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1.  Introduc<on

•  Present ALICE detector and upgrade plans

•  Upgrade of the ALICE Inner Tracking System (ITS)





2.  ALPIDE 

•  Concept

•  Key results


3.  Future developments

•  Process modifica<ons for enhanced deple<on

•  Silicon-only vertex detector?


4. Summary
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ALICE experiment and upgrade plans
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1. Introduc<on


Inner Tracking System (ITS) 	 SSD (Strips) 	

SPD (Pixel) 	

SDD (Dri^) 	

6 layers:


•  2 layers silicon pixel (SPD)


•  2 layers silicon dri^ (SDD)


•  2 layers silicon strips (SSD)


§  ALICE prepares major upgrade of experimental setup in LS2 of LHC in 2019/2020 


§  Targets: 


§  Large sample of recorded events: 10 nb-1 Pb-Pb plus pp and p-Pb data -> gain factor 100 in sta<s<cs 
over originally approved program 


§  Significant improvement of tracking and vertexing capabili<es at low pT  
 è  also present ITS needs 
to be upgraded!




ITS upgrade: design objec<ves
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1. Introduc<on


Improve poin<ng resolu<on by a factor ~3 in r-φ and ~5 in z at 
pT=500MeV/c (~40 μm at pT = 500 MeV/c )


•  reduce beam pipe radius: 29mm è 19mm 


•  get closer to IP: 39mm è 22mm (innermost layer)


•  reduce material budget: ~1.14% x/X0  è ~0.3%  x/X0 (inner layers)


     è less material è reduce power consump<on


•  reduce pixel size: 50x425μm2 è O(30x30μm2)




Improve tracking efficiency and pT-resolu<on at low pT   

•  increase granularity: 6 layers  è 7 layers, only pixel sensors





Fast readout   

•  readout of Pb-Pb at up to 100 kHz (presently 1kHz) and 400kHz 

for pp




Fast inser<on/removal of detector modules 


•  possibility to replace non-func<oning detector modules during 
yearly shutdown





è Decision to fully replace present ITS
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Layout of new ALICE Inner Tracking System
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1. Introduc<on


Layer  n. 

12
16
20


3
4
5
6

N. of staves


0
2

24
30
42
48


1


Outer 
Barrel	

Inner Barrel	

7-layer geometry:

•  r-coverage: 23 mm - 400 mm

•  η-coverage: |η|≤ 1.22 for tracks from 90% luminous region


•  3 Inner Barrel layers: 0.3% x/X0 per layer

•  4 Outer Barrel layers: 1% x/X0 per layer


290mm
Stave length
 900 mm
1500 mm




Layout of new ALICE Inner Tracking System
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1. Introduc<on


 2 middle 

layers	

3 inner layers	

2 outer layers	

Beam pipe	

Fully equipped with Monolithic Ac<ve 
Pixel Sensors (MAPS)


hybrid	 monolithic	

readout 

chip	

sensor	
thinned down 
to  50μm!	

12.5 G-pixel camera:


•  binary readout


•  ~10 m2 total area 


•  ~25000 chips


15
m

m
	

30mm	ALPIDE




Stave layout
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1. Introduc<on


Flexible	PCB	

9	sensors	

Space	Frame	

Inner Barrel stave	

Outer Barrel	

Cold	Plate	

Inner barrel module (x48):

•  9 chips, each read out using 1.2 Gb/s link


Outer barrel module (x1800) 

•  2⨉7 chips (1 master, 6 slaves), locally 

interconnected, read out using 2⨉400 Mb/s links




Module assembly
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1. Introduc<on


•  Placement is handled by automated custom-made 
machine (distributed to 6 assembly sites worldwide)


•  Flexible PCB is glued to chips


Chip placement + gluing to flexible PCB	
	

Wire bonding	

•  Chips are wire bonded through vias in the FPCB 
distributed over full chip surface 


Module (HIC – hybrid integrated circuit): chips glued and wire-bonded to flexible PCB	



Detector readout
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1. Introduc<on


Detector 	 Readout units	5m cable	

•  1.2 Gb/s (data IB)

•  400 Mb/s (data OB)


•  80 Mb/s (ctrl IB/OB)

•  Clock

•  Power


•  Total: 192 Readout Units

•  Distribute trigger and control 

signals

•  Interface data links to ALICE DAQ

•  Control power supplies of chips 


•  Readout logic fully integrated into 
ALPIDE


•  ALPIDE can directly drive 5m 
cables using integrated high-speed 
transmixers (up to 1.2 Gb/s)


•  No further electronics on detector
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30mm	



ALICE ITS pixel chip requirements
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2. ALPIDE


Parameter
 Inner Barrel
 Outer Barrel
 Ul<mate at STAR


Silicon thickness
 50μm
 50μm


Spa<al resolu<on
 5μm
 10μm
 ~4μm


Chip dimension
 15mm x 30mm
 22.71mm x 20.24mm


Power density
 < 300mW/cm2
 < 100mW/cm2
 150mW/cm2


Event <me resolu<on
 < 30μs
 185.6μs


Detec<on efficiency
 > 99%
 > 99%


Fake hit rate
 < 10-5/event/pixel
 < 10-4/event/pixel


NIEL tolerance 
 1.7x1012 1MeV neq/cm2
 1011 1MeV neq/cm2
 3x1012 1MeV neq/cm2


TID tolerance 
 270krad
 10krad
 150krad




State of the art of monolithic CMOS pixel sensors  at 
start of pixel chip R&D for the ITS upgrade end 2011


•  First large MAPS-based vertex detector: STAR PXL detector at RHIC with Ul<mate chip


•  Ul<mate chip does not fulfill requirement of ITS upgrade -> new development required -> ALPIDE




ALPIDE: floor plan 
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2. ALPIDE


1024 pixels / 3cm 	

512 pixels / 1.38 cm
 	

 0.12cm
 	

290μm 	

interface pads 
over matrix	

used for wire 
bonding	

analogue biasing and 
digital interface circuitry	

pixel matrix 	

Key features:

•  Dimension: 30mm x 15mm (1024 x 512 pixels)


•  Pixel pitch: 29μm x 27μm 

•  Ultra low power:~40mW/cm2 (average over en<re chip) 


•  Global shuxer: triggered acquisi<on (up to 200 kHz Pb-Pb, 
1MHz pp) or con<nuous (progr. integra<on <me: 1μs - ∞) 


Key concepts:

•  In-pixel amplifica<on


•  In-pixel hit discrimina<on

•  In-pixel 3-level event memory

•  In-matrix zero-suppression	



ALPIDE: process technology


19/12/2016		 J.W.	van	Hoorne,	CERN	 14	

2. ALPIDE


TowerJazz 180nm CMOS imaging sensor process:


•  High-resis<vity (>1kΩcm) p-type epitaxial layer (18μm-40μm) on 
p-type substrate (~10Ωcm) 


•  Deep p-well for full CMOS circuitry within the matrix 


•  Feature size 180nm and 6 metal layers è dense circuitry


Sensor only par<ally depleted è applica<on of moderate 
reverse bias VBB (<6V) possible via the substrate


p-well ︎

deep p-well ︎

epitaxial layer p-︎

n-well︎n-well︎
p++ ︎ p++ ︎ p++ ︎ p++ ︎n++ ︎ n++ ︎ n++ ︎n++ ︎

deep p-well ︎

p++ ︎

e
e

h
h

e
e

e
e

h
h

h
h

substrate p++ ︎

N-WELL ︎
DIODE︎

PMOS 
TRANSISTOR ︎

NMOS 
TRANSISTOR ︎

VRST︎

VBB︎ VBB︎ VDD︎

 Signal from collec<on diode: ΔV ~ Q/C




Ø  Increase Q:


•  increase epitaxial layer thickness


•  limit charge sharing and losses


Ø  Decrease C:


•  op<mizing collec<on diode


•  increase reverse bias


Charge collec<on <me: ~1-50ns


•  depending on size of deple<on zone


SEM picture of prototype chip cross-sec<on


epitaxial layer ~ 25 µm


metal 
stack ︎

dri^	
diffusion	

processing ~ 10 µm


substrate ~  15 µm




Q/C ra<o and sensor design parameters
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2. ALPIDE


Pixel and collec<on electrode 
geometry (not to scale): 
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Sensor performance mainly determined by: 


•  Pixel pitch


•  Collec<on n-well size


•  Spacing between the collec<on n-well and 
surrounding( deep) p-well 


•  Epitaxial layer thickness and resis<vity


•  Reverse bias voltage VBB on the collec<on diode


•  Sensor op<miza<on studies mainly by small-scale 
prototypes with analog readout


•  During design of ALPIDE, par<cular focus put on low 
pixel-input capacitance C


è  values as low as 2fF achieved (signal of 80mV for 1000e-)


Parameters selected for ALPIDE (29μm x 27μm pixel size): 


•  25μm epitaxial layer


•  2μm n-well diameter, 3μm spacing 


Ø  88% of pixel surface can be used for circuitry




3D and 2D view of 2x2 pixels
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2. ALPIDE


full CMOS circuitry within pixel matrix 	

ALPIDE in-pixel circuitry

•  Front-end: con<nuously ac<ve, power consump<on 40nW (9 transistors, full custom)


•  Mul<-event memory: 3 stages (62 transistors, full-custom)

•  Configura<on: masking and pulsing registers (31 transistors, full-custom)

•  Tes<ng: analog and digital test pulse circuitry (17 transistors, full-custom)

•  Matrix read-out: priority encoder, asynchronous, hit-driven




ALPIDE: front-end circuit 
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t
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~1ms reset 


ΔV=Q/C: ~1-50ns 


par<cle hit


t
t1
 t2


VDDA


VSSA


pulse dura<on ~5-8μs 


Collec<on diode	 Amplifier-shaper	 Discriminator	

Front-end acts as delay line




•  Sensor and front-end con<nuously ac<ve


•  Upon par<cle hit front-end forms a pulse with peaking <me of 2-4μs (<-> <me walk)


•  charge collec<on <me < 50ns! -> long pulse dura<on a choice made for ALICE ITS: func<oning as delay line 
and reduce power consump<on (40nW/pixel) <-> material budget


•  Threshold is applied to form a binary pulse


•  globally set by front-end bias DACs


•  Hit is latched into memory if STROBE is applied during binary pulse


•  Global shuxer: triggered (up to 200 kHz Pb-Pb, 1MHz pp) or con<nuous (progr. integra<on <me: 1μs - ∞) 


2. ALPIDE


STATE (Latch)	

MEM	
STROBE


Ultra low-power front-end 
circuit 40nW/pixel
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Matrix readout by hit-driven asynchronous circuit (priority encoder) in double-columns:


•  sequen<ally provides addresses only of hit pixels è in-matrix zero suppression, fast


•  no ac<vity if not hit (no free running clock) è low-power matrix readout (~2mW) 





ALPIDE: readout architecture

2. ALPIDE


double column 0	 double column 511	

Low-power matrix 
readout ~3mW
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30mm	



ALPIDE: Threshold and noise
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2. ALPIDE


•  Threshold globally adjustable via on-chip DACs


•  Good threshold uniformity

•  Threshold RMS 10-15% of average threshold


•  Very low noise values

•  5-6e- without reverse substrate bias, 2-3e- with


•  Large threshold-to-noise ra<o

•  Fake-hits due to Gaussian noise extremely rare


•  Large opera<onal margin

•  MIPs release in order of 1400e- (MPV) in sensi<ve 

layer (Landau fluctua<ons, charge sharing also to 
be considered..)




ALPIDE: Test beam
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telescope 2
telescope 1


6 GeV/c pions 
from CERN’s PS


•  Test beam performed using ALPIDE telescopes, central chip is treated as device under test (DUT)


•  Calculated resolu<on at DUT around 2-3 μm


•  Studied performance in terms of: detec<on efficiency, posi<on resolu<on, cluster sizes and 
shapes


•  plus corresponding lab measurements of fake-hit rate, threshold (s-curve scan)


trigger
trigger


2. ALPIDE




Reverse substrate bias dependence
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2. ALPIDE
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•  Detec<on efficiency stays at 100% - ε over wide range of thresholds

•  Chip-to-chip fluctua<ons negligible


•  Clear ordering: increasing performance with larger reverse substrate bias

•  Most significant improvement from 0V to -1V


•  Extremely low fake-hit rate

•  Below measurement limit of 10-11/pixel/event a^er masking 10 pixels (1/50 000), only increased for -6V 


Detec<on efficiency and fake-hit rate
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2. ALPIDE


Posi<on resolu<on and cluster size


•  Average cluster sizes vary between 1 and 3 pixels (for MIPs)

•  Posi<on resolu<on around desired 5μm in threshold range with detec<on efficiency > 99%


•  Biggest improvement from 0V to -1V

•  Lixle dependence on reverse substrate bias from -2V to -6V
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2. ALPIDE


•  Sufficient opera<onal margin a^er 1.7x1013 1MeV n/cm2 (10 <mes life <me dose of upgraded 
ITS)


VBB=-3V


Detec<on efficiency and fake-hit rate
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2. ALPIDE


•  Cluster sizes and posi<on resolu<on slightly reduced a^er 1.7x1013 1MeV n/cm2 (10 <mes life 
<me dose of upgraded ITS) 


•  Resolu<on remains around desired 5μm in threshold range with detec<on efficiency > 99%


VBB=-3V


Posi<on resolu<on and cluster size




ALPIDE in module assemblies
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2. ALPIDE


•  Posi<on resolu<on slightly reduced a^er 1.7x1013 1MeV n/cm2 (10 <mes life <me dose of 
upgraded ITS) 


Example: threshold scan at nominal se�ng on OB module (HIC – hybrid integrated circuit) 


14 ALPIDE chips connected to flexible PCB




ALPIDE in module assemblies
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2. ALPIDE


Behavior comparable to single chips

–  Threshold RMS 10% - 15% of average threshold

–  Noise 2-3e-


Example: threshold vs ITHR DAC se�ng for all 14 chips on OB module


VBB=-3V




ALPIDE in module assemblies
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2. ALPIDE


•  Tuned thresholds

•  Use ITHR DAC to equalize thresholds between chips 

•  Here: OB module at nominal se�ngs and tuned to 100 e-  

ITHR se�ngs determined from linear fit to threshold-vs-ITHR curves


Threshold equaliza<on


VBB=-3V




ALPIDE in module assemblies


19/12/2016 
 J.W. van Hoorne, CERN
 29


2. ALPIDE


Behavior comparable to single chips

•  Fake-hit rate < 10-10 with 5 masked pixels (1/100 000) 


Fake-hit rate from data taking with random triggers (OB module)

•  Fake-hit rate in OB HIC for all 14 chips without masking and with masking 5 pixels 

per chip (1 / 100000)

•  -3V reverse substrate bias, low threshold (ITHR = 20, threshold 50 – 70 e-)







VBB=-3V
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deep p-well ︎
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Development monolithic CMOS pixel sensors 
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3. Future developments


Parameter
 Ul<mate at STAR
 ALPIDE

Silicon thickness
 50μm
 50μm


Spa<al resolu<on
 ~4μm
 ~5μm


Power density
 150mW/cm2
 < 40mW/cm2


Event <me resolu<on
 185.6μs
 ~2μs


Detec<on efficiency
 > 99%
 > 99%


Fake hit rate
 < 10-4/event/pixel
 <<< 10-6/event/pixel


NIEL radia<on tolerance
 3x1012 1MeV neq/cm2
 >1.7x1013 1MeV neq/cm2


State of the art of monolithic CMOS pixel sensors  at 
start of pixel chip R&D for the ITS upgrade end 2011


ALPIDE development,

First applica<on at LHC


•   ALPIDE fulfills or surpasses pixel-chip requirements of the ALICE ITS upgrade


•  ALPIDE development represents significant advancement regarding power density, fake-hit rate, 
readout speed, and radia<on hardness


•  Applica<on of monolithic CMOS pixel sensors in more demanding environments requires 
increased radia<on tolerance and bexer <ming resolu<on required


Applica<on of 
monolithic CMOS 
pixel sensors in 
more demanding 
environments?




Process modifica<on for enhanced deple<on
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3. Future developments


p-well ︎

deep p-well ︎

epitaxial layer p-︎

n-well︎n-well︎
p++ ︎ p++ ︎ p++ ︎ p++ ︎n++ ︎ n++ ︎ n++ ︎n++ ︎

deep p-well ︎

p++ ︎

e︎
e︎

h ︎
h ︎

e︎
e︎

e︎
e︎

h ︎
h ︎

h ︎
h ︎

substrate p++ ︎

N-WELL ︎
DIODE︎

PMOS 
TRANSISTOR ︎

NMOS 
TRANSISTOR ︎

VRST︎

VBB︎ VBB︎ VDD︎
metal 
stack ︎

dri^	
diffusion	

•  Developed in collabora<on with foundry to achieve 
enhanced (full?) deple<on, while retaining 
extremely low input capacitances


•  Planar deep  N- - P junc<on


•  Does not require significant circuit or layout 
changes è same design can be fabricated in both 
std and mod process


•  Prototypes processed using pALPIDE-2 mask set


•  Note: not used for ALICE ITS upgrade 


p-well ︎

deep p-well ︎
n-well︎n-well︎

p++ ︎ p++ ︎ p++ ︎ p++ ︎n++ ︎ n++ ︎ n++ ︎n++ ︎p++ ︎

N-WELL ︎
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PMOS 
TRANSISTOR ︎

NMOS 
TRANSISTOR ︎

VRST︎

VBB︎ VBB︎ VDD︎
metal 
stack ︎

P ︎

N-︎

Recent process modifica<on (CERN –TJ):
Standard TowerJazz CIS process	



Test chip: INVESTIGATOR
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3. Future developments

5.0mm	

5.
7m

m
	

•  INVESTIGATOR: dedicated test chip developed within ALPIDE 
R&D phase, designed for systema<c studies on influence of 
design parameters on sensor characteris<cs


•  Consists of 134 matrices of 8x8 pixels (“mini-matrices”, MM)


•  Various pixel sizes (20x20μm2 to 50x50μm2) and collec<on 
electrode designs (n-well size, spacing)


•  Each of the mini-matrices can be selected and connected to a 
set of 64 output buffers (~10ns rise <me)


•  All 64 pixels of a mini-matrix can be read out in parallel, allowing 
for con<nuous parallel signal sampling


•  Possibility of measuring evolu<on of a cluster, i.e. charge 
collec<on <me in each pixel 


•  Dedicated 64-channel readout system developed, sampling at 
65MHz


ü  Chips produced on different wafers with epi-layer thickness 
between 18μm and 30μm, and in different process variants 
(std, mod)


ü  Samples tested up to 1015 1MeV neq/cm2 and 1Mrad


MM address

Pixel pitch


[μm]

Number of MM


(per pitch)


0 - 35
 20
 36


36 - 57
 22
 22


58 - 67
 25
 10


68 - 103
 28
 36


104 - 111
 30
 8


112 – 123
 40
 12


123 - 134
 50
 10


INVESTIGATOR	



INVESTIGATOR – waveform-event display for all 64 pixels




19/12/2016		 J.W.	van	Hoorne,	CERN	 34	

3. Future developments




INVESTIGATOR – waveform-event display for all 64 pixels
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3. Future developments
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•  Precise charge-collec<on <me measurements performed using differen<al probe and 
fast scope on single pixel 


•  Fit of waveforms with func<on:


•  ALPIDE-like pixel studied: 28μm pitch, 2um n-well diameter, 3μm spacing, 25μm epi


•  Measurements performed with 55Fe


3. Future developments

Charge-collec<on <me


τ


Example	waveform	and	fit	



Charge-collec<on <me measurements with X-Rays
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3. Future developments


For X-Ray absorp<on in sensor fabricated with the std process 
three cases can be defined:




1.  Absorp<on in deple<on volume: charge collected by dri^, no 
charge sharing, single pixel clusters


–  Events of this case populate the calibra<on (K-α) peak in signal histogram


–  Charge collec<on <me  expected to be ≈ 1ns


2.  Absorp<on in epitaxial layer: charge par<ally collected by 
diffusion and then dri^, charge sharing between pixels 
depending on posi<on of X-Ray absorp<on


–  Charge collec<on <me expected to be dependent on distance of the X-Ray 
absorp<on from a deple<on volume, and longer than for events of case 1


3.  Absorp<on in substrate: 

–  contribu<on depending on depth of X-Ray absorp<on posi<on within 

substrate, and charge carrier life<me within substrate


55Fe: two X-Ray emission modes:




1.  K-α: 5.9keV (1640e/h in Si), rela<ve frequency: 89.5%

       axenua<on length in Si: 29μm

2.  K-β: 6.5keV (1800e/h in Si), rela<ve frequency: 10.5%

       axenua<on length in Si: 37μm
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VBB	=	-1V	 VBB	=	-3V	 VBB	=	-6V	

3. Future developments

Charge-collec<on <me - Standard process


MM75: 28μm pitch, 2um n-well diameter, 3μm spacing, 25μm epi
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VBB	=	-1V	 VBB	=	-3V	 VBB	=	-6V	

Signal:	

3. Future developments

Charge-collec<on <me - Standard process


MM75: 28μm pitch, 2um n-well diameter, 3μm spacing, 25μm epi
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VBB	=	-1V	 VBB	=	-3V	 VBB	=	-6V	

Signal:	

3. Future developments

Charge-collec<on <me - Standard process


MM75: 28μm pitch, 2um n-well diameter, 3μm spacing, 25μm epi


Calibra<on (dri^) peaks
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Rise	Rme	(τ):	

3. Future developments

Charge-collec<on <me - Standard process


MM75: 28μm pitch, 2um n-well diameter, 3μm spacing, 25μm epi


VBB	=	-1V	 VBB	=	-3V	 VBB	=	-6V	
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Rise	Rme	(τ):	

Calibra<on (dri^) peak: no charge sharing, signal collected by dri^ (in <= 1ns)

•  Rise <me about equal for all all values of VBB, moreover about equal to buffer rise <me

•  Dri^ peak clearly visible in low-VBB rise <me histograms, for larger VBB it overlaps with 

diffusion-dri^ peak


3. Future developments

Charge-collec<on <me - Standard process


MM75: 28μm pitch, 2um n-well diameter, 3μm spacing, 25μm epi


VBB	=	-1V	 VBB	=	-3V	 VBB	=	-6V	



Rise	Rme	(τ):	
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Charge sharing – signal collected partly by diffusion and then dri^ 

•  Larger rise <mes with decreasing signal clearly visible in low-VBB 

measurements

•  Less clear in high-VBB measurements (larger deple<on volumes)


3. Future developments

Charge-collec<on <me - Standard process


MM75: 28μm pitch, 2um n-well diameter, 3μm spacing, 25μm epi


VBB	=	-1V	 VBB	=	-3V	 VBB	=	-6V	
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VBB	=	-3V	 VBB	=	-6V	

•  For modified process, otherwise same 
pixel (geometry) no change in rise <me 
between events with or without charge 
sharing



è charge collected purely by dri^



•  No change in signal rise <mes between 

-3V and -6V VBB, only in signal 
(capacitance C)


•  Signal rise <me about equal to the one 
for dri^ peak in the std process


3. Future developments

Charge-collec<on <me - Modified process


MM75: 28μm pitch, 2um n-well diameter, 3μm spacing, 25μm epi


Signal	

Rise	Rme	(τ)	
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3. Future developments

Charge-collec<on and signal rise <me at up to 1x1015 1MeV neq/cm2


90Sr measurements on modified-process samples (different setup, different pixel w.r.t. before)

–  Non-irradiated

–  1x1014 1MeV neq/cm2 (NIEL) and 100krad (TID) 

–  1x1015 1MeV neq/cm2 (NIEL) and 1Mrad (TID) 










•  Lixle change to signal a^er irradia<on, signal well separated from noise


–  Note: standard process no longer working a^er 1x1015 1MeV neq/cm2 


•  Recent test beam measurements show no change of efficiency a^er 1x1015 1MeV neq/cm2 


MM129: 50μm pitch, 3um n-well diameter, 18.5μm spacing, 25μm epi


Signal rise time [ns] 

Courtesy	of	H.	Pernegger,	C.	Riegel	et	al.	(ATLAS)	
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What’s up next? Ultra-light “silicon-only” vertex detector
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3. Future developments


Space Frame

Cold Plate

Cooling Ducts

Mechanical 
Connector

9 Pixel Chips

Soldering Balls

Flex Printed Circuit

How to further reduce material thickness?

•  eliminate ac<ve cooling: for a 30cm long stave possible for power densi<es below 20mW/cm2


•  eliminate electrical substrate (flexible FPCs): possible if power density is sufficiently low (voltage drops on 
supply and biasing) and the (monolithic) sensor covers the full stave length 


ALPIDE Chip: pixel matrix power density  ~7mW/cm2, the rest is dissipated in the periphery!


è Can the circuit periphery be put at the periphery of the detector?


Sensor only amounts 
to 20% of total x/X0 




Beam pipe r = 16mm


Layer 0, 1, 2


~140mm


L0: 
r ≈ 18mm   (circumf. = 113mm)  

L1: 
r ≈ 24mm   (circumf. = 151mm)

L2: 
r ≈ 30 mm  (circumf. = 188mm)


Silicon-only vertex detector study for ALICE 


19/12/2016		 J.W.	van	Hoorne,	CERN	 48	

3. Future developments


One layer built out of 4 pixel chips, with periphery at outside edge:

•  chip dimensions: 140 x 56 (94) mm2 -> fits on 200mm wafer!


First studies for ALICE indicate further improvement 
of factor ~2 when replacing proposed IB with such a 
detector 




Limits of dimensions of a CMOS chip?
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3. Future developments


Limit: re<cle mask




•  typically of the order of 2 x 2 cm2


•  IC industry demands small-size re<cles for 
fabrica<on yield and to facilitate system 
integra<on


•  for chips larger than re<cle size -> s<tching


S<tching: allows building circuits as large as the en<re wafers

•  S<tching is combining part of the re<cle to obtain a chip with an area larger than the re<cle (e.g. done for 

large professional CCDs)

•  Example in one dimension: 




•  All connec<ons to the exterior on one side

•  All rou<ng using on-chip metal layers, all func<ons integrated




Outline
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Summary
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4. Summary 


•  New ALICE ITS with 7 layers of Monolithic Ac<ve Pixel Sensor (MAPS) will be installed during 
LS2 of the LHC in 2019/2020 


•  A dedicated monolithic pixel chip – the ALPIDE – has been developed 


•  Represents significant advancement of the technology of MAPS regarding power 
consump<on, readout speed, charge collec<on <me and radia<on hardness


•  Results from ALPIDEs in module assemblies comparable to results from single chips


ü  Produc<on Readiness Review (PRR) in November 2016 -> got go ahead for produc<on




•  With the modified process, a dependency of the signal rise <me on the rela<ve signal is no 
longer observed, while retaining the very low pixel-input capacitances already achieved


•  Charge collected purely via dri^ 


•  Very low pixel-input capacitances already achieved are retained


•  Good results sparked interest of several other groups (ATLAS, CLIC) 


•  Recent test beam measurements show no change of efficiency a^er 1x1015 1MeV neq/cm2


•  Next step – “Silicon-only” vertex detector?


•  Technology to produce large CMOS sensors already exis<ng


•  Yet to be verified: minimum bending radii for very thin CMOS wafers
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BACKUP	



Sensor op<miza<on – Pixel-input capacitance
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2. ALPIDE


Pixel input capacitance significantly decreased with increasing |VBB|


•  ~5fF for VBB=0V è ~2.5fF for VBB=-6V 


Epitaxial layer resis<vity


•  No influence in range between 1kΩcm and 7.5kΩcm with current pixel layout


Collec<on diode geometry


•  smaller collec<on n-well, larger spacing è smaller pixel input capacitance at 
large VBB


Collec<on diode geometries:	Epitaxial layer resis<vity	



Sensor op<miza<on – Epitaxial layer thickness
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2. ALPIDE


Prototypes produced on wafer with different epitaxial layer thickness and resis<vity


•  increasing epitaxial layer thickness:


•  generated charge (matrix signal) increases linearly


•  cluster size increases non-linearly


Op<mum epitaxial layer thickness depending on achievable deple<on volume 



è  depending on VBB and  geometry
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Parameters selected for ALPIDE: 25μm epitaxial layer, 2μm n-well diameter, 3μm spacing 




ALPIDE: Power consump<on
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Data: combina<on of available 
measurements and simula<ons


Values scaled for readout at 100 
kHz rates and max occupancies


Clock ga<ng enabled
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Carrier life<me a^er irradia<on


•  Carrier life<me a^er irradia<on:




 1/τ = 1/ τ0 + Φ/K




where  τ  is the life<me a^er irradia<on, τ0 is the ini<al life<me (~1ms in case of our epitaxial layers), 
Φ the equivalent neutron fluence, and K the silicon damage constant (~2e6 s/cm2)





























•  Considering charge collec<on <me of ~1ns, charge collec<on efficiency should be high up 
to fluence of about 1e15 n/cm2 for modified process


–  Preliminary results poin<ng in this direc<on obtained by Heinz Pernegger, Chris<an Riegler et al. 
(ATLAS)




Charge-to-voltage conversion gain and charge-collec<on efficiency
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•  Example from scan of parameter-space: influence of spacing, at fixed n-well size (2μm),  
pixel pitch (28μm), and epi-layer thickness (25μm)


–  Plots only represen<ng 5 out of 134 mini-matrices!





•  Op<mum spacing different for different process variants, and depending on VBB applied




Charge-to-voltage conversion gain and charge-collec<on efficiency
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•  Example from scan of parameter-space: influence of spacing, at fixed n-well size (2μm),  
pixel pitch (28μm), and epi-layer thickness (25μm)


–  Plots only represen<ng 5 out of 134 mini-matrices!





•  Op<mum spacing different for different process variants, and depending on VBB applied


•  Op<mum pixel design different for different process variants


•  INVESTIGATOR provides efficient tool for scanning parameter space

	



Charge-to-voltage conversion gain and charge-collec<on efficiency
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•  Example from scan of parameter-space: influence of n-well diameter, at fixed spacing (3μm),  
pixel pitch (28μm), and epi-layer thickness (25μm)


–  Plots again only represen<ng 5 out of 134 mini-matrices!




Charge-to-voltage conversion gain and charge-collec<on efficiency
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•  Example from scan of parameter-space: influence of spacing, at fixed n-well size (2μm),  
pixel pitch (28μm), and epi-layer thickness (25μm)


–  Plots only represen<ng 5 out of 134 mini-matrices!




Performance of new ITS: impact parameter studies
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•  Current ALICE ITS

o  radial posi<on of first layer: 39mm

o  x/X0: 1.14% per layer

o  spa<al resolu<on (r-phi): 12 mm  


•  A) current ITS + L0: x/X0 = 0.3%, res.=4mm;


•  B) current ITS + L0: r = 22mm, x/X0 = 0.3%;


•  C) current ITS + L0: r = 22mm, x/X0 = 0.3%;


(A)	

(B)	

(C)	

Radial distance to IP
 Spa<al resolu<on


Material budget


ALICE ITS Upgrade CDR, CERN-LHCC-2012-12




Performance of new ITS: Matching efficiency
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The average event pile-up depends on 
the interac<on rate and detector 
integra<on <me



interac<on rate 50 kHz

integra<on <me: 4 – 30 ms



For 30 ms integra<on <me (worst case 
design):


<pile-up> = 1 central + 1.5 min. bias 


Matching efficiency between the tracks reconstructed in the upgraded ITS and TPC

for different values of event pile-up 


J. Phys. G (41) 087002




Performance of new ITS (MC): Momentum resolu<on
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Transverse momentum resolu<on as func<on of pT for primary charged pions for the upgraded 
ITS and current ITS. The results are shown for ITS standalone and ITS-TPC combined tracking.
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Performance of new ITS (MC): 
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