new code, not existing framework

13

Other high-level approaches

● Scripting languages

– Ease of use, rapid prototyping & development

– Wrap optimized libraries

● Use Lua to wrap C libraries

– QLUA uses expressions (with lattice temporaries)

– FUEL (functions instead of expressions)

● Exploring alternative high-level languages that also allow
low level optimization

14

Nim (nim-lang.org)

● Modern language started in 2008

● Borrows from: Modula 3, Delphi, Ada, C++, Python, Lisp, Oberon

– “Efficient like C, expressive like Python and flexible like Lisp”

● High-level language – feels more like Python (but is statically typed)

● Generates C/C++/JS/PHP code from Nim

● Extensive meta-programming support
(nearly full language available at compile time)

● Still young for language

– Current version 0.15

– Strong desire to work towards 1.0 (backward stability)

– Small, but growing community (users and developers)

– Some company support (mostly web, games), many waiting for 1.0

15

Tensor operations

● General tensor support in development:

 tensorOps:
 v2 = 0
 v2 += v1 + 0.1
 v3 += m1 * v2

(above code block transforms to the pseudocode)

 for j in 0..2:
 v2[j] = 0
 v2[j] += v1[j] + 0.1
 for k in 0..2:
 v3[k] += m1[k,j] * v2[j]

● Can also use Einstein notation (autosummation):

 v1[a] = p[mu,mu,a,b] * v2[b]

16

USQCD Exascale Computing Project

● Goal to be ready for exascale
systems in early 2020’s

● Redesign software infrastructure for
future machines and algorithms

– Threading and vectorization
key design points

● Keep flexibility in mind

– Don’t know all possible
architectures and algorithms

– Make abstractions as
lightweight and flexible as
possible

● Prepare for unknown future, and
also changes in known plans

17

Updates in architecture roadmaps

● Intel Knights Mill

– Announced in August, expected in 2017

– Enhancements for high performance machine learning training

– Mixed precision performance

– High memory bandwidth

● Need to be ready to adapt to new architecture features

● Post-exascale will likely hold many new surprises

18

Summary

● HPC architectures had major divergence with introduction of GPUs

– Few, if any, codes were prepared for it

– Expression level abstraction (QDP++ & JIT) able to adapt

● Important to have flexible design, high-level abstractions

● C++ metaprogramming and code generators written in Perl/Python/C++ can
provide flexibility and help with optimizations. Nim is a promising new
language that offers best of both; will hopefully increase usage in HPC.

● Want ability to take advantage of new hardware features without changing
algorithmic code

● New hardware may prefer (require) new algorithms

– High-level abstraction for easy implementation of algorithms

	Slide 1
	The Leadership Computing Facility
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

