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Intfroduction

o INFIERI project — research network
supported by an European FP7 (Marie
Curie Actions)

e Thales: expertise in high performance
embedded computing (Duhem’s talk)
WP 4: Massive Parallel Computing
WP 6: Test Platforms / Benches

* Dynamic allocation of data-parallel
kernels in heterogeneous architectures
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Preliminaries

¢ A pool of devices:
Central Processing Unit (CPU)
Graphics Processing Unit (GPU)
Field-Programmable Gate
Array (FPGA)

¢ Best way to perform the
partitioning? Several criteria:
Execution time
Data transfer
Power consumption
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Mapping

Application j

HPC Platform
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Figure : (a) Kernels of application j that must be mapped
onto the pool of computational resources. (b) The
correspondent colors for each device.

et THALES

wilderlopes@gmail.com



Preliminaries
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¢ In the literature:
Graph partitioning (1)
Machine-learning techniques (2, 3)
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Figure : Changes at runtime
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Preliminaries
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Problem Formulation

e Simple Scenario: single-kernel
data-parallel application

¢ Only two devices: CPU and GPU

Alcpu) HPC e Workload partitioning < Data
Figure : A simple workload partitioning scenario. partitioning
e A(j) is the amount of data that should be

A = [A(CPU) A(GPU)], allocated to each device

A(j) € [0,1] and %)\(j) =1 j={CPU,GPU}
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Design of the Systemm Manager

Strategy: minimize the discrepancy
between the required and profiled
performances of the data-parallel
application

It is assumed a performance profile of the
kernel is available

QoS requirements: application
dependent

Feedback from the HPC: Measurement
of devices performances in order to
update profiles

Metric: kernel execution fime
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Partitioning

Figure : Strategy for dynamic partitioning




Application Profiling

Constraints
Application ™ time < time_limit
Block 1 Block2 e Block K
Kernel Kernel Kemel Kernel Kernel Kernel Kernel Kemel
GPP ST GPPMT  GPGPU GPP ST GPP MT GPP ST GPPMT  GPGPU
Benchmark Benchmark Benchmark Benchmark Benchmark Benchmark Benchmark Benchmark

OPS/Watt OPS/Watt OPS/Watt OPS/Watt OPS/Watt OPS/Watt OPS/Watt OPS/Watt
Power Power Power Power Power Power Power Power
Completion time Completion time Completion time Completion time Completion time Completion time Completion time Completion time
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Mathematical Formulation

e Error ex: measure of how well the
resources can be combined to achieve
the QoS requirements

N
er = u<pg — ZA(]’)TJ) =u(py — R\e) (1)
j

o List of requirements p,,

e Matrix R: profiles of the application at
each device.
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Mathematical Formulation

* Ermor e;: measure of how well the « Minimization problem = Mean-square
resources can be combined to achieve criteria

the QoS requirements

2
E

N

er = u<pg - ZA(]’)TJ) =u(py — R\e) (1) mAin J(\) = Elex)? = E’u(pz — RX\i)
J

subjectto  A(j) > 0,5 € [1,N], @)

e List of requirements pj, . N
1"\ = A(g) =1
k ]; (J)

e Matrix R: profiles of the application at
each device.
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The Intelligence Embedded in the System Manager

o Adaptive Filters: naturally fit for real-time
estimation without previous training (as
opposed to machine learning-based
techniques)

e Able to track variations in the HPC
resources (matrix R) and in the QoS
requirements (vector p})

e Easy to be scaled up towards several
applications (kernels) and computing
devices

Figure : Schematics of an Adaptive Filter
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The Intelligence Embedded in the System Manager

Constrained Least-Mean-Square Filter (7, 8)

Ak = PAnji—1 + pR ™' Dpauy ex(i)] + F| (3

P=1— L1117
. 1 N o))
=wh

Figure : Schematics of an Adaptive Filter
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Experiments
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Test: variation in the QoS
requirements

pr changes while R remains fix
Profile:

R =123.5 (CPU) 14.93 (GPU) |
seconds
The adaptive filter is able to

provide a new workload
partitioning at runtime

pr =20
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ACPU)=0 AGPU)=1

MCPU) =0.6 A(GPU) = 0.4
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Experiments

Mean-Square Error
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Change in
QoS Requirement

New workload partitioning
is estimated at runtime
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Conclusions

e The strategy successfully fracks variations in p;, (QoS requirements)
e Next 1: Track variations in the computing devices and update R (HPC feedback)

¢ Next 2: Perform exhaustive tests in a real scenario — video processing application
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Distributed System Manager - Near Future

Supervisor <—I
- ,

Applications to be mapped

Applications to be mapped Applications to be mapped

HPC Platform
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