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What is Big Data?

library of congress

One year of all business emails
3000 PB

Content uploaded to
Facebook each year

180 PB

Google search index , Tweets in 2012
IOO PB 0.02 PB

US census

Climate data

4PB |5 PB health records
30 PB

Adapted from Wired: http://www.wired.com/magazine/2013/04/bigdata/
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http://www.wired.com/magazine/2013/04/bigdata/

How Big is Data?

WHAT IS
OPETABYTE?

T0 UNDERSTAND A PETABYTE WE
MUST FIRST UNDERSTAND A
GIGABYTE.

1 " 7.MINUTES OF
«eee HFD=TVVIDEO

2 : YARDS OF BOOKS SHELF

GIGABYTES

4 7 = SIZE OF A STANDARD
DVD-R

GIGABYTES

THERE ARE A MILLION GIGABYTES
IN A PETABYTE
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A PETABYTE

IS A LOT
OF DATA

20 MILLION

FOUR-DRAWER FILING CABINETS
FILLED WITH TEXT

15.5 YEARS

PETABYTE OF HD-TV VIDEO

1 5 SIZE OF THE 10 BILLION
m—— PHoTOS___, FACEBOOK

20 ssss THE AMOUNT OF DATA|PER
poopQE
ss PROCESSED BY GOOGLE|DAY

PETABYTES ®mEEnm
TOTAL HARD DRIVE SPACE
= MANUFACTURED IN 1995

= Qi Qufui
Dooe
Illl
THE ENTIRE WRITTEN WORKS

PETABYTES
OF MANKIND, FROM THE BEGIN-
NING OF RECORDED HISTORY,
IN ALL LANGUAGES

PETABYTE

1
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Who is producing Big Data?

Science

2= Fermilab
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Large Hadron Collider (LHC)

Circumference: almost 17 Miles

2 proton beams circulating at 99.9999991% of the
speed of light

A particle beam consists of bunches
of protons (100 Billion protons per bunch)

Beams cross and are brought to collision

at 4 points
e 20 Million collisions per second per crossing point

Energy stored in one LHC beam is
equivalent to a 40t truck crashing into a
concrete wall at 90 Mph

LHC guide: http://cds.cern.ch/record/1165534/files/CERN-Brochure-2009-003-Eng.pdf
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Compact Muon Solenoid (CMS)

= Detector bullt around collision
poINt

CMS DETECTOR

» Records flight path and energy of S o o,

Overall diameter : 15.0m Pixel (100x150 ym) ~16m* ~66M channels
Overall length :28.7m Microstrips (80x180 um) ~200m?* ~9.6M channels

all particles produced In a
collision

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m?* ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

= 100 Million individual
measurements (channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)

= All measurements of a collision oo
together are called: event

2% Fermilab
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Compact Muon Solenoid (CMS)
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CMS is producing a lot of data

One year of all business emails
3000 PB

library of congress

Content uploaded to
Facebook each year

180 PB

Google search index , Tweets in 2012
CMS 100 PB 0.02 PB
US ce

produces nsus

per year 4 PB 5 PB health records
20 PB 30 PB

Climate data

2= Fermilab

9 Oliver Gutsche | Big Data@FNAL 20. October 2016



The Future - HL-LHC

e Peak luminosity

—|ntegrated luminosity
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Year
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Integrated luminosity [fb!]
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LHC expectation data volumes
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25000
® Total data volume [PB]
20000
15000
EXABYTES!
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2010 2015 2021 2026
2012 2018 _ 2037 .
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We are not alone!

* Many examples of other science
disciplines producing and analyzing
vast amounts of data

» Example: Genomic Research

» Genetic sequencing cost has
decreased exponentially

Moore's Law

= A study of a group might be a few

hundred individuals

® ~10GB file per person for whole exome (A
study of about 1% of your DNA) Mutations
here can have severe impact on the rest

® ~200GB file per person for whole genome

sequencing. Modern machines can seguence National Human Genome
the entire genome Research Institute

genome. gov/sequencingcosts

- Raw data in the few TB range for -
exome and few hundred TB for full B pudibe pudiy pudies pudiee

genome to a few PB 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

2= Fermilab
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Genome research outlook

Growth of DNA Sequencing

Q.
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by Double every 7 months (Historical growth rate)
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DOI:10.1371/journal.pbio.1002195
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Comparison

Table 1. Four domains of Big Data in 2025. In each of the four domains, the projected annual storage and computing needs are presented across the data

lifecycle.
Data Phase Astronomy Twitter YouTube Genomics
Acquisition 25 zetta-bytes/year 0.5—15 billion 500-900 million hours/year 1 zetta-bases/year
tweets/year
Storage 1 EB/year 1-17 PBl/year 1-2 EB/year 2—40 EB/year
Analysis In situ data reduction Topic and Limited requirements Heterogeneous data and analysis

Real-time processing
Massive volumes

Distribution Dedicated lines from antennae
to server (600 TB/s)

sentiment mining
Metadata analysis

Small units of
distribution

Major component of modern user’'s
bandwidth (10 MB/s)

Variant calling, ~2 trillion central
processing unit (CPU) hours

All-pairs genome alignments, ~10,000
trillion CPU hours

Many small (10 MB/s) and fewer massive
(10 TB/s) data movement

doi:10.1371/journal.pbio.1002195.t001
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How do you storage and serve big data?

Technology

2= Fermilab
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Disk

Harddrive

Diskpool

Storage | =& =
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= Access to a lot of data from a lot of C

through disk systems
® Harddrive =» Diskpool =» Storage Systems

= We operate massive insta

Ike a single hard drive to the user
® Storage systems handle access, provide replication

® Access is not like you access as file on your harddrive (POSIX) but through
special protocols (scaling reasons)

® Using community systems like dCache, EOS but also industry systems like
HDFS from Apache Hadoop

Bytes/sec

B In

o6t

30 G

206

10 G

0 A

dCache-disk Cluster Network last day
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|ndlll‘
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ations of many Petabytes that ook

FNAL dCache
30 GB/s

(240 Gbps)
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Thu 00: 00
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data =» If you don’'t need to access it
® For access, data has to be copied (“staged”)

to disk
* Individual cartriadges can currently

® Still the cheapest way of storing Petabytes of

store up to 10 IB
= |[ndividual robots have 10k - 15K

magnetic tape
cartridge slots
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INTERNET.
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Distributed infrastructures and transfer systems

Community uses various solutions to provide distributed

access to data:
Experiment specific: Atlas (Rucio), CMS (PhEDEX), ...
Shared: SAM (Neutrino and Muon experiments)

Example: Worldwide LHC Grid (WLCQG)

8 oCO4  ethweek ._g . — 300 TB/day
SC2 1PBweek
SC3

. SC4

. DDT

Full Mesh General . CSA06

— 100

Purpose Scientifig _
Networks "~ Production

" Debug :
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Optical

Private J
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CMS transfers: more than 2 PB per week
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Dynamic Data Management

= Subscription based transfer systems
-DEX (CMS) and Rucio (Atlas)

® P

i

®

®

* Popu

C Run 1: mostly manual operations
C Run 2: dynamic data management

arity Is tracked per dataset

* Replica count across sites is increased or decreased

 Fully Integrated aistributl
® SAM (shared amongst Neutri

® A

® |n

according to popularity

movement IS based on

terfaces to storage at sites, pertor

coples If necessary

trino and

requests

on system

Muon experiments)

* Data Is distributed automatically for the
community
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'or datasets from jobs.
MmS cache-to-cache

dCache/ . e

eeeee

Application Code
and Auxiliary files

Event data and output
files copy )

Event data streaming *
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Worker
N oYl

CVMES Cache
onh node

Site Squid

CVMES Stratum
Server
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Data Federations

= Xrootd: remote access to files

Production Transitional

* ALICE based on xrootd from the
beginning

* CMS and Atlas deployed xrootd

federations

® AAA for CMS, FAX for Atlas
@ Allows for remote access to all files on
disk at all sites

® Use cases:
e Fall back
e Overflow for ~10% of all jobs

2= Fermilab
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OSG StashCache
» OSG: StashCache

® Bringing opportunistic
storage usage to all users
of OSG

® OSG collaborators provide
local disk space

® OSG is running xrootd
cache servers
e Dynamic population of
caches =¥ efficient
distributed access to files

- For users that don’t have
infrastructures like CMS
and Atlas

22 Oliver Gutsche | Big Data@FNAL
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Fermilab Computing

* Provide and manage computing services and resources
» Data recording, storage, access
* Bulk processing, analysis
* Functionality analogous to LHC Tier-0 and Tier-1
» CPU Cores, Online (Dlsk) and Oftline (Tape) Storage, Networking

726 PB DISk s 10/40&Q6b|t
\Mapaged by sl Networking, )
"‘35k4nterna|

7600.0 Coresf RS

N I\/Iass StOf age

..........

L™

) 3 T LT T
'''''

Capamty for 70k
‘cartridges, almost

L Exabyte of data
, \_ ' I'//’/
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Active Archival Facility

 HEP has the tools and experience for the distributed

exabyte scale
® We are “best in class” in the field of scientific data management

* We are working with and for the whole science community
® [0 bring our expertise to everyone’s science

® Jo enable everyone to manage, distribute and access their data, globally

» Example: Fermilab’s Active Archival Facility (AAF)

® Provide services to other science activities to preserve integrity and
availability of important and irreplaceable scientific data

® Projects:

* (Genomic research community is archiving datasets at Fermilab’s AAF and
oroviding access through Fermilab services to ~300 researchers all over
the world

* University of Nebraska and University of Wisconsin are setting up archival
efforts with Fermilab’s AAF

2= Fermilab
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How do you
analyze Exabytes




Industry

* New toolkits and systems collectively called "Big Data”
technologies have emerged to support the analysis of PB
and EB datasets In inaustry.

4 Y
| (H'gh-Lm MR A (M A (m\ w General management tools for data pipelines
1. Pig 1. H20 1. GraphLab 1. Hive
I N S I G H T 2. Cascading 2 Mahout 2. Giraph 2 Presto (CIuster Managemerp (Schedulin onitorin\
- 3. Hadoop Streaming || 3. Spark MUIb || 3. Spark Graphx || 3. Dril 1. Docker 1. Luig
4. Cascalog 4. FlinkML 4. Hama 4. Impala 2. Zookeeper 2. Airflow
- S . AN /' J 3. YARN 3. Nagios
' . 4. Mescs 4. Graphite

File System | Batch Processing . . e

1. HDFS 1. Spark - VAN J

2. AWS S3 2. Hadoop MapReduce

(et Ye 3. Azure 3. AWS EMR Y ot ialiat

Ingestion File Format | - - Web Framework | Data Visualization
1. Kafka 1. Avro 4. Tachyon 4. Fink : s 1. Ruby on Rails 1.D083

5. Ceph 5. Tez Uptime Critical
2. Logstash 2. ProtoBuf ' ' Search 2. Node.js 2. Tableau
3. RabbitMQ 3. Thrift Graph 3. Django 3. Leaflet
4. Fluentd 4. Parquet tream Pr in 4. AngularJS 4. Highcharts

é. AWS Kinesis | 5. ORC Files 1_Storm
- 2. Spark Streaming
3. AWS Lambda
4. Samza

2= Fermilab
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Goals

* Reduce time-to-physics

* Educate our graduate students and post docs to use

Industry-pased technologies

® Improves thelr chances on the job market outside academia
® |[ncreases the attractiveness of our fielo

= Use tools developed in larger communities reaching
outside of our field

2= Fermilab
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A first step: A comprehensive use case study

* Principles of data analysis in HEP have
not changed (skimming and slimming

Recorded and simulated Events centrally Recorded and simulated Events centrally
roduced Analysis Object Data (AOD) produced Analysis Object Data (AOD)

experiment-specific data formats)

® Industry technologies use different approaches
and promise a fresh look at analysis of very large
datasets and could potentially reduce time-to-
physics with increased interactivity.

upling |-

Ntupl
2

~4 X year

Skimming
&

w | Slimming

“Big Data”
technologies

* We want to use an active LHC Run 2
analysis, searching for dark matter with
the CMS detector, as a testbed for
“Big Data” technologies

Cut-N-Count Analysis

plots and tables

2= Fermilab
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Conclusions
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Conclusions

* There Is a lot of scientific data!
* The tfuture will bring even more data - exponentially more!

» We have the technology to handle the data of today - will
we be able to cope with the data of tomorrow?

= Analysis will be the key challenge Iin the future =» We're
WOorking on technologies to analyze £xabytes!

2= Fermilab
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