

WP2: Cavity design and beam/cavity interaction

Andy Butterworth

N. Schwerg, S. Gorgi Zadeh, R. Calaga, J. E. Mueller,

E. Shaposhnikova

RF R&D coordination meeting 19.10.2016

- Work package structure
- Status:
 - Cavity design
 - Beam-cavity interaction for FCC-ee
 - HOM power calculations
 - Beam stability studies
 - HOM damping studies for high intensity

1. Cavity design for FCC-ee

1.1: Study and optimization of RF cavities for high energy operation (Rostock)

1.2: Study and optimization of RF cavities for high intensity operation (CERN)

1.3: Higher order mode damping scheme for high intensity operation (CERN/MEPhI?)

- 2. Cavity design and HOM damping for FCC-hh
- 3. Beam dynamics

3.1 Beam stability considerations for FCC-ee (J. E. Mueller, E. Shaposhnikova)

3.2 Beam stability considerations for FCC-hh (E. Shaposhnikova)

- 4. Low Level RF (RF-FB)
 - 4.1 LLRF for FCC-ee
 - 4.2 LLRF for FCC-hh

Cavity design:

- FCC-hh:
 - starting point is LHC cavity (400MHz single cell λ 2.5)
 - slightly modified design (Rama) for easier tuning
 - single- or two-cell
 - also for FCC-ee high intensity (Z) mode
- FCC-ee:
 - Cavity design studies for Higgs mode ongoing at Rostock (Shahnam)
 - Converging towards 800MHz multi-cell option
 - power and real estate gradient considerations

Cavity design for H & tt (Uni. Rostock)

- Frequency, number of cells
 - 4-cell cavity at 801.58 MHz
- optimization of mid-cell shape
 - losses, E_{pk}/E_{acc}, cell-to-cell coupling, wall slope angle
- optimization of end-cells
 - field flatness
 - beam pipe transition (direct vs. corrugated): optimization of loss factor
- input power coupler positioning
 - Q_{ext} , transverse kick

Shahnam Gorgi Zadeh, "Preliminary Cavity design for FCC-ee", EDMS 1612380 Shahnam Gorgi Zadeh, "Preliminary cavity design for the Higgs running mode of FCC-ee", EDMS 1720028

- Single bunch
 - can be modelled using BLonD
 - needs well-defined impedance model (cavities, beam pipe etc.)
 - cavity part of this information has to come from the cavity designer
 - needs representative set of beam parameters (RF voltage, bunch charge, etc.)
 - tells us if cavity impedance within the limits for single-bunch stability
 - Juan has been concentrating on single-bunch stability for electron beams
 - modelling quantum excitation and radiation damping in BLonD

Beam stability FCC-ee

Coupled bunch

- driven by narrow band impedances (fundamental and HOMs)
- analytical expression giving the maximum permissible R_{shunt} for any cavity mode
 - dependent on mode frequency
 - for a given set of beam parameters

Beam stability FCC-ee

- Coupled bunch
 - also driven by the fundamental in the presence of the large detuning needed with high beamloading.
 - as (more?) important as single bunch
 - Juan and Elena will start looking at coupled-bunch (and second Robinson?) first before returning to the study of single-bunch

Beam Cavity Interaction

Single Bunch Filling Pattern

Juan Esteban Mueller

BlonD

- Extend BlonD for multiple bunches (N>100)
- Extend BlonD for Gaussian Bunches

- Tentative contact with MEPhI
 - (Moscow Engineering Physics Institute)
- Possible collaboration on design of HOM damping scheme for high intensity
- For a given cavity design
 - single cell 400 MHz "LHC-like"
 - avoid opening up a big effort of cavity optimisation
- Study the available damping schemes (loop couplers, waveguides, warm absorbers etc.) and make a proposal
- To be done at CERN before proceeding further:
 - HOM power and stability calculations to define requirements on damping scheme (limits on narrow band HOM impedances)
 - results in next few weeks