

# Beamformer Feeding Board Design and IC Package EM Simulation

Presenter: Tailei Wang Supervisor: Aurore SavoyNavarro Steve Torchinsky Sangitiana Rakotozafy Harison



### Outline

- Introduction of the Square Kilometer Array (SKA) and Octagonal Ring Array (ORA);
- Printed Circuit Board (**PCB**) design in Altium;
- Board Electromagnetic (EM) Simulation in HyperLynx;
- Integrated Circuit (IC) Package EM Simulation in ADS and HyperLynx;
- Future Work and Acknowledgement.



### SKA and ORA





### Introduction of the Board





### Step 1: Board Design in Altium





#### Step 2:Layer Stack of the Board

|  | Layer Name     | Туре           | Material         | Thickness (mm) | Dielectric<br>Material | Dielectric<br>Constant | Pullback (mm) |
|--|----------------|----------------|------------------|----------------|------------------------|------------------------|---------------|
|  | Top Overlay    | Overlay        |                  |                |                        |                        |               |
|  | Top Solder     | Solder Mask/Co | Surface Material | 0.01016        | Solder Resist          | 3.5                    |               |
|  | Top Layer      | Signal         | Copper           | 0.03556        |                        |                        |               |
|  | Dielectric 1   | Dielectric     | Core             | 0.36           | FR4                    | 4.3                    |               |
|  | GROUND         | Signal         | Copper           | 0.036          |                        |                        |               |
|  | Dielectric 2   | Dielectric     | Prepreg          | 0.71           |                        | 3.8                    |               |
|  | Signal Layer 1 | Signal         | Copper           | 0.036          |                        |                        |               |
|  | Dielectric 3   | Dielectric     | Core             | 0.36           |                        | 4.3                    |               |
|  | Bottom Layer   | Signal         | Copper           | 0.03556        |                        |                        |               |
|  | Bottom Solder  | Solder Mask/Co | Surface Material | 0.01016        | Solder Resist          | 3.5                    |               |
|  | Bottom Overlay | Overlay        |                  |                |                        |                        |               |

#### Total Thickness: 1.59mm



#### Step 3: EM Simulation with Hyperlynx





#### The Influence of Metal Via





#### The Influence of Dielectric Constant Variation





#### Step 4: Line Simulation with Hyperlynx





#### Step 5: Prototype of the Board



Size: 162mm\*41.3mm



### Package EM simulation in ADS

Why do we need to do the simulation?

- IC characterization is no longer limited to the IC itself, as we know, ICs need to be packaged, so the packaging and bondwire will affect the performance.
- Accurate prediction of the affects of package and bondwire at high frequency is increasingly important as ICs continue to shrink and to operate at higher frequencies.



#### An Example of Filter designed for 7GHz-9GHz



|                                       |                                  |      |                | $\sim$ . |
|---------------------------------------|----------------------------------|------|----------------|----------|
| P1 · · · · C · · · ·                  |                                  | L    | ·C·····        | P2       |
| Num=1 C1 · · ·                        | and a state of the second second |      | · C2 · · · · · | Num=2    |
|                                       |                                  | 9 L3 |                |          |
|                                       |                                  | 5    |                |          |
|                                       |                                  | 2    |                |          |
|                                       |                                  |      |                |          |
|                                       |                                  |      |                |          |
| · · · · · · · · · · · · · · · · · · · |                                  | С    |                |          |
| Equivalen                             | t Circuit                        | C3   |                |          |
|                                       |                                  |      |                |          |
|                                       |                                  |      |                |          |
|                                       |                                  |      |                |          |
|                                       |                                  |      |                |          |
|                                       |                                  |      |                |          |
|                                       |                                  |      |                |          |
|                                       |                                  |      |                |          |



#### View of the Filter with Package in ADS



14/20



#### **Simulation Results**





#### **Bondwire Length Influence**









#### Future Work

- Manufacture the board;
- Connect with the beamformer board and Antenna and measurement;
- Further EM simulation about QFN package in HyperLynx, like adding IC and other package types;
- Writing HyperLynx Package EM simulation manual;
- Learn LNA and filter design.



## Acknowledgement

 This work is supported by EU FP7-PEOPLE-2012-ITN project nr317446, INFIERI, "Intelligent Fast Interconnected and Efficient Devices for Frontier Exploitation in Research and Industry".



#### **Thank YOU**