

Planning and Operation of the Half-Sector Test (HST)

B. Mikulec

HST Installations in Linac4

• L4T: new Linac 4 to Linac 2 transfer line

Foil Handling Mechanism

Test Program for Stripping Foil Test Stand

- Lifetime of different foils and foil holders
- Controls of foil changer including interlock with screen insertion
- Commissioning and optimisation of the instrumentation at the stripping foil (screen + mirrors + camera, foil temperature measurement with infra-red probe and current measurement from foil holder)
- Rough estimate of stripping efficiency of different foil types and thicknesses
 - Need 2 well cross-calibrated BCTs (L4T.BCT.0107 and L4Z.BCT.0273)
- Detection of foil breakage (foil current); destructive tests with highintensity beam next year
- Hope to be able to obtain a rough estimate of emittance growth through the foil using the SEM grids in L4Z line
- Beam size on foil will be similar to situation at PSB injection
- ➤ Tests can be performed in parallel to Linac 4 beam tests (except for emittance measurements of H⁻ beam at end of line)

Temporary installation of half of the future PSB H⁻ injection chicane + external dump

- Around location of debuncher (L4T sector 4.5)
- Install L4T only up to this point (plus line between 2 vertical bends)
- Positive 'side effect': Commission already L4T line until debuncher

HST Implementation

HST Implementation

MPP 28/07/2016

Schematic Layout of HST

- ➤ Install another stripping foil+BTV unit, half of the injection chicane (BSW₃ + BSW₄) including the H°/H⁻ dump and the H°/H⁻ current monitor
- ➤ In addition: 1 standard + 1 diamond BLM, 2 BCTs (stripping efficiency cross-check), 1 BTV + external beam dump+shielding (including vacuum valve)
- > 2 sector valves enclosing the installation, pumping groups

Current Installation Status HST

27/07/2016 – HST Girder with external dump

Test Program for HST

- Stripping foil
 - More precise stripping efficiency measurement of H^o and H⁻
- BSW₃₊₄
 - Powering and control of half of the chicane magnets
 - Refine chicane parameters
 - Current stability, precision and interlocking
- H°/H- dump
 - Aperture check
 - Temperature cross-check with simulated values → refine cooling needs
 - Interlocking (temperature and pressure drop define operational thresholds)

Drawing of H^o/H⁻ monitor provided by F. Zocca

- Diamond BLM
 - Diamond BLM to measure secondaries close to H°/H⁻ dump; evaluate operational conditions for foil degradation measurement and fast losses
- H°/H- current monitor: New development!
 - Sensitivity check for H⁻ plates (use low-intensity beam w/o foil); comparison to theory
 - Aperture check
 - Influence on measurement if beam passes besides the monitor (use thicker foil; simulate circulating beam)?
 - Interlocking essential for dump protection
- *Interlock system test* for part of PSB injection (BIS + SIS) → see presentation Andrea
- Prepare and test new applications + controls

Proposed Operational Phases

- RP simulations: max. allowed beam power for 98% stripping efficiency is 445 W, corresponding to ~2E13 H⁻, but only single shots planned at convenient times
 - With these results will be able to increase slightly the intensity of test part 2, in particular also because the repetition rate will be much lower
 - Probably not more than 30 mA current from Linac₄ → could even send full 100 μs pulse
 - Need chopper to remove head/tail and reduce pulse length

Operating Scenario	HST Part 1 (2 months)	HST Part 2 (2 months)
Max. pulse current	40 mA	40 mA
Max.+avg. pulse length	0.5-1 μs	10 μs
Max. repetition rate	o.833 Hz	0.833 Hz
Pulse period	1.2 S	1.2 S
Max. number of particles/pulse	2.5E11	0.8 ₃₃ Hz 1.2 s Original rough pla Original rough pla
Particle energy [MeV]	160 MeV	160 MeV
Particle energy [J]	2.563E-11 J	2.563E-11 J
Max. energy/pulse	6.4 J	64 J
Mean power/pulse	5.33 W	53.3 W
Beam designation	Pencil beam	Low-intensity beam
1σ beam size	~1.9 X 2.4 mm²	~2.2 X 3.3 mm ²

• Detailed checklist prepared and being integrated on web (G. Guidoboni, B. Mikulec, C. Bracco; web interface E. Matli and P. Hardyn for IRWG)

Linac4 Planning Update

J. Coupard, https://espace.cern.ch/coordination-installation-linac4/default.aspx

- HST installation: July 2016
- HST equipment commissioning: August 2016
- HST cold checkout and parallel beam preparations with 160 MeV commissioning beam (separate cycle): September 2016
- HST beam tests from October 2016 in parallel with 160 MeV beam commissioning
 - Low-intensity beam steering to HST (screen IN), BI checks etc.; October 2016 for ~2 weeks
 - HST low-intensity beam measurements: min. 3 weeks in November 2016
 - From December 2016 (running into 2017) higher intensity beam measurements

Summary

- HST installation well advanced
- Many issues already identified during fabrication and installation → avoids delays for PSB installation
 - Soldering of undulated vacuum chambers and production nonconformities, contamination issues of stripping foil vacuum chamber, connections of stripping foil controls, mechanical tolerances of H°/H⁻ dump mounting etc.
- Push for all equipment groups and OP to advance with equipment and controls/applications
 - For baseline LS2 installation in PSB expect useful input from beam measurements; should allow potential modifications
- Very good test for BIS and SIS in view of future operation

Documentation

- ✓ Layout drawing: SPLLJLHS0001
- ✓ Stripping foil test stand ECR: EDMS 1376356
- ✓ HST Engineering Specifications: EDMS 1571173
- ✓ HST Twiki website: https://twiki.cern.ch/twiki/bin/view/PSBHalfSectorTest/WebHome
- ✓ Indico: http://indico.cern.ch/category/5296/