
DOE Leadership
Computing
and
Lattice QCD

drhgfdjhngngfmhgmghmghjmghfmf

James C. Osborn

Argonne Leadership Computing Facility

INFIERI workshop
October 21, 2016
FNAL

THE LEADERSHIP COMPUTING FACILITY
 Funded by DOE Advanced Scientific Computing Research (ASCR)

 Operates as two centers, at Argonne and at Oak Ridge National Laboratory,
and are fully dedicated to open science.

 Operates two petascale architectures that are many times more powerful
than systems typically available for open scientific research.

 Available on competitive basis to researchers around the world

3

World’s top supercomputers (www.top500.org)

Rank Site System Cores Linpack
(Tflop/s)

Peak
(Tflop/s)

1 National Super-
computing Center
in Wuxi, China

TaihuLight
Sunway MPP
NRCPC

10,649,600 93,015 125,436

2 National Super
Computer Center
Guangzhou, China

Tianhe-2 - Intel
Xeon & Xeon Phi
NUDT

3,120,000 33,863 54,902

3 DOE/SC/Oak
Ridge National
Laboratory, USA

Titan - Opteron &
NVIDIA K20x
Cray Inc.

560,640 17,590 27,113

4 DOE/NNSA/LLNL
United States

Sequoia
Blue Gene/Q
IBM

1,572,864 17,173 20,132

5 RIKEN AICS
Japan

K computer
SPARC64
Fujitsu

705,024 10,510 11,280

6 DOE/SC/Argonne
National
Laboratory, USA

Mira
Blue Gene/Q
IBM

786,432 8,587 10,066

4

IBM Blue Gene line

● Blue Gene/L

– Grew out of QCDOC

– Lots of low power CPUs
(PowerPC 440)

– Balanced memory and network
bandwidth

● Blue Gene/P

● Blue Gene/Q

– LQCD co-designed prefetcher

● End of Blue Gene line

– Hard to compete with commodity
processors and networks

– Move toward high flop, low bandwidth
architectures

BG/L

BG/Q

5

Upcoming DOE Machines

6

Emerging HPC hardware

● FPGAs

– Growing interest in using as HPC accelerators

– Work being done at ANL (LCF & MCS)
● Prototyping OpenMP frontend

● Investigating reducing compile times

● Also exploring reduced precision

● Neuromorphic computing

– Modeled on brain neurons

– Mostly positioned for pattern matching, data processing
could make way into HPC eventually

● Quantum Computing

– Promising idea, but major technical challenges

● Above not likely major part of exascale computer, but could have some part (FPGA)

● Post-exascale era is very uncertain

– Plan to need to rewrite some components of framework (but not all)

7

Lattice QCD Software Design

8

Lattice QCD (Quantum Chromodynamics)

● Simulations of strong nuclear force
(quarks and gluons)

● Fields on 4d (space-time) lattice

● Gluons live on links
3x3 complex matrix (unitary)

● Quarks on sites
complex 3-vector (staggered)

● Logically everything represented as
fields with objects on sites of lattice

● Major kernel is large sparse solver
(Dirac equation)

9

Lattice field operations (i.e. data parallel interface)

● Logically think of fields as array (lattice sites)
of structures (vector, matrix, …)

● Data parallel abstraction takes care of distribution of sites to nodes

● Want to write high level expressions that generate efficient code
(avoid temporary fields as much as possible)

v2 += m1 * v1
(v1,v2 vector field, m1 matrix field)

● Can be done with C++ expression templates

– QDP++ (C++98 + PETE)

– Grid (C++11)

10

USQCD software framework developed under DOE SciDAC program

● Development of software “levels” started
in 2001

● Level 1 (lowest):

– QMP – message passing

– QLA – linear algebra
(perl code generator for C code)

● Level 2 (middle):

– QDP/QDP++ – data parallel

– QIO – I/O

● Level 3 (upper):

– Algorithms (sparse linear solvers,
forces, …)

● Top is application software

● Designed with 2001+ architectures
and algorithms in mind

– Limited support for
SIMD vectors and threading

– Single lattice size (no multigrid)

11

Adapting to new architectures

● GPU support

– Originally required special-purpose languages (shaders, CUDA, …)

– QUDA “level 3” library in CUDA: highly optimized solvers, etc.
using Python code generator

– LLVM gets JIT support for PTX
QDP++ expression template framework ported to use it

– Exploring GPU support from
OpenMP 4.0+, OpenACC

● Xeon Phi (Knights Corner)

– QPhiX library designed for KNC, extended to KNL and other CPUs

– Using C++ code generator to generate C++

● Ultimate goal of portable performance still a ways off

12

Adapting to new algorithms

● Multigrid solvers

– Support added later for multiple lattices

– Not as elegant as if in original design

● Mixed (reduced) precision

– GPU fast support for 16 bit fixed and floating point -
supported in QUDA

– Developed new algorithms to improve stability

● Reduce communications

– Block Jacobi, Schwartz preconditioners

– Mostly done in new code, not existing framework

13

Other high-level approaches

● Scripting languages

– Ease of use, rapid prototyping & development

– Wrap optimized libraries

● Use Lua to wrap C libraries

– QLUA uses expressions (with lattice temporaries)

– FUEL (functions instead of expressions)

● Exploring alternative high-level languages that also allow
low level optimization

14

Nim (nim-lang.org)

● Modern language started in 2008

● Borrows from: Modula 3, Delphi, Ada, C++, Python, Lisp, Oberon

– “Efficient like C, expressive like Python and flexible like Lisp”

● High-level language – feels more like Python (but is statically typed)

● Generates C/C++/JS/PHP code from Nim

● Extensive meta-programming support
(nearly full language available at compile time)

● Still young for language

– Current version 0.15

– Strong desire to work towards 1.0 (backward stability)

– Small, but growing community (users and developers)

– Some company support (mostly web, games), many waiting for 1.0

15

Tensor operations

● General tensor support in development:

 tensorOps:
 v2 = 0
 v2 += v1 + 0.1
 v3 += m1 * v2

(above code block transforms to the pseudocode)

 for j in 0..2:
 v2[j] = 0
 v2[j] += v1[j] + 0.1
 for k in 0..2:
 v3[k] += m1[k,j] * v2[j]

● Can also use Einstein notation (autosummation):

 v1[a] = p[mu,mu,a,b] * v2[b]

16

USQCD Exascale Computing Project

● Goal to be ready for exascale
systems in early 2020’s

● Redesign software infrastructure for
future machines and algorithms

– Threading and vectorization
key design points

● Keep flexibility in mind

– Don’t know all possible
architectures and algorithms

– Make abstractions as
lightweight and flexible as
possible

● Prepare for unknown future, and
also changes in known plans

17

Updates in architecture roadmaps

● Intel Knights Mill

– Announced in August, expected in 2017

– Enhancements for high performance machine learning training

– Mixed precision performance

– High memory bandwidth

● Need to be ready to adapt to new architecture features

● Post-exascale will likely hold many new surprises

18

Summary

● HPC architectures had major divergence with introduction of GPUs

– Few, if any, codes were prepared for it

– Expression level abstraction (QDP++ & JIT) able to adapt

● Important to have flexible design, high-level abstractions

● C++ metaprogramming and code generators written in Perl/Python/C++ can
provide flexibility and help with optimizations. Nim is a promising new
language that offers best of both; will hopefully increase usage in HPC.

● Want ability to take advantage of new hardware features without changing
algorithmic code

● New hardware may prefer (require) new algorithms

– High-level abstraction for easy implementation of algorithms

	Slide 1
	The Leadership Computing Facility
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

