

Double readout calorimeter at FCC-ee

Gabriella Gaudio INFN – Sezione di Pavia

Aims of Dual Readout Project

- Address the factors which limit the resolution of hadron calorimeter to reach the theoretical resolution limit
 - ✦ Calibration of the calorimeter can be done with electrons
 - High resolution EM and HAD calorimetry
 - Can comply with the requirements for Future collider physics
- Study and eliminate/reduce dominant source of fluctuation

This research activity has been/is carried on by the RD52 experiment @CERN <u>http://highenergy.phys.ttu.edu/dream/index.html</u>

Principle of the Dual Readout method

Hadronic showers consist of two components: em (π^0) and non-em components

- The calorimeter response to these two components is typically very different
- Hadronic showers are characterized by very large fluctuations due the energy sharing between these two components
 - I. f_{em} varies event-by-event (fluctuation in calorimetry response) and grows with energy (non linearity)
 - 2. the fluctuation in the amount of invisible energy

1 – E.M. Fraction Fluctuation

Simultaneous measurement on event-by-event basis of em	Cherenkov light C		only produced by relativistic particles, dominated by electromagnetic shower component	
fraction of hadron showers	Scintillation ligh	ht S	measure dE/dx	
C = [f + c(1 - f)]E $S = [f + s(1 - f)]E$	where	c = s =	$(h/e)_C$ $(h/e)_S$	
It is possible $f = \frac{c - s(C)}{(C/S)(1 - s)}$	$\frac{C/S}{D-(1-c)}$	and	$E = \frac{S - \lambda C}{1 - \lambda}$	
$\lambda = \frac{1-s}{1-s}$ can be meaning beam of En	isured on ergy E ₀	$\lambda =$	$\frac{E_0 - S}{E_0 - C}$	
1-c can be extractional linear fit of C	cted from a S C vs S	S = ($(1 - \lambda)E_0 + \lambda C$	

1 – E.M. Fraction Fluctuation

200 GeV "jets"

1 – E.M. Fraction Fluctuation

н	lomogeneou	s Calorimeter	Sampling Calorimeter	
Р	Possibility to sol sampling fluctu	ve light yield and ation problem.	Two types of fibers, either sensitive t Cherenkov and Scintillation	0
1	Need to separat	e C and S light.	Separated by construction	
	2007-11 C	ystals DRC	2003 - 11 DREAM Cu-fiber 및	
	 Single Xtals, prov PbWO₄ + Pr, N BGO BSO NIM , NIM , NIM , 	Ve of principles No doped PbWO ₄ A 638 (2011) 47 A 640 (2011) 91 A 621 (2010) 212	NIM A 533 (2005) 305 NIM A 536 (2005) 29 NIM A 537 (2005) 537 NIM A 548 (2005) 336 NIM A 550 (2005) 185 NIM A 581 (2007) 643	
RD52 cc	NIM A NIM A NIM A Matrixes + DREA	A 604 (2009) 512 A 593 (2008) 530 A 595 (2008) 359 M, <u>em section</u>	NINI A 398 (2009) 422 2010 Pb - Tile DRC INST 9, (2014) C05009	
	 PbWO₄ Doped PbWO₄ BGO 	NIM A 598 (2009) 710 NIM A 686 (2012) 125 NIM A 610 (2009) 488 NIM A 584 (2008) 273	2012- 16 Cu, Pb Fiber DRC NIM A 762 (2014) 110 NIM A 735 (2014) 120 NIM A 735 (2014) 130 NIM A 808 (2016) 41	

2 - Invisible Energy

- In nuclear reactions some energy has to be provided (binding energy) to free protons and neutrons.
- This energy doesn't result in a measurable signal (<u>invisible energy</u>)
- Invisible energy accounts on average for about 30-40% of non-em shower energy

Large event-by-event fluctuations limit resolution

Correlation between invisible energy and kinetic energy carried by released nucleons

Evaporation nucleons: soft spectrum, mostly neutrons (2-3 MeV)

2 - Invisible Energy

Measurement of the kinetic energy of neutrons which is correlated to nuclear binding energy loss (invisible energy) from time structure of the signal (NIM A 598 (2009) 422)

Dual readout with homogeneous materials (Crystals)

beam

Dual Readout method in homogeneous calorimeter

Motivations:

- high density scintillating crystal widely used in particle physics experiment: ensure excellent energy resolution for electromagnetic showers
- calorimeters with a crystal EM compartment usually have a poor had. resolution due to
 - fluctuation of the starting point of the hadronic shower in the EM section
 - different response to the em and non-em component of the shower in the two calorimeters

Dual readout applied to an hybrid system:

Measuring fem on an event-by-event basis allows to correct for such fluctuations and allows to eliminate the main reasons for poor hadronic resolution

Properties	Čerenkov	Scintillation
Angular distribution	Light emitted at a characteristic angle by the shower particles that generate it $\cos\theta = I/(n\beta)$	Light emission is isotropic: excited molecules have no memory of the direction of the particle that excited them
Time structure	Instantaneous, short signal duration	Light emission is characterized by one or several time constants. Long tails are not unusual (slow component)
Optical spectra	$rac{dN_C}{d\lambda} = rac{k}{\lambda^2}$	Strongly dependent on the crystal type, usually concentrated in a (narrow) wavelength range
Polarization	polarized	not polarized

Dual Readout method in homogeneous calorimeter

Requirements for using crystals in dual readout based calorimeter: Good Čerenkov vs Scintillation separation Response uniformity High light yield (to reduce contribution of p.e. fluctuation to the resolution)

Separation can be achieved by:

* optical filters: exploit different spectral region of Č and S
* time integration: exploit different time structure of Č and S

In order to have the best possible separation a crystal must have a scintillation emission:

- * in a wavelength region far from the Cherenkov one
- * with a decay time of order of hundreds of nanoseconds
- * not too bright to get a good C/S ratio (<50% BGO emission)</p>

Dual Readout method in homogeneous calorimeter

Crystal matrix + fiber sampling calo

NIMA 598 (2009) 710, NIM A 610 (2009) 488

Purpose of these tests: to see to what extent the dual readout principle (that worked so well to improve the hadronic performance of the DREAM in stand alone) are applicable when most of the shower is deposited in a crystal calorimeter section

Performed tests: PbWO4 matrix, BGO single Xtal, BGO matrix from L3 experiment (100 crystals) read first with 4 and then with 16 PMT

The dual-readout principle also worked well for this hybrid calorimeter system.

BGO Matrix results

Resolution obtained from distribution of integrated charge

- * Čerenkov energy resolution shows a constant term of about 1.5%
- * good linearity (within ± 3%)
- * Čerenkov light yield about 6 p.e./GeV

BGO vs BSO for dual readout use

Mo:PbWO₄ matrix results

Molybdenum doping causes:

- \bigstar shift of the S spectra to higher λ wrt undoped crystal
- ★ longer S decay time (50 ns)
- \bigstar shift of the absorption cut-off to higher λ

This allows to obtain a <u>very good C/S</u> <u>separation</u> using filters.

Very narrow window where C light can be collected results in **strong light attenuation**

Different filter combinations were used during the $PbWO_4$ matrix test, each optimizing one aspect of the readout

Mo:PbWO₄ matrix results

Scintillation

Optimal resolution for Scintillation light reached using yellow filter (large photo-statistic)

If one uses UV+UV filter configuration to improve the Čerenkov resolution

• scintillation signal has to be obtained from integration of the tail of the signal (largely reducing the p.e. photostatistic)

Conclusion from testing homogeneous DRC

Consideration before testing

	ADVANTAGES:		FORESEEN DISADVANTAGES:
•	No sampling fluctuations simpler calibration	•	No sensitivity to neutrons high cost rad hardness

Additional outcomes from performed tests:

To separate the C and S component, crystals have to be *readout in non conventional way* \rightarrow results not good as the ones obtained by standard EM calorimetry

Extraction of pure C and S signals implies

- To sacrifice a large fraction of available C photons (optical filters)
- C photons are attenuated by crystal UV self absorption

Chrystal + optical filters don't offer a benefit in term of C light yield in dual readout calorimetry (comparable with the one measured with the RD52 fiber calorimeter)

Further studies on dual readout method

LuAG and Ce:LuAG

Figure 5. Bundles of Ce doped (top left) and undoped (top right) LuAG fibers and corresponding typical signal pulses recorded (bottom row). Each fiber measures 2 mm in diameter and 80 mm in length.

Jinst, Vol. 6, Oct. 2011

Studies on sampling and homogeneous dual readout calorimetry with meta-crystals

Figure 11. Simulated performance, in terms of the energy resolution's stochastic term, of $4.3 \times 4.3 \times 8.6 \lambda_I^3$ single or dual readout calorimeters with various sampling configurations of ionisation and Cherenkov signal readout.

Dual readout with sampling fiber calorimeters

The dual readout fiber calorimeters

G. Gaudio –WG11 Detector Design Meeting - Sept. 19th, 2016

The dual readout fiber calorimeters

G. Gaudio –WG11 Detector Design Meeting – Sept. 19th, 2016

EM performance RD52 calo

Signal linearity

Radial shower profile and response uniformity

NIM A 808 (2016) 41

Small angle EM performance RD52 Cu calo

Fluctuations on different impact point

Em showers very narrow at the beginning; Sampling fraction depends on the impact point (fiber or dead material)

If particles enter at an angle the dependence disappears

Effect NOT seen in Cherenkov signals since early part of the shower do not contribute to the signal (outside numerical aperture C fibers)

- S, C: sample INDEPENDENTLY the em showers
- ightarrow We can sum their contributions
- → em energy resolution improves by a factor √2

Estimated Cherenkov I.y. > 30 p.e./GeV

EM performance RD52 Cu calo

Em performance strongly improved with the new RD52 Cu-fiber prototype.

Better sampling fraction

G. Gaudio –WG11 Detector Design Meeting - Sept. 19th, 2016

NIM A 735 (2014) 130

EM performance RD52 Cu calo

Dual Readout method in sampling calorimeter

Particle ID in sampling dual readout calorimeter

Methods to distinguish e/π in longitudinally unsegmented calorimeter

Combination of cuts: >99% *electron efficiency*, <0.2% *pion mis-ID*

Why copper rather than lead?

Detector mass

1) Detector mass

- 2) Čerenkov light yield
- 3) Linearity, and thus resolution for jet detection

Čerenkov light yield

Čerenkov light is almost exclusively produced by the em shower components in hadron absorption

Lead: e/mip = 0.6

Copper: e/mip = 0.9

For a structure with a given sampling fraction, we get 50% more Čerenkov photons per GeV deposited energy This will directly affect the hadronic energy resolution, since Čerenkov light yield is a major limiting factor

Hadronic shower development governed by nuclear interaction length, λ_{int}

Lead: $\lambda_{int} = 170 \text{ mm}, \rho = 11.3 \text{ g/cm}^3$

Copper: $\lambda_{int} = 151 \text{ mm}, \rho = 8.96 \text{ g/cm}^3$

What is the mass of a calorimeter of 10 x 3 x 3 λ_{int}^3 ?

Lead: 4996 kg Copper: 2776 kg

Non-linearity at low energy in calorimeters with high-Z absorber. Important for jet detection

Dual Readout Sampling Calorimeters

Features of dual readout calorimeters:

- Compensation achieved without construction constraints
- Calibration of an hadron calorimeter with electrons.
- No intercalibration between sectors
- High resolution EM and HAD calorimetry

High resolution Calorimetry

For future colliders, jet energy resolution will be a determinant factor of understanding high energy physics.

Required to have best possible di-jet mass resolution for narrow resonance observation

At very least one need to distinguish W/Z hadronic decays

W/Z sep =
$$(m_Z - m_W)/\sigma_m$$

Jet Eres.	W/Z sep
perfect	3.1 σ
2%	2.9 σ
3%	2.6 σ
4%	2.3 σ
5%	2.0 σ
10%	1.1 σ

G. Gaudio –WG11 Detector Design Meeting - Sept. 19th, 2016

From RD52 experiment to 4π calorimeter

Best solution found: Copper Dual Readout (em + had) fiber calorimeter , high fiber filling fraction, not longitudinally segmented, read out with fast electronics (< ns).

Suggestions on what needs to be done..

- Projective geometry (*NIM A337 (1994) 326-341*) •
- Use of SiPm \rightarrow two advantages: ٠
 - Get rid of the "fiber forest", readout closer to the end face •
 - transversal segmentation as small as needed
- Rad hardness Cherenkov clear fibers ٠ (Cherenkov I.y. could become worse ... in case use quarts, but more expensive)
- Industrial production of grooved Copper ٠
- Custom fast electronics

Fiber bunches + PMT

SiPM matrix directly coupled to end of detector

Backup slides

Pb-fiber module construction

Pb fabrication:

Cold extrusion (industry, Italy), both sides. Assembling in INFN Pavia, no glue used

Pb-fiber module construction

Cu-fiber module construction

We have investigated many techniques in order to make grooves in Cu:

 Extrusion (technique used for RD52 Pb, and for DREAM, not easy for RD52 Cu pattern) not possible with this pattern, because aspect ratio and Cu too hard Trials done in AMES lab (USA), not good depth control

Rolling not enough precision obtained
 Impossible with one face pattern
 Somehow done for two sides pattern but but not good uniformity

- Saw scraping with rotating calibrated disks (like PISA prototype) time consuming for big production
- Water jet
 - + Final rolling
- Chemical milling

PROMIZING, INDUSTRIALLY COMPATIBLE

+ Final rolling for fine adjustments