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Motivation

Traditional “scattering-off-nuclei” searches for heavy
WIMP dark matter particles (m, ~ GeV) have not yet

produced a strong positive result.

Challenge: Observable is fourth power in a small

interaction constant (e' << 1)!



Motivation

Traditional “scattering-off-nuclei” searches for heavy
WIMP dark matter particles (m, ~ GeV) have not yet

produced a strong positive result.

Question: Can we instead look for effects of dark matter

that are first power in the interaction constant?




Low-mass Spin-0 Dark Matter

« Low-mass spin-0 particles form a coherently oscillating
classical field ¢(t) = @, cos(m c?t/h), with energy density

<Py> = M,*Po°I2 (Ppwmjocal = 0.4 GeViem?)

V(p) m2 ¢?
V() = 222




Low-mass Spin-0 Dark Matter

Low-mass spin-0 particles form a coherently oscillating
classical field ¢(t) = @, cos(m c?t/h), with energy density

<Pp> = My*Po*2 (Ppmjocal = 0-4 GeVicm?)

Coherently oscillating field, since cold (E, = mc?)



Low-mass Spin-0 Dark Matter

Low-mass spin-0 particles form a coherently oscillating
classical field ¢(t) = @, cos(m c?t/h), with energy density

<Py> = My*®s*12 (Ppmocal = 0.4 GeViem?)
Coherently oscillating field, since cold (E, = mc?)

Classical field for m, < 1 eV, since n,(Agg ,/217)° >> 1



Low-mass Spin-0 Dark Matter

Low-mass spin-0 particles form a coherently oscillating
classical field ¢(t) = @, cos(m c?t/h), with energy density

<Py> = My*Po°I2 (Ppmjocal = 0-4 GeViecm?)
Coherently oscillating field, since cold (E, = mc?)
Classical field for m, < 1 eV, since n,(Agg ,/217)° >> 1

Coherent + classical DM field = “Cosmic laser field”



Low-mass Spin-0 Dark Matter

« Low-mass spin-0 particles form a coherently oscillating
classical field ¢(t) = @, cos(m c?t/h), with energy density

<Pp> = My*Po*2 (Ppmjocal = 0-4 GeVicm?)
» Coherently oscillating field, since cold (E, = m,,c?)
» Classical field for m, < 1 eV, since n,(Agg ,/217)° >> 1
* Coherent + classical DM field = “Cosmic laser field”

+ 1022eV $m,s 16V <=>10¢ Hz << 10™ Hz

Y AN

Aag o/ 21T < L gyart galaxy ~ 1 KPC Classical field



Low-mass Spin-0 Dark Matter

« Low-mass spin-0 particles form a coherently oscillating
classical field ¢(t) = @, cos(m c?t/h), with energy density

<Pp> = My*Po*2 (Ppmjocal = 0-4 GeVicm?)
» Coherently oscillating field, since cold (E, = m,,c?)
» Classical field for m, < 1 eV, since n,(Agg ,/217)° >> 1
* Coherent + classical DM field = “Cosmic laser field”

+ 1022eV $m,s 16V <=>10¢ Hz << 10™ Hz

Y AN

Aag o/ 21T < L gyart galaxy ~ 1 KPC Classical field

* m,~10%2eV <=>T~1 year
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« Fifth-force searches * Nuclear magnetic resonance
- Astrophysics (e.g., BBN) » Torsion pendula
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Low-mass Spin-0 Dark Matter

17 Dark Matter —1

— Time-varying — Time-varying spin-

fundamental constants dependent effects

» Atomic clocks « Co-magnetometers

« N~105-10" (or even 1!) [cf. N ~ 1021 — 102° (traditional “bulk” detectors)]
» Search for wave-like signatures [cf. traditional particle-like recoil signatures]



Low-mass Spin-0 Dark Matter

l— Dark Matter

— Time-varying
fundamental constants

» Atomic clocks
» Optical cavities
* Fifth-force searches
* Astrophysics (e.g., BBN)



Dark Matter-Induced Cosmological
Evolution of the Fundamental Constants

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)],
[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider quadratic couplings of an oscillating classical

scalar field, ¢(t) = ¢, cos(m,t), with SM fields.*

* Linear couplings may be eliminated by a Z, symmetry (invariance under ¢ — - @)
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[Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)],
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Consider quadratic couplings of an oscillating classical
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Dark Matter-Induced Cosmological
Evolution of the Fundamental Constants

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)],
[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider quadratic couplings of an oscillating classical
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[Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)],
[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider quadratic couplings of an oscillating classical

scalar field, ¢(t) = ¢, cos(m,t), with SM fields.*

, ) ) 2
L=~ f ot G = —ngfl = my g 1+
5mf Cb% 2 Qb% gb%
> A cos”(myt) TRVAE + TRNAE cos(2mt)

* Linear couplings may be eliminated by a Z, symmetry (invariance under ¢ — - @)

|



Dark Matter-Induced Cosmological
Evolution of the Fundamental Constants

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)],
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Dark Matter-Induced Cosmological
Evolution of the Fundamental Constants

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)],
[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider quadratic couplings of an oscillating classical

scalar field, ¢(t) = ¢, cos(m,t), with SM fields.

, ) ) 2
5mf Cb% 2 Qb% %
> A cos”(myt) TRVAE + TRNAE cos(2mt)
/

‘Slow’ drifts [Astrophysics
(high ppy): BBN, CMB]
+ Gradients [Fifth forces]

/

Oscillating variations
[Laboratory (high precision)]
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[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on
the scalar DM field

Linear couplings (@XX) Quadratic couplings (¢2XX)
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Fifth Forces: Linear vs Quadratic Couplings
[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on
the scalar DM field

Linear couplings (@XX) Quadratic couplings (¢2XX)

R |

/‘\ /‘\\

¢ ¢ = o cos(myt) (1 — E)

r

Many different (classical) signatures 1

¢ = P cos(mgyt) — A

r



Atomic Spectroscopy Searches for Oscillating Variations

In Fundamental Constants due to Dark Matter
[Arvanitaki, Huang, Van Tilburg, PRD 91, 015015 (2015)], [Stadnik, Flambaum, PRL 114, 161301 (2015)]

0 (w1 /w2) Z
X (Kx,1 = Kx.2) cos (wi)
wl/wz X=a,me/mp,... T T

Sensitivity coefficients

w = m,, (linear coupling) or w = 2m,, (quadratic coupling)
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Atomic Spectroscopy Searches for Oscillating Variations

In Fundamental Constants due to Dark Matter
[Arvanitaki, Huang, Van Tilburg, PRD 91, 015015 (2015)], [Stadnik, Flambaum, PRL 114, 161301 (2015)]

0 (w1 /w2) Z
X (Kx,1 = Kx.2) cos (wi)
wl/CUQ X=a,me/mp,... T T

Sensitivity coefficients

w = m,, (linear coupling) or w = 2m,, (quadratic coupling)

« Precision of optical clocks approaching ~10-'8 fractional level

« Sensitivity coefficients K, calculated extensively by Flambaum
group and co-workers (1998 — present), see the reviews

[Flambaum, Dzuba, Can. J. Phys. 87, 25 (2009); Hyperfine Interac. 236, 79 (2015)]



Laser Interferometry Searches for Oscillating Variations
iIn Fundamental Constants due to Dark Matter
[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)]

A 4 &\ﬂ /s?mw E%ﬁls
- /74 /s:uqoum";l’ov Ocuap
" Ultrz taf:le silic Fabry Perc?t cavnté

detector (LIGO/Virgo), Small-scale cavity,
L ~4km L~02m

Gravitational-wave



Laser Interferometry Searches for Oscillating Variations
In Fundamental Constants due to Dark Matter
[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)]
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Laser Interferometry Searches for Oscillating Variations
In Fundamental Constants due to Dark Matter
[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)]

« Compare L ~ Nag with A (or a 2 L)

* For a “usual” atomic optical transition and in the non-
relativistic limit:
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Laser Interferometry Searches for Oscillating Variations
iIn Fundamental Constants due to Dark Matter
[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)]

« Compare L ~ Nag with A (or a 2" L)

* For a “usual” atomic optical transition and in the non-
relativistic limit:

L 2 N b
C agh C ¢ o)

« Multiple reflections of light beam enhance the effect
(N ~ 10° in small-scale interferometers with highly
reflective mirrors; c.f. N ~ 100 in LIGO/Virgo)



Constraints on Linear Interaction of
Scalar Dark Matter with the Photon

Clock/clock constraints: [Van Tilburg et al., PRL 115, 011802 (2015)], [Hees et al., PRL 117, 061301
(2016)]; Clockl/cavity constraints: [Robinson, Ye et al., Bulletin APS, H06.00005 (2018)],
[Aharony et al., arXiv:1902.02788], [Antypas et al., arXiv:1905.02968]

4 orders of magnitude improvement!
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Constraints on Quadratic Interaction of
Scalar Dark Matter with the Photon

Clock/clock + BBN constraints: [Stadnik, Flambaum, PRL 115, 201301 (2015); PRA 94, 022111
(2016)]; MICROSCOPE + Eot-Wash constraints: [Hees et al., PRD 98, 064051 (2018)]

15 orders of magnitude improvement!

Supemovae energy—loss bounds

-~

Short—range gravity tests
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Low-mass Spin-0 Dark Matter

Dark Matter j

QCD axion resolves
strong CP problem

— Time-varying spin-
dependent effects

« Co-magnetometers
* Nuclear magnetic resonance
* Torsion pendula



“Axion Wind” Spin-Precession Effect

[Flambaum, talk at Patras Workshop, 2013], [Stadnik, Flambaum, PRD 89, 043522 (2014)]

Befi(t)

C o
T f-iw cos(eat —pa(cnfw or

Lafr = —

—=> Heﬂ-’(t) ~ O B g sin(mat)

|

Pseudo-magnetic field*

BeHO('U

* Compare with usual magnetic field: H = -u;-B



Oscillating Electric Dipole Moments

Nucleons: [Graham, Rajendran, PRD 84, 055013 (2011)]
Atoms and molecules: [Stadnik, Flambaum, PRD 89, 043522 (2014)]

Electric Dipole Moment (EDM) = parity (P) and time-
reversal-invariance (T) violating electric moment

A " A
J D||J D
5~ 5*

T
—e
5" 5~
D J

Y \



Searching for Spin-Dependent Effects

Proposals: [Flambaum, talk at Patras Workshop, 2013;
Stadnik, Flambaum, PRD 89, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use spin-polarised sources: Atomic magnetometers,
ultracold neutrons, torsion pendula



Searching for Spin-Dependent Effects

Proposals: [Flambaum, talk at Patras Workshop, 2013;
Stadnik, Flambaum, PRD 89, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use spin-polarised sources: Atomic magnetometers,
ultracold neutrons

Experiment (n/Hg): [NnEDM collaboration, PRX 7, 041034 (2017)]
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Searching for Spin-Dependent Effects

Proposals: [Flambaum, talk at Patras Workshop, 2013;
Stadnik, Flambaum, PRD 89, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use spin-polarised sources: Atomic magnetometers,
ultracold neutrons

Experiment (n/Hg): [NnEDM collaboration, PRX 7, 041034 (2017)]
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Searching for Spin-Dependent Effects

Proposals: [Flambaum, talk at Patras Workshop, 2013;
Stadnik, Flambaum, PRD 89, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use spin-polarised sources: Atomic magnetometers,
ultracold neutrons

Experiment (n/Hg): [NnEDM collaboration, PRX 7, 041034 (2017)]
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Searching for Spin-Dependent Effects

Proposals: [Flambaum, talk at Patras Workshop, 2013;
Stadnik, Flambaum, PRD 89, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use spin-polarised sources: Atomic magnetometers,
ultracold neutrons

Experiment (n/Hg): [NnEDM collaboration, PRX 7, 041034 (2017)]

‘m%%R
HHg

E o B

REDM t O( COS ?’nat) 1 1 1

Wmd Z A 5111 w / 1 1
1—=1.2.3 Beff

W1 = Mg, W2 = Mg + 'Q'Sidereal; W3 = ‘Tnfa — 'Qsidereal‘

T— Earth’s rotation 41



Searching for Spin-Dependent Effects

Proposals: [Flambaum, talk at Patras Workshop, 2013;
Stadnik, Flambaum, PRD 89, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use spin-polarised sources:
torsion pendula

Experiment (Alnico/SmCo:): [Terrano et al., arXiv:1902.04246; PRL (In press)]
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Searching for Spin-Dependent Effects

Proposals: [Flambaum, talk at Patras Workshop, 2013;
Stadnik, Flambaum, PRD 89, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use spin-polarised sources:
torsion pendula

Experiment (Alnico/SmCo:): [Terrano et al., arXiv:1902.04246; PRL (In press)]
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Searching for Spin-Dependent Effects

Proposals: [Flambaum, talk at Patras Workshop, 2013;
Stadnik, Flambaum, PRD 89, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use spin-polarised sources:
torsion pendula

Experiment (Alnico/SmCo:): [Terrano et al., arXiv:1902.04246; PRL (In press)]

A‘i% u’pendulum ~ 0

(Ue)pendulum 7é 0

= =
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Constraints on Interaction of
Axion Dark Matter with Gluons

nEDM constraints: [nEDM collaboration, PRX 7, 041034 (2017)]
3 orders of magnitude improvement!

Supernova energy—loss bounds
-5
—_—
>
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o Ferroelectric
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Constraints on Interaction of
Axion Dark Matter with Nucleons

Vnlvyg constraints: [NnEDM collaboration, PRX 7, 041034 (2017)]
40-fold improvement (laboratory bounds)!

2 r )
- Laboratory searches for new spin—dependent forces
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Constraints on Interaction of
Axion Dark Matter with Nucleons

Vnlvyg constraints: [NnEDM collaboration, PRX 7, 041034 (2017)]
40-fold improvement (laboratory bounds)!

Dy .
Laboratory searches for new spin—dependent forces
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Constraints on Interaction of
Axion Dark Matter with the Electron

Torsion pendulum constraints: [Terrano ef al., arXiv:1902.04246; PRL (In press)]
35-fold improvement (laboratory bounds)!

Laboratory searches for new spin—dependent forces
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Summary

* New classes of dark-matter effects that are

first power in the underlying interaction constant

=> Up to 15 orders of magnitude improvement

with precision, low-energy, table-top experiments:

Spectroscopy (clocks)

Cavities and interferometry

Magnetometry

Torsion pendula



Back-up Slides



Fifth Forces: Linear vs Quadratic Couplings
[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on
the scalar DM field

Linear couplings (@XX) Quadratic couplings (¢2XX)
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Gradients + screening/amplification



Fifth Forces: Linear vs Quadratic Couplings
[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on
the scalar DM field

Linear couplings (@XX) Quadratic couplings (¢2XX)
: @ v/ ¢
e—mqyr‘ B —2mgr
¢ = P cos(mgyt) — A . ¢ = ¢g cos(myt) (1 — —) — Ce =
r r

1

Gradients + screening/amplification



BBN Constraints on ‘Slow’ Drifts in

Fundamental Constants due to Dark Matter
[Stadnik, Flambaum, PRL 115, 201301 (2015)]

» Largest effects of DM in early Universe (highest ppy)
» Big Bang nucleosynthesis (f,..x = 1S — tggy =3 Min)

* Primordial “He abundance sensitive to n/p ratio
(almost all neutrons bound in 4He after BBN)

AY,(*He)  A(n/p)weak B tBBN
Yp(4He) N (n/p)weak 2 |:‘/t\weak H (t)dt]

p+e =n-+1, \ l

_|_; —
nte=pTle n—p+e + 0,




Back-Reaction Effects in BBN

[Sorensen, Sibiryakov, Yu, PRELIMINARY - In preparation]
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Constraints on Quadratic Interaction of
Scalar Dark Matter with the Photon

Clock/clock + BBN constraints: [Stadnik, Flambaum, PRL 115, 201301 (2015); PRA 94, 022111
(2016)]; MICROSCOPE + Eot-Wash constraints: [Hees et al., PRD 98, 064051 (2018)]

15 orders of magnitude improvement!

Supemovae energy—loss bounds

-~

Short—range gravity tests

Eot—Wash (lab)

MICROSCOPE
(space)

™~
Clock/cavity

-20

Clock/clock

BBN

-20

10810(5)

-15 -10
Mg




Constraints on Linear Interaction of
Scalar Dark Matter with the Higgs Boson

Rb/Cs constraints:
[Stadnik, Flambaum, PRA 94, 022111 (2016)]

2 — 3 orders of magnitude improvement!
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Oscillating Electric Dipole Moments

Nucleons: [Graham, Rajendran, PRD 84, 055013 (2011)]
Atoms and molecules: [Stadnik, Flambaum, PRD 89, 043522 (2014)]

2

C'aapcos(mat) g ~
['-, oo = ol 1 . Ga. Ga.;u/
aGG fa_ 327{-2 Hv
Nucleon EDMs CP-violating intranuclear forces
7
N
grnN =135 y N
T - T

=
I
I
I
I
I
I
Q

- \
\ ,

gfﬂ%N ~ 0.016 Cag cos(mat)/ fa

In nuclei, tree-level CP-violating intranuclear forces dominate over
loop-induced nucleon EDMs (loop factor = 1/(8112)).




