# Nb-coated copper crab cavity alternative for FCC

Alexej Grudiev

17.05.2017

## Outline

- Crab cavity system for FCC-hh
- Motivation for Nb-coated crab cavity
- Cavity design and parameters
- Budget and time line

## Crab cavity system for FCC-hh (april 2017)



Information for FCC-hh provided by FCC-hh general design WG: D. Schulte, E. Cruz-Alaniz, A. Seryi, R. Martin, R. T. Garcia

## Comparing CC pars for FCC-hh to the HL-LHC

- MORE CCs: Total voltage is 3 (2) times higher => 6 cavities per beam/side/IP
- Available length: 20m/(6x2) = 1.7 m per cavity is sufficient even for longer alternatives (WOWCC)
- Larger beam separation 250 vs 194 may give some advantages in case of redesign
- EFFECTIVE TRANSVERSE IMPEDANCE IS MUCH (up to 3x8=24 times) HIGHER than for HL-LHC:
  - Beta function at the CC location is 2.5 -> 8 times higher for the same <beta>
  - Number of cavities per beam 2-3 times higher
- Low impedance CC are desirable
- In Conclusion: larger number of cavities, larger beam coupling impedance and different beam separation justifies looking into new alternatives for FCC-hh CC system



### Motivation







### **Minimize BCS losses**



#### Save on raw material

15/09/2015

#### sarah.aull@cern.ch

## Motivation Summary

S. Aull, SRF2015



Can we apply the state of the art coating technique to 400 MHz crab cavity?

### We have a bulk-like Nb/Cu film...



## Introduction

- This work package covers design, construction and testing of 2 prototypes of a compact superconducting crab-cavity for LHC using Nb-on-Cu-coating technique.
- The cavity shape is based on the ridged waveguide resonator with wide open apertures to provide access to the inner surface of the cavity for coating.
- It also provides natural damping for HOMs and rather low longitudinal and transverse impedances.
- The final goal is to validate the fabrication and coating of the cavity prototypes and to characterize its high gradient performance in a vertical test at 4K

### **Main Parameter**

| w [mm] | 251.70  |
|--------|---------|
| h [mm] | 251.70  |
| r [mm] | 42.00   |
| L [mm] | 1400.00 |
| d [mm] | 192.00  |

| Frequency [MHz]        | 400.000 |
|------------------------|---------|
| G [Ω]                  | 109     |
| Vx [MV]                | 3.0     |
| Total Energy [J]       | 10.4    |
| Rx/Q [Ω]               | 343.5   |
| E <sub>peak</sub> [MV] | 50      |
| B <sub>peak</sub> [mT] | 78      |



## Non-linear behaviour of surface resistance (S. Calatroni, S. Aull)



## Power loss distribution on the surface for 30 degree taper at 3 MV



### **Q**<sub>0</sub> calculation

- Nominal kick voltage 3 MV  $\rightarrow$  B<sub>peak</sub> up to 80 mT
- Results above 40mT for LHC uncertain due to lack of measurement data
- Q based on extrapolation of Rs from the LHC data
- Q<sub>0</sub> (Rs=const.) = 4.45e8
- $Q_0 (Rs=Rs(B)) = 4.05e8$



### Wake Field and Impedance Calculation



### Assembly concept of the WOWCC copper substrate



## Integration of WOWCC into LHC-coating setup



#### Aim of the integration study:

- Get overall dimensions and weight of the setup
- Formulate requirements for the infrastructure in the B252
- Communicate the requirements to the responsible for the infrastructure in B252
- Pave the way to the future work on the design of the coating setup

Total hight: 5.5 m Total weight: 820 kg



WOWCC + frame weight: 517 kg



## Work package structure:

- Task 1: RF design (Alexej Grudiev (RF))
- Task 2: Mech. Design of the prototype and tooling (Ofelia Capatina (MME))
- Task 3: Fabrication of the "substrates" (Pierre Naisson (MME))
- Task 4: Surface treatment (Leonel Ferreira (VSC))
- Task 5: Coating system and coating (Alban Sublet (VSC))
- Task 6: Rinsing and clean room assembly of the prototypes for testing (Mikko Karppinen (RF))
- Task 7: Cold Testing in cryostat (Mikko Karppinen (RF))

## Schedule

|                                    | 2016 |    |    | 2017 |    |    | 2018 |    |    | 2019 |    |    |    | 2020 |    |    |    |    |
|------------------------------------|------|----|----|------|----|----|------|----|----|------|----|----|----|------|----|----|----|----|
|                                    | Q1   | Q2 | Q3 | Q4   | Q1 | Q2 | Q3   | Q4 | Q1 | Q2   | Q3 | Q4 | Q1 | Q2   | Q3 | Q4 | Q1 | Q2 |
| Material procurement               |      |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |
| Fabrication 1 <sup>st</sup> proto  |      |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |
| Fabrication 2 <sup>nd</sup> proto  |      |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |
| Coating R&D                        |      |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |
| Coating system design              |      |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |
| Coating system construction        |      |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |
| (Re-)Coating 1 <sup>st</sup> proto |      |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |
| Cold testing 1 <sup>st</sup> proto |      |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |
| (Re-)Coating 2nd proto             |      |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |
| Cold testing 2 <sup>nd</sup> proto |      |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |

## Budget and manpower profile (end of 2016)

|        |                   | 2016 | 2017 | 2018 | Total |                   |
|--------|-------------------|------|------|------|-------|-------------------|
| Budget | Design            | 20   | 20   | ?    |       |                   |
| [kCHF] | Material          | 80   | ~0   | ?    |       |                   |
|        | Fabrication       | 0    | 150  | 50   |       |                   |
|        | Chemistry         | 0    | 100  | 50   |       |                   |
|        | Coating           | 0    | 150  | 50   | •     | 20% less cost for |
|        | RF infrastructure | ?    | ?    | ?    |       | Coaling system    |
|        | Total             | 100  | 420  | 150  | 670   | Reduction of      |
| Manpow | Manpower [FTE]    |      |      |      |       | coating           |
|        | Engineer (ENG)    | 0.33 | 0.85 | 0.5  | 1.7   | 2PM-ENG           |
|        | Technician (TEC)  | 0    | 1.5  | 1.5  | 3.0   | 3PM-FEL           |
|        | Fell/PJAS (FEL)   | 0.45 | 0.25 | 0.25 | 1.0   | 3PM-TEC           |

The resources for SRF infrastructure modification in order to accommodate the WOWCC prototypes are not included

## Summary why would we do coated crab

- No thermal run-away (operation, machine protection)
- Potential to reach 5 MV per cavity if coating is (2-3 times) better than for LHC 400 MHz main RF cavities (cost, impedance)
- Lower impedance (x2, Z/n; x3 Z\_x,y)
- No magnetic shielding (cost)
- Material (cost)