Deep Learning for Imaging Calorimetry

Cern Openlab Lightning Talk Jayesh Mahapatra

background image: Shutterstock

Deep Learning for Imaging Calorimetry

Currently the tracker and calorimeter are used in conjunction along with physics based algorithms for particle reconstruction

- There's a possibility of using deep learning algorithms on calorimeter readouts for particle reconstruction
- ML algorithms can learn patterns in simulated data of CMS calorimeters (ECAL and HCAL)
 - Trained models can be used to classify particles and carry out regression analysis on energy of particle hits

Comparison of performance between deep learning methods vs conventional methods

Project workflow

- Generate simulated calorimeter readouts of particle hits (photons and pions)
- Process the calorimeter readout to find the centroid of energy deposit and take a window of reading around it
- Feed the data to convolutional neural networks with varying topologies and train them

Test on unseen data and plot results

CMS Calorimeter

The work done so far

Used simulated ECAL data for :-

- Classification between pions and photons
- Predicting energy of photon hits on calorimeter
- Used different network topologies to perform classification and regression
- Added HCAL data to give more information to the algorithm

Currently feeding ECAL and HCAL data into the same branched convolutional neural network to perform both regression and classification using a single network

Some topologies used

CNN1

Some results

Future Scope of Work

8

> Classification of Jets > Publications:-

- Release of dataset to public
- Release of results