Rank-One Flavor Violation and B-anomalies

David Marzocca

Valerio Gherardi, D.M., Marco Nardecchia, Andrea Romanino [1903.10954]

NPKI 2019, 13/05/2019

Neutral-Current B-anomalies $b \rightarrow s \mu^+ \mu^-$

If NP, then a contribution to this LH operator is necessary

$$\mathcal{L}_{\text{eff}} \supset \frac{e^{i\alpha_{bs}}}{\Lambda_{bs}^2} (\bar{s}_L \gamma^\mu b_L) (\bar{\mu}_L \gamma_\mu \mu_L) + h.c.$$

$$\frac{e^{i\alpha_{bs}}}{\Lambda_{bs}^2} = \frac{G_F\alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^* (\Delta C_9^{\mu} - \Delta C_{10}^{\mu})$$
$$\Lambda_{bs}^{\rm SM} \approx 12 \text{ TeV}$$

$$(\Lambda_{bs})^{\text{best-fit}}$$
 ($\alpha_{bs}=0$) $\approx 38 \text{ TeV}$

Adding also angular distributions and branching ratios:

$$(\Lambda_{bs})^{best-fit}$$
 ($\alpha_{bs}=0$) $\approx 34 \text{ TeV}$

D'Amico et al. 1704.05438, Algueró et al. 1903.09578, Alok et al. 1903.09617, Ciuchini et al. 1903.09632, Aebischer et al 1903.10434

A non-zero phase is compatible with data. It implies a lower NP scale, the upper limit is due to a not large enough (destructive) interference with SM.

A new flavour structure

The operator(s) responsible for the anomalies are part of an EFT involving all three families

We are learning about C_{sb} . What about the rest?

What is the SU(3)_q structure of this new flavor breaking term?

To answer, we need to find and study correlations with other flavor-violating transitions.

Directions in SU(3)_q space

We can parametrise directions in SU(3)_q as:

Via a U(1)_B phase redefinition we can always set $\hat{n}_3 \ge 0$

 $\theta \in \left[0, \frac{\pi}{2}\right]$, $\phi \in \left[0, 2\pi\right)$, $\alpha_{bd} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\alpha_{bs} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

In the mass eigenstate basis of down-quarks:

$$q_L^i = \left(\begin{array}{c} V_{ji}^* u_L^i \\ d_L^i \end{array}\right)$$

quark	\hat{n}	ϕ	heta	$lpha_{bd}$	$lpha_{bs}$
down	(1, 0, 0)	0	$\pi/2$	0	0
strange	(0,1,0)	$\pi/2$	$\pi/2$	0	0
bottom	(0,0,1)	0	0	0	0
up	$e^{i \arg(V_{ub})}(V_{ud}^*, V_{us}^*, V_{ub}^*)$	0.23	1.57	-1.17	-1.17
charm	$e^{i \arg(V_{cb})}(V_{cd}^*, V_{cs}^*, V_{cb}^*)$	1.80	1.53	-6.2×10^{-4}	-3.3×10^{-5}
top	$e^{i \arg(V_{tb})}(V_{td}^*, V_{ts}^*, V_{tb}^*)$	4.92	0.042	-0.018	0.39

 $\hat{n} = \begin{pmatrix} \sin\theta\cos\phi e^{i\alpha_{bd}}\\ \sin\theta\sin\phi e^{i\alpha_{bs}}\\ \cos\theta \end{pmatrix}$

The misalignment between down- and up-quarks is described by the CKM matrix.

Rank-One Flavor Violation

Valerio Gherardi, D.M., Marco Nardecchia, Andrea Romanino [1903.10954]

$$\mathcal{L}_{\rm NP}^{\rm EFT} = C_{ij} (\bar{d}_L^i \gamma_\mu d_L^i) (\bar{\mu}_L \gamma^\mu \mu_L)$$

We assume that the **flavor matrix**

of the semi-leptonic couplings to muons is of rank-one:

$$C_{ij} = C \,\hat{n}_i \hat{n}_j^*$$

 \hat{n} is some (unknown) unitary vector in flavour space SU(3)_q.

It selects a direction in that space.

We aim to answer the following question

Assuming B-anomalies are reproduced, what are the experimentally allowed directions for \hat{n} ?

Comment on UV realisations

This rank-1 condition is automatically realised in many UV scenarios

$$\mathcal{L} = \lambda_i \bar{q}_L^i \mathcal{O}_{\rm NP} + \text{h.c.}$$

Jip LQ q. 2 9).

Single leptoquark models

 $\mathcal{L} \supset g_{i\mu} \,\bar{q}_L^i \gamma_\mu \ell_L^2 \, U_1^\mu + h.c.$ $\hat{n}_i \propto g_{i\mu}$

Single vector-like quark mixing

 $\mathcal{L} \supset M_i \, \bar{q}_L^i \Psi_Q$ $\hat{n}_i \propto M_i$

Loop models with 1 set of mediators

See e.g. talk by M. Fedele and references therein $\mathcal{L} \supset \lambda_{iQ} \bar{q}_L^i \Psi_Q \Phi + h.c.$ $\hat{n}_i \propto \lambda_{iQ}$

Comment on UV realisations

This rank-1 condition is automatically realised in many UV scenarios

$$\mathcal{L} = \lambda_i \bar{q}_L^i \mathcal{O}_{\rm NP} + \text{h.c.}$$

Assuming B-anomalies are reproduced, what are the experimentally allowed directions for \hat{n} ?

Working in the LEFT (WEFT, WET,...)

ROFV
$$\mathcal{L}_{\rm NP}^{\rm EFT} = C \,\hat{n}_i \hat{n}_j^* (\bar{d}_L^i \gamma_\mu d_L^i) (\bar{\mu}_L \gamma^\mu \mu_L) \quad \hat{n} =$$

$$\begin{pmatrix} \sin\theta\cos\phi e^{i\alpha_{bd}}\\ \sin\theta\sin\phi e^{i\alpha_{bs}}\\ \cos\theta \end{pmatrix}$$

The b-s element is fixed by the anomalies.

Assuming B-anomalies are reproduced, what are the experimentally allowed directions for \hat{n} ?

Working in the LEFT (WEFT, WET,...)

ROFV
$$\mathcal{L}_{\rm NP}^{\rm EFT} = C \,\hat{n}_i \hat{n}_j^* (\bar{d}_L^i \gamma_\mu d_L^i) (\bar{\mu}_L \gamma^\mu \mu_L) \quad \hat{n} =$$

$$\begin{pmatrix}
\sin\theta\cos\phi e^{i\alpha_{bd}}\\
\sin\theta\sin\phi e^{i\alpha_{bs}}\\
\cos\theta
\end{pmatrix}$$

The b-s element is fixed by the anomalies.

We can check if the specific direction in $SU(3)_q$ space \hat{n} is experimentally allowed or excluded by observables testing these transitions.

Direct correlations with other $d_i d_j \mu \mu$ observables $\mathcal{L}_{NP}^{EFT} = C \hat{n}_i \hat{n}_j^* (\bar{d}_L^i \gamma_\mu d_L^i) (\bar{\mu}_L \gamma^\mu \mu_L)$

	Observable	Experimental value/bound	SM prediction	ŵ	$\sin\theta\cos\phi e^{i\alpha_{bd}}$
C_{μ}	${\rm Br}(B^0_d \to \mu^+ \mu^-)$	$< 2.1 \times 10^{-10} (95\% \text{ CL})$	$(1.06 \pm 0.09) \times 10^{-10}$	n =	$\sin\theta\sin\phi e^{-i\theta s}$
Cab	$Br(B^+ \to \pi^+ \mu^+ \mu^-)_{[1,6]}$	$(4.55^{+1.05}_{-1.00} \pm 0.15) \times 10^{-9}$	$(6.55 \pm 1.25) \times 10^{-9}$		
$\operatorname{Im}(C_{ds})$	$\operatorname{Br}(K_S \to \mu^+ \mu^-)$	$< 11 \times 10^{-9} (95\% \text{ CL})$	$(5.0 \pm 1.5) \times 10^{-12}$		
$\operatorname{Re}(C_{ds})$	$\operatorname{Br}(K_L \to \mu^+ \mu^-)_{\mathrm{SD}}$	$< 2.5 \times 10^{-9}$	$\approx 0.9 \times 10^{-9}$		
$\operatorname{Im}(C_{ds})$	$\operatorname{Br}(K_L \to \pi^0 \mu^+ \mu^-)$	$< 3.8 \times 10^{-10} (90\% \text{ CL})$	$1.41^{+0.28}_{-0.26}(0.95^{+0.22}_{-0.21}) \times 10^{-11}$		

Fix the phases and plot on the angles φ , θ (it's a semi-sphere in SU(3)_q)

Direct correlations with other $d_i d_j \mu \mu$ observables $\mathcal{L}_{NP}^{EFT} = C \hat{n}_i \hat{n}_j^* (\bar{d}_L^i \gamma_\mu d_L^i) (\bar{\mu}_L \gamma^\mu \mu_L)$

	Observable	Experimental value/bound	SM prediction	Â	$\sin\theta\cos\phi e^{i\alpha_{bd}}$
C_{μ}	${\rm Br}(B^0_d \to \mu^+ \mu^-)$	$< 2.1 \times 10^{-10} (95\% \text{ CL})$	$(1.06 \pm 0.09) \times 10^{-10}$	n =	$\sin\theta\sin\phi e^{-i\theta s}$
Cab	$Br(B^+ \to \pi^+ \mu^+ \mu^-)_{[1,6]}$	$(4.55^{+1.05}_{-1.00} \pm 0.15) \times 10^{-9}$	$(6.55 \pm 1.25) \times 10^{-9}$		(0000 /
$\operatorname{Im}(C_{ds})$	$\operatorname{Br}(K_S \to \mu^+ \mu^-)$	$< 11 \times 10^{-9} (95\% \text{ CL})$	$(5.0 \pm 1.5) \times 10^{-12}$		
$\operatorname{Re}(C_{ds})$	$\operatorname{Br}(K_L \to \mu^+ \mu^-)_{\mathrm{SD}}$	$< 2.5 \times 10^{-9}$	$\approx 0.9 \times 10^{-9}$		
$\operatorname{Im}(C_{ds})$	$\operatorname{Br}(K_L \to \pi^0 \mu^+ \mu^-)$	$< 3.8 \times 10^{-10} (90\% \text{ CL})$	$1.41_{-0.26}^{+0.28}(0.95_{-0.21}^{+0.22}) \times 10^{-11}$		

Fix the phases and plot on the angles φ , θ (it's a semi-sphere in SU(3)_q)

 $(\alpha_{\rm bs}=0, \alpha_{\rm bd}=0)$

Each colored region is excluded by the respective observable

Direct correlations with other $d_i d_j \mu \mu$ observables

 $\mathcal{L}_{\rm NP}^{\rm EFT} = C \,\hat{n}_i \hat{n}_j^* (\bar{d}_L^i \gamma_\mu d_L^i) (\bar{\mu}_L \gamma^\mu \mu_L)$

	Observable	Experimental value/bound	SM prediction) ^	$\sin\theta\cos\phi e^{i\alpha_{bd}}$
C_{μ}	${\rm Br}(B^0_d \to \mu^+ \mu^-)$	$< 2.1 \times 10^{-10} (95\% \text{ CL})$	$(1.06 \pm 0.09) \times 10^{-10}$	n = 1	$\sin\theta\sin\phi e^{-i\theta s}$
Cab	$Br(B^+ \to \pi^+ \mu^+ \mu^-)_{[1,6]}$	$(4.55^{+1.05}_{-1.00} \pm 0.15) \times 10^{-9}$	$(6.55 \pm 1.25) \times 10^{-9}$]	(0000 /
$\operatorname{Im}(C_{ds})$	$\operatorname{Br}(K_S \to \mu^+ \mu^-)$	$< 11 \times 10^{-9} (95\% \text{ CL})$	$(5.0 \pm 1.5) \times 10^{-12}$		
$\operatorname{Re}(C_{ds})$	$\operatorname{Br}(K_L \to \mu^+ \mu^-)_{\mathrm{SD}}$	$< 2.5 \times 10^{-9}$	$\approx 0.9 \times 10^{-9}$		
$\operatorname{Im}(C_{ds})$	$\operatorname{Br}(K_L \to \pi^0 \mu^+ \mu^-)$	$< 3.8 \times 10^{-10} (90\% \text{ CL})$	$1.41^{+0.28}_{-0.26}(0.95^{+0.22}_{-0.21}) \times 10^{-11}$		

Fix the phases and plot on the angles φ , θ (it's a semi-sphere in SU(3)_q)

Each colored region is excluded by the respective observable

Direct correlations with other $d_i d_j \mu \mu$ observables

 $\mathcal{L}_{\rm NP}^{\rm EFT} = C \, \hat{n}_i \hat{n}_j^* (\bar{d}_L^i \gamma_\mu d_L^i) (\bar{\mu}_L \gamma^\mu \mu_L)$

	Observable	Experimental value/bound	SM prediction	Â	$\sin \theta \cos \phi e^{i\alpha_{bd}}$
C_{μ}	${\rm Br}(B^0_d \to \mu^+ \mu^-)$	$< 2.1 \times 10^{-10} (95\% \text{ CL})$	$(1.06 \pm 0.09) \times 10^{-10}$	$n \equiv$	$\sin\theta\sin\phi e^{-\alpha\theta s}$
Cab	$Br(B^+ \to \pi^+ \mu^+ \mu^-)_{[1,6]}$	$(4.55^{+1.05}_{-1.00} \pm 0.15) \times 10^{-9}$	$(6.55 \pm 1.25) \times 10^{-9}$		
$\operatorname{Im}(C_{ds})$	$\operatorname{Br}(K_S \to \mu^+ \mu^-)$	$< 11 \times 10^{-9} (95\% \text{ CL})$	$(5.0 \pm 1.5) \times 10^{-12}$		
$\operatorname{Re}(C_{ds})$	$\operatorname{Br}(K_L \to \mu^+ \mu^-)_{\mathrm{SD}}$	$< 2.5 \times 10^{-9}$	$\approx 0.9 \times 10^{-9}$		
$\operatorname{Im}(C_{ds})$	$Br(K_L \to \pi^0 \mu^+ \mu^-)$	$< 3.8 \times 10^{-10} (90\% \text{ CL})$	$1.41^{+0.28}_{-0.26}(0.95^{+0.22}_{-0.21}) \times 10^{-11}$		

Region suggested by U(2) flavour symmetry or partial compositeness (close to third generation).

 $\hat{n} = (\mathcal{O}(V_{td}), \mathcal{O}(V_{ts}), \mathcal{O}(1))$

Direct correlations with other $d_i d_j \mu \mu$ observables $\mathcal{L}_{NP}^{EFT} = C \hat{n}_i \hat{n}_j^* (\bar{d}_L^i \gamma_\mu d_L^i) (\bar{\mu}_L \gamma^\mu \mu_L)$

	Observable	Experimental value/bound	SM prediction	<u> </u>	$\sin\theta\cos\phi e^{i\alpha_{bd}}$
C_{μ}	${\rm Br}(B^0_d \to \mu^+ \mu^-)$	$< 2.1 \times 10^{-10} (95\% \text{ CL})$	$(1.06 \pm 0.09) \times 10^{-10}$	n =	$\sin\theta\sin\phi e^{-i\theta s}$
Cab	$Br(B^+ \to \pi^+ \mu^+ \mu^-)_{[1,6]}$	$(4.55^{+1.05}_{-1.00} \pm 0.15) \times 10^{-9}$	$(6.55 \pm 1.25) \times 10^{-9}$		(0000 /
$\operatorname{Im}(C_{ds})$	$\operatorname{Br}(K_S \to \mu^+ \mu^-)$	$< 11 \times 10^{-9} (95\% \text{ CL})$	$(5.0 \pm 1.5) \times 10^{-12}$		
$\operatorname{Re}(C_{ds})$	$\operatorname{Br}(K_L \to \mu^+ \mu^-)_{\mathrm{SD}}$	$< 2.5 \times 10^{-9}$	$\approx 0.9 \times 10^{-9}$		
$\operatorname{Im}(C_{ds})$	$\operatorname{Br}(K_L \to \pi^0 \mu^+ \mu^-)$	$< 3.8 \times 10^{-10} (90\% \text{ CL})$	$1.41^{+0.28}_{-0.26}(0.95^{+0.22}_{-0.21}) \times 10^{-11}$		

For complex coefficients, $K_L \rightarrow \pi^0 \mu \mu$ and $K_S \rightarrow \mu \mu$ become important

 $q_L^i = \left(V_{ji}^* u_L^j, d_L^i\right)^t$

 $\mathcal{L}_{\rm NP}^{\rm SMEFT} = C_S^{ij} \left(\bar{q}_L^i \gamma_\mu q_L^j \right) \left(\bar{\ell}_L^2 \gamma^\mu \ell_L^2 \right) + C_T^{ij} \left(\bar{q}_L^i \gamma_\mu \sigma^a q_L^j \right) \left(\bar{\ell}_L^2 \gamma^\mu \sigma^a \ell_L^2 \right) + C_R^{ij} \left(\bar{q}_L^i \gamma_\mu q_L^j \right) \left(\mu_R \gamma^\mu \mu_R \right)$

The **ROFV** assumption is

 $C_{S,T,R}^{ij} = C_{S,T,R} \ \hat{n}_i \hat{n}_j^*$

Three overall coefficients

Channel	Coefficient dependencies
$d_i \rightarrow d_j \mu^+ \mu^-$	$C_S + C_T, \ C_R$
$u_i \to u_j \overline{\nu_\mu} \nu_\mu$	$C_S + C_T$
$u_i \to u_j \mu^+ \mu^-$	$C_S - C_T, \ C_R$
$d_i \to d_j \overline{\nu_\mu} \nu_\mu$	$C_S - C_T$
$u_i \to d_j \mu^+ \nu_\mu$	C_T

Different processes depend on different combinations of the three overall coefficients

 $q_L^i = \left(V_{ji}^* u_L^j, d_L^i\right)^t$

 $\mathcal{L}_{\rm NP}^{\rm SMEFT} = C_S^{ij} \left(\bar{q}_L^i \gamma_\mu q_L^j \right) \left(\bar{\ell}_L^2 \gamma^\mu \ell_L^2 \right) + C_T^{ij} \left(\bar{q}_L^i \gamma_\mu \sigma^a q_L^j \right) \left(\bar{\ell}_L^2 \gamma^\mu \sigma^a \ell_L^2 \right) + C_R^{ij} \left(\bar{q}_L^i \gamma_\mu q_L^j \right) \left(\mu_R \gamma^\mu \mu_R \right)$

The **ROFV** assumption is

 $C_{S,T,R}^{ij} = C_{S,T,R} \ \hat{n}_i \hat{n}_j^*$

Three overall coefficients

Channel	Coefficient dependencies
$d_i \rightarrow d_j \mu^+ \mu^-$	$C_S + C_T, \ C_R$
$u_i \to u_j \overline{\nu_\mu} \nu_\mu$	$C_S + C_T$
$u_i \to u_j \mu^+ \mu^-$	$C_S - C_T, \ C_R$
$d_i \to d_j \overline{\nu_\mu} \nu_\mu$	$C_S - C_T$
$u_i \to d_j \mu^+ \nu_\mu$	C_T

Different processes depend on different combinations of the three overall coefficients

Even assuming a *LH* solution, the relative size of C_S and C_T is a free parameter.

However, *d_id_j µµ* transitions,

are directly correlated with **bs** µµ

(depend on the same combination of C_S and C_T)

 $C_L = C_S + C_T \equiv C_+$

Also $u_i u_j v_\mu v_\mu$ transitions,

are directly correlated with **bs** µµ

however no relevant bound exist (e.g. from $D \rightarrow \pi vv$)

 $q_L^i = \left(V_{ji}^* u_L^j, d_L^i\right)^t$

 $\mathcal{L}_{\rm NP}^{\rm SMEFT} = C_S^{ij} \left(\bar{q}_L^i \gamma_\mu q_L^j \right) \left(\bar{\ell}_L^2 \gamma^\mu \ell_L^2 \right) + C_T^{ij} \left(\bar{q}_L^i \gamma_\mu \sigma^a q_L^j \right) \left(\bar{\ell}_L^2 \gamma^\mu \sigma^a \ell_L^2 \right) + C_R^{ij} \left(\bar{q}_L^i \gamma_\mu q_L^j \right) \left(\mu_R \gamma^\mu \mu_R \right)$

The **ROFV** assumption is

 $C_{S,T,R}^{ij} = C_{S,T,R} \ \hat{n}_i \hat{n}_j^*$

Three overall coefficients

Channel	Coefficient dependencies
$d_i \rightarrow d_j \mu^+ \mu^-$	$C_S + C_T, \ C_R$
$u_i \to u_j \overline{\nu_\mu} \nu_\mu$	$C_S + C_T$
$u_i \to u_j \mu^+ \mu^-$	$C_S - C_T, \ C_R$
$d_i \to d_j \overline{\nu_\mu} \nu_\mu$	$C_S - C_T$
$u_i \to d_j \mu^+ \nu_\mu$	C_T

Different processes depend on different combinations of the three overall coefficients

 $K^+ \rightarrow \pi^+ \nu \nu$ is important

 $q_L^i = \left(V_{ji}^* u_L^j, d_L^i \right)^t$

 $\mathcal{L}_{\rm NP}^{\rm SMEFT} = C_S^{ij} \left(\bar{q}_L^i \gamma_\mu q_L^j \right) \left(\bar{\ell}_L^2 \gamma^\mu \ell_L^2 \right) + C_T^{ij} \left(\bar{q}_L^i \gamma_\mu \sigma^a q_L^j \right) \left(\bar{\ell}_L^2 \gamma^\mu \sigma^a \ell_L^2 \right) + C_R^{ij} \left(\bar{q}_L^i \gamma_\mu q_L^j \right) \left(\mu_R \gamma^\mu \mu_R \right)$

	The ROFV	assumption is
--	----------	---------------

$$C_{S,T,R}^{ij} = C_{S,T,R} \ \hat{n}_i \hat{n}_j^*$$

Three overall coefficients

Channel	Coefficient dependencies
$d_i \rightarrow d_j \mu^+ \mu^-$	$C_S + C_T, \ C_R$
$u_i \to u_j \overline{\nu_\mu} \nu_\mu$	$C_S + C_T$
$u_i \to u_j \mu^+ \mu^-$	$C_S - C_T, \ C_R$
$d_i \to d_j \overline{\nu_\mu} \nu_\mu$	$C_S - C_T$
$u_i \to d_j \mu^+ \nu_\mu$	C_T

Different processes depend on different combinations of the three overall coefficients

 $K^+ \rightarrow \pi^+ \nu \nu$ is important

We can ask what are the possible tree-level mediators which generate these operators.

Different ones generate different combinations of $C_{S,T,R}$.

Simplified model	Spin	SM irrep	(c_S, c_T, c_R)
S_3	0	$(\overline{3}, 3, 1/3)$	(3/4, 1/4, 0)
U_1	1	(3, 1, 2/3)	(1/2, 1/2, 0)
U_3	1	(3, 3, 2/3)	(3/2, -1/2, 0)
V'	1	(1, 3, 0)	(0,1,0)
$Z'_{(L)}$	1	(1, 1, 0)	(1,0,0)
$Z'_{(V)}$	1	(1, 1, 0)	(1,0,1)

As representative examples, we study:

$S_3 \ scalar \ leptoquark \quad S_3 = (\mathbf{\bar{3}}, \mathbf{3}, 1/3)$

S_3 scalar leptoquark $S_3 = (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$

S_3 scalar leptoquark $S_3 = (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$

ROFV & U(2)³ symmetry

Global quark flavor symmetry

$$\mathrm{U}(2)^3 = \mathrm{U}(2)_q \times \mathrm{U}(2)_u \times \mathrm{U}(2)_d$$

$$\psi_i = (\underbrace{\psi_1 \ \psi_2}^{\mathbf{2}} \underbrace{\psi_3}^{\mathbf{1}})$$

When minimally broken, the spurions are: $V_q \sim (\mathbf{2}, \mathbf{1}, \mathbf{1})$, $\Delta Y_u \sim (\mathbf{2}, \mathbf{\overline{2}}, \mathbf{1})$, $\Delta Y_d \sim (\mathbf{2}, \mathbf{1}, \mathbf{\overline{2}})$

$$y_u \sim y_t \left(\begin{array}{cc} \Delta Y_u & V_q \\ 0 & 1 \end{array} \right) , \quad y_d \sim y_b \left(\begin{array}{cc} \Delta Y_d & V_q \\ 0 & 1 \end{array} \right)$$

 $V_q = a_q \left(\begin{array}{c} V_{td}^* \\ V_{ts}^* \end{array}\right)$ The doublet is given by CKM elements up to corrections

 $\mathcal{O}(m_s/m_b)$

ROFV & U(2)³ symmetry

Global quark flavor symmetry

$$\mathrm{U}(2)^3 = \mathrm{U}(2)_q \times \mathrm{U}(2)_u \times \mathrm{U}(2)_d$$

$$\psi_i = (\underbrace{\psi_1 \ \psi_2}^{\mathbf{2}} \underbrace{\psi_3}^{\mathbf{1}})$$

When minimally broken, the spurions are: $V_q \sim (\mathbf{2}, \mathbf{1}, \mathbf{1})$, $\Delta Y_u \sim (\mathbf{2}, \mathbf{\overline{2}}, \mathbf{1})$, $\Delta Y_d \sim (\mathbf{2}, \mathbf{1}, \mathbf{\overline{2}})$

$$y_u \sim y_t \left(\begin{array}{cc} \Delta Y_u & V_q \\ 0 & 1 \end{array} \right) , \quad y_d \sim y_b \left(\begin{array}{cc} \Delta Y_d & V_q \\ 0 & 1 \end{array} \right)$$

The doublet is given by CKM elements up to corrections

 $V_q = a_q \left(\begin{array}{c} V_{td}^* \\ V_{ts}^* \end{array}\right)$

 $\mathcal{O}(m_s/m_b)$

One can predict (up to O(2%) corrections)

$$R_K \approx R_{\pi} \qquad \qquad \frac{\operatorname{Br}(\operatorname{B}^0_{\mathrm{s}} \to \mu^+ \mu^-)}{\operatorname{Br}(\operatorname{B}^0_{\mathrm{s}} \to \mu^+ \mu^-)^{\mathrm{SM}}} \approx \frac{\operatorname{Br}(\operatorname{B}^0 \to \mu^+ \mu^-)}{\operatorname{Br}(\operatorname{B}^0 \to \mu^+ \mu^-)^{\mathrm{SM}}}$$

These predictions of minimally broken U(2)³ will be tested with future data (see prospects slide).

ROFV & U(2)³ symmetry

Global quark flavor symmetry

$$\mathrm{U}(2)^3 = \mathrm{U}(2)_q \times \mathrm{U}(2)_u \times \mathrm{U}(2)_d$$

$$\psi_i = (\underbrace{\psi_1 \ \psi_2}^{\mathbf{2}} \underbrace{\psi_3}^{\mathbf{1}})$$

When minimally broken, the spurions are: $V_q \sim (\mathbf{2}, \mathbf{1}, \mathbf{1})$, $\Delta Y_u \sim (\mathbf{2}, \mathbf{\overline{2}}, \mathbf{1})$, $\Delta Y_d \sim (\mathbf{2}, \mathbf{1}, \mathbf{\overline{2}})$

Imposing the ROFV structure we can also get correlations with s-d transitions:

only 2 free parameters: C_{U2} , γ .

 γ

also get

$$C_{ij} = C \hat{n}_i \hat{n}_j^*$$

$$\hat{n} \sim \mathbf{1} + \mathbf{2}_q \sim (c_{U2} V_q^T, 1)^T$$

$$\hat{n} \propto (c_{U2} e^{i\gamma} V_{td}^*, c_{U2} e^{i\gamma} V_{ts}^*, 1)$$

$$C_{U2} \sim O(1)$$
Main constraint from

$$K_L \rightarrow \mu^+ \mu^-$$
The region consistent with
hinimally broken U(2)
ymmetry is still not tested

Prospects

Future improvements in the measurements of these observables will allow to cover the majority of the parameter space

Observable	Expected sensitivity	Experiment
R_K	0.7~(1.7)%	LHCb 300 (50) fb^{-1}
	3.6~(11)%	Belle II 50 (5) ab^{-1}
R_{K^*}	0.8~(2.0)%	LHCb 300 (50) fb^{-1}
	3.2~(10)%	Belle II 50 (5) ab^{-1}
R_{π}	4.7 (11.7)%	LHCb 300 (50) fb^{-1}
$Br(B_s^0 \to \mu^+ \mu^-)$	4.4 (8.2)%	LHCb 300 (23) fb^{-1}
	7 (12)%	CMS 3 (0.3) ab^{-1}
$\operatorname{Br}(B^0_d \to \mu^+ \mu^-)$	9.4 (33)%	LHCb 300 (23) fb^{-1}
	16 (46)%	CMS 3 (0.3) ab^{-1}
$Br(K_S \to \mu^+ \mu^-)$	$\sim 10^{-11}$	LHCb 300fb^{-1}
$\operatorname{Br}(K_L \to \pi^0 \nu \nu)$	$\sim 30\%$	KOTO phase-I
	20%	KLEVER
$Br(K^+ \to \pi^+ \nu \nu)$	10%	NA62 goal

Summary

The **B-physics anomalies** will be throughly tested in the next few years. If confirmed, understanding the flavor structure of this new breaking of the SM flavor symmetries will be crucial.

The **Rank-One Flavor Violation** assumption is realised in several UV completions. It allows to correlate $b \rightarrow s\mu\mu$ processes with other flavor observables involving muons (or muon neutrinos).

Already now a sizeable part of parameter space is **tested** and **future measurements will cover the majority of the framework**.

*Simplified = no theory uncertainties considered. Agrees well "enough" with full fits.

$\Delta F = 2$ observables (and ϵ'/ϵ)

 $\begin{aligned} \text{Limits on } \Delta F &= 2 \text{ coefficients } \left[\text{GeV}^{-2} \right] \\ \hline \text{Re}C_K^1 \in \left[-6.8, 7.7 \right] \times 10^{-13} \text{ , } \text{Im}C_K^1 \in \left[-1.2, 2.4 \right] \times 10^{-15} \\ \hline \text{Re}C_D^1 \in \left[-2.5, 3.1 \right] \times 10^{-13} \text{ , } \text{Im}C_D^1 \in \left[-9.4, 8.9 \right] \times 10^{-15} \\ & |C_{B_d}^1| < 9.5 \times 10^{-13} \\ & |C_{B_s}^1| < 1.9 \times 10^{-11} \end{aligned}$

$$\mathcal{L}_{\Delta F=2}^{\rm NP} = C_{ij} (\bar{q}_L^i \gamma_\mu q_L^j)^2$$

[UTfit 0707.0636, update by L. Silvestrini @ La Thuile '18]

For example, the Z' contribution is: $\Delta \mathcal{L}_{\Delta F=2} = -\frac{g_q^2}{2M_{Z'}^2} \left[(\hat{n}_i \hat{n}_j^* \overline{d_{iL}} \gamma^{\alpha} d_{jL})^2 + (V_{ik} \hat{n}_k \hat{n}_l^* V_{jl}^* \ \overline{u_{iL}} \gamma^{\alpha} u_{jL})^2 \right]$

Also ε'/ε provides a potential constrain on the coefficient of $(\bar{s}\gamma_{\mu}P_{L}d)(\bar{q}\gamma^{\mu}P_{L}q)$ q = u, d, s, c

[Aebisher et al. 1807.02520, 1808.00466]

$$\left(\frac{\varepsilon'}{\varepsilon}\right)_{\rm BSM} = \sum_{i} P_i(\mu_{\rm ew}) \, \operatorname{Im} \left[C_i(\mu_{\rm ew}) - C'_i(\mu_{\rm ew})\right] \quad \approx 10 \times 10^{-4}$$

In this framework, this constraint is not competitive with $\Delta F = 2$

U1 vector leptoquark

 $\Delta F=2$ loops are divergent, need a UV completion.

Z' & vector-like couplings to μ

For example see the gauged U(1)_{Lµ-Lτ} model with 1 vector-like quark. [Altmannshofer, Gori, et al 1403.1269, 1609.04026] $\hat{n}_i \propto M_i$

Z' & vector-like couplings to μ

For example see the gauged U(1)_Lµ-LT model with 1 vector-like quark. $\mathcal{L} \supset M_i \bar{q}_L^i \Psi_Q$ [Altmannshofer, Gori, et al 1403.1269, 1609.04026] $\hat{n}_i \propto M_i$

 $\Delta F=2$ operators are generated at the tree level.

$$\Delta \mathcal{L}_{\Delta F=2} = -\frac{g_q^2}{2M_{Z'}^2} \left[(\hat{n}_i \hat{n}_j^* \ \bar{d}_L^i \gamma^\alpha d_L^j)^2 + (V_{ik} \hat{n}_k \hat{n}_l^* V_{jl}^* \ \bar{u}_L^i \gamma^\alpha u_L^j)^2 \right]$$

We can put upper limits on $r_{q\mu}=g_q/g_{\mu}$, or for a given maximum g_{μ} , an upper limit on the Z' mass

$$M_{Z'}^{\rm lim} = \sqrt{\frac{r_{q\mu}^{\rm lim}}{4|C|}} |g_{\mu}^{\rm max}|$$