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Introduction

• INFIERI project – research network
supported by an European FP7 (Marie
Curie Actions)

• Thales: expertise in high performance
embedded computing (Duhem’s talk)

• WP 4: Massive Parallel Computing
WP 6: Test Platforms / Benches

• Dynamic allocation of data-parallel
kernels in heterogeneous architectures
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Preliminaries

• A pool of devices:
Central Processing Unit (CPU)
Graphics Processing Unit (GPU)
Field-Programmable Gate
Array (FPGA)

• Best way to perform the
partitioning? Several criteria:

Execution time
Data transfer
Power consumption

(a) (b)

Figure : (a) Kernels of application j that must be mapped
onto the pool of computational resources. (b) The
correspondent colors for each device.
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Preliminaries

Figure : Changes at runtime

• Changes at runtime
• Type and amount of devices
• Amount of kernels
• Applications requirements – Quality of

Service (QoS)

• In the literature:
Graph partitioning [1]
Machine-learning techniques [2, 3]
Programming heuristics [4, 5, 6]

• However, they are targeted at static
partitioning

4/16 wilderlopes@gmail.com



Preliminaries

Figure : Changes at runtime

GOAL

Develop a system manager able to sense
and react at runtime to variations in the
High-Performance Heterogeneous Comput-
ing platform as well as in the QoS requirements
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Problem Formulation

Figure : A simple workload partitioning scenario.

λk = [λ(CPU) λ(GPU)],

λ(j) ∈ [0, 1] and
N∑
j

λ(j) = 1

• Simple Scenario: single-kernel
data-parallel application

• Only two devices: CPU and GPU

• Workload partitioning⇔ Data
partitioning

• λ(j) is the amount of data that should be
allocated to each device
j = {CPU,GPU}
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Design of the System Manager

• Strategy: minimize the discrepancy
between the required and profiled
performances of the data-parallel
application

• It is assumed a performance profile of the
kernel is available

• QoS requirements: application
dependent

• Feedback from the HPC: Measurement
of devices performances in order to
update profiles

• Metric: kernel execution time
Figure : Strategy for dynamic partitioning
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Application Profiling
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Mathematical Formulation

• Error ek: measure of how well the
resources can be combined to achieve
the QoS requirements

ek = u

(
pok −

N∑
j

λ(j)rj

)
= u

(
pok −Rλk

)
(1)

• List of requirements pok
• Matrix R: profiles of the application at

each device.

• Minimization problem⇒ Mean-square
criteria

min
λ

J(λ) = E|ek|2 = E
∣∣∣u(pok −Rλk)∣∣∣2,

subject to λ(j) ≥ 0, j ∈ [1, N ],

1Tλk =
N∑
j=1

λ(j) = 1

(2)
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The Intelligence Embedded in the System Manager

• Adaptive Filters: naturally fit for real-time
estimation without previous training (as
opposed to machine learning-based
techniques)

• Able to track variations in the HPC
resources (matrix R) and in the QoS
requirements (vector pok)

• Easy to be scaled up towards several
applications (kernels) and computing
devices

Figure : Schematics of an Adaptive Filter
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The Intelligence Embedded in the System Manager

Constrained Least-Mean-Square Filter [7, 8]

λk,i = P [λk,i−1 + µR−1DRλu
T
i ek(i)] + F (3)

P = I − 1

N
11T

F =
1

N
1,

(4)

Figure : Schematics of an Adaptive Filter
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Experiments

• Test: variation in the QoS
requirements

pok changes while R remains fix
• Profile:
R = [23.5 (CPU) 14.93 (GPU) ]
seconds

• The adaptive filter is able to
provide a new workload
partitioning at runtime
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Experiments
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Conclusions

• The strategy successfully tracks variations in pok (QoS requirements)

• Next 1: Track variations in the computing devices and update R (HPC feedback)

• Next 2: Perform exhaustive tests in a real scenario – video processing application
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Distributed System Manager - Near Future
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