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WHAT IS DYNAMICAL 
FRICTION?

!3
3 

Motion of black holes leaves a “wake” of stars and gas in 
their trail… the gravitational tug of this wake on the black 
hole then removes energy and angular momentum from 
blackhole orbit (dynamical friction) 

Dynamical friction 

The problem is not new:

A massive particles 
propagates through a 

medium with a 
constant velocity.  

What is the 
gravitational drag 

force, induced by the 
wake?

First analysis: Chandrasekhar, 
1942



DYNAMICAL FRICTION 
AND MODERN HEP

Traditionally: used to calculate motion of bodies in the galactic 
dynamics — with classical NR results being perfectly adequate 

More modern questions: effects of self-interacting DM 
(component) on the galactic dynamics — more complicated, self-
interactions effects should be taken into account 

Recently: calculate the the energy released by (primordial) black 
holes going through neutron stars and white dwarf — effects of 
matter in extreme conditions must be properly accounted for 

Exotic objects in the accretion discs of the black holes
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WHAT DO WE KNOW ABOUT 
THE DYNAMICAL FRICTION?

Ideal non-relativistic gas

Photons gas, relativistic bullet

How do we interpolate between two these regimes?

the spatial derivatives. These two approaches are fully equivalent. Note that for �feq we

assume a locally thermal distribution �feq = f0
p0

T

�
(~v · �~u)+ �T/T

�
. Of course we expect this

assumption to break down for ⌧ ! 1, namely in the free streaming case. However since the

importance of this term scales as ⌧�1, we are not sensitive to this assumption in this limit.

When we know the perturbation �f we can finally calculate the correlator

Gµ⌫↵�
kin =

�T µ⌫

�h↵�
with �T µ⌫ =

Z
d3p

(2⇡)3
pµp⌫

p0
�f (23)

where the dependence on h↵� comes from the Christo↵el symbols. Interestingly, the object

Gkin is not fully equivalent to the object that we have defined in the Eq. (7). Nonetheless,

one can show that they merely di↵er by contact terms, i.e. terms that do not contain new

poles in the kz complex plane and therefore the contribution of these terms will vanish in the

final answer. (Aleksi, make sure you agree with this explanation – ak) Finally, once

we have the object Gkin, we can go ahead and construct the dressed graviton propagator.

A. Free streaming scenario

Let us first try to reproduce the results for the non-interacting gas in the non-relativistic

and ultra-relativistic cases. The force exerted on a body by a gas of non-interacting rela-

tivistic particles using the results of [1] and [4] is:

F =
4⇡G2m2

b⇢v

v2
log ⇤ . (24)

(Translate to the relativistic language – ak) In this expression ⇢ is the energy density

of a gas of non-relativistic particles, namely ⇢v = mn, where n is the number density of

particles whose velocity does not exceed the bullet velocity,. In the opposite regime of the

ultrarelativistic gas the result is derived in [10] was

F =
64⇡

3
G2m2

b⇢v�2 log ⇤ . (25)

Note that the result in the intermediate case and the interpolation between the two limiting

cases to the best of our knowledge does not appear in the literature and we present it here

for the first time. As we will shortly see, our techniques allows us to get to an analytic

expression that smoothly interpolates between two these limits.
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Fig. 3.— Solid curves: Dynamical friction force in a gaseous medium as a function of Mach

number M = V/cs. Curves correspond to ln(cst/rmin) = 4, 6, 8, ..., 16. Dashed curves:

Corresponding dynamical friction force in a collisionless medium with particle velocity

dispersion σ = cs and rmax ≡ V t = Mcst.

Ideal liquids:
Ostriker; 1998

Supersonic:

Vanishes subsonically, though certain 
boundary effects can change this conclusion
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CALCULATION OF DYNAMICAL 
FRICTION — HISTORICAL 

APPROACH
Chandrasekhar’s approach: calculate the probability 

function of occurrence of force F acting on a star and an 
average time during which the force acts

!6

In the case of the ideal 
fluid (Rephaeli & Salpeter, 

Ostriker) one calculates 
the drag due to the 

asymmetry in the flow 
associated with the front of 

the shock wave. 



A NEW APPROACH

(Thermal) field theory approach + Gravity as an EFT

!7

We also notice, that, maybe surprisingly, the dynamical friction in the interacting gas has

never been properly calculated. In our paper we close this gap presenting a full calculation

relaxation time approximation. The core observation of this paper is that the force exerted

on a bullet, propagating through gas, can easily be calculated from a metric perturbation.

In order to calculate the latter, it is su�cient to calculate the graviton propagator, dressed

by the correlators of collective modes of matter. The correlators of the collective modes

have been calculated in various limits. For example, in the hydrodynamical limit they have

been recently computed in [12]. The case of the interacting gas of the ultra-relativistic

particle has been analyzed in [13]. In this work we go further, calculating the momentum

transport correlations functions in the relaxation time approximation of the interacting

gas of particles with arbitrary mass. This further allows us to compute dressed graviton

propagators in momentum space and eventually the drag forced exerted on to a bullet,

propagating through the interacting gas.

Our paper is structured as follows. In Sec II we present our formalism in great detail and

explain the logic behind the calculation. The calculation itself is performed in Sec III. As a

warm up, we start from the free streaming gas regime, reproducing the well known literature

results of both the non-relativistic and the ultra-relativistic gas approximation. We then

switch to the the hydrodynamical case, analyzing both the well known inviscid case and the

slightly more complicated scenario with viscosity. Finally we perform the full calculation for

the interacting gas that interpolates between all these cases. In the last section we draw our

conclusions and discuss the application of our results for real-words problems. The technical

details are relegated to the appendices.

II. DESCRIPTION OF THE FORMALISM

Our main objective is to calculate a force, exerted on a bullet that propagates through

a gas of particles. One can notice that in the linearized regime, the force is exerted on the

bullet by the gravitational field of its own wake and can be written as

F µ =
dpµ

dt
= �m��µ

↵�(h
wake)v↵v�, (1)

where the zero component corresponds to the rate of energy loss F 0 = dE
dt . Of course this

approximation breaks down at short distances, where non-linear gravity kicks in, but this is

4

Definition of force induced 
by the wake: 

The graviton field of the wake (Fourier space):

and uµ = �(1, 0, 0, v) is the four-velocity vector of the bullet. Note that hereafter we consider

the simplest possible case, namely the bullet moving in a infinite medium with constant

velocity for su�ciently long time. With this approach we will not be able to capture the

boundary sensitive e↵ects, like for example discussed in [7]. However, this will be mostly

su�cient for our needs. We will also briefly consider boundary e↵ects and see how, for

example, one reproduces the results of [7] in our formalism in Sec XXX.

The linear perturbation in the gravitational field caused by the bullet will cause a linear

perturbation in the background medium, which will evolve in time in a way that depends on

the material properties of the medium. For now we will not specify further the properties

of the medium. However, in general, the medium response of the energy momentum tensor

�T µ⌫ , which should be thought about as a perturbation to the (3) to the gravitational field

in generic medium can be characterized by the response function Gmedium

�T µ⌫
wake(x) =

Z
d4x0Gµ⌫,↵�

medium(x0, x)hbullet
↵� (x0). (6)

We will later slightly abuse the notations and drop �, while the perturbation and the un-

perturbed background will be distinguishable from the context. This response function is

nothing but the retarded propagator of the energy momentum tensor, or explicitly

Gµ⌫,↵�
medium(x, x0) = �i✓(t � t0)

⌦
[T µ⌫(x), T ↵�(x0)]

↵
(7)

The response function depends in detail on the microscopic dynamical properties of the

medium and eventually needs to be computed. While some particular cases, e.g. the free-

streaming gas and the ideal liquid, are very well known, the most generic cases must be

calculated, as we show in the next section and in the appendices.

Finally, the wake itself will have its own gravitational field, which can again be computed

using the Green function of the linearized Einstein equation

hwake
µ⌫ (x) =

Z
d4x0Ggrav

µ⌫,↵�(x, x0)T ↵�
wake(x

0). (8)

That is, hwake represents the gravitational field that was created by a wake that was created

by a gravitational field that was created by the bullet. Because the expressions that we got

both for the hwake
µ⌫ and the Twake

µ⌫ are convolutions in the coordinate space, we will further

proceed with the calculation in the momentum space. In Fourier space where the convolution

becomes a simple product the gravitational field of the wake has a particularly simple form

hwake
µ⌫ (!, k) = Gdressed

µ⌫,↵� (!, k)T ↵�
bullet(!, k) (9)

6
Full object to 

calculate

⟨[h
µ
ν
, h

ρσ
]⟩ ⟨[h

α
β , h

τω ]⟩

⟨[Tρσ, Tαβ]⟩
G

G

bullet eikonal propagator

Excitations of matter



FORMAL EXPRESSION 
FOR THE FORCE

Let us first assume that we know the excitation of matter. 

The energy-momentum tensor of the bullet:

expected to happen at distances comparable to the Schwartzschild radius, which is strictly

smaller that the accretion radius. Therefore we will go ahead with this approximation.

A. The wake

First, let us derived the formal expression for the gravitational field of the wake, produced

by the bullet. For large separations, the bullet a↵ects the medium only through a linear

perturbation of the background gravitational field, which it induces2

gµ⌫ = ⌘µ⌫ + h̄bullet
µ⌫ ⌘ ⌘µ⌫ + hbullet

µ⌫ , (2)

where  ⌘ 8⇡G. Note that in our conventions the metric fluctuation hµ⌫ is suppressed by

the Newton constant. We also assume that the unperturbed medium is homogeneous and

isotropic with the unperturbed energy-momentum tensor of the medium

Tmedium
µ⌫ =

0

BBBBB@

⇢ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

1

CCCCCA
(3)

with ⇢ the energy density and P the pressure. The gravitational perturbation hbullet
µ⌫ caused

by the bullet is conveniently found through a convolution with the Green function of the lin-

earized Einstein equation (hereafter we work in the Lorenz gauge), i.e. graviton propagator

with the energy momentum tensor of the bullet:

hbullet
µ⌫ (x) =

Z
d4x0Ggrav

µ⌫,↵�(x, x0)T ↵�
bullet(x

0). (4)

Assuming that the bullet of mass mbullet moves with a constant velocity v through the

medium, the energy momentum tensor of the bullet and its Fourier transform can be written

as3

T µ⌫
bullet =

mbullet

�
uµu⌫�(z � vt)�2(x?) =) T̃ µ⌫

bullet =
2⇡mbullet

�
uµu⌫�(! � kzv) (5)

2 Our metric in this paper is “mostly plus”, namely (� + ++).
3 We work with the convention f(x) =

R
d4k

(2⇡)4 eik·xf(k). Further, we will be interested in retarded Green

functions, and therefore to pick the retarded ordering, we must take ! to have a small positive imaginary

part ! + i✏.

5

From here we can use the standard machinery: calculate the 
dressed propagator, convolve with the energy momentum 

tensor of the bullet and further the Christoffel symbols. 

which has a particularly simple form along the worldline of the bullet

@⇢h
wake
µ⌫ (z = vt) = i

mu↵u�

�

Z
d2k?

(2⇡)2
dkz

2⇡
k⇢G

dressed
µ⌫,↵� (! = vkz + i✏,~k) . (14)

Of course, if we are interested in the ⇢ = 0 index, which is needed to calculate two out of

four independent terms in Eq. (11), one should use k⇢ = vkz. The +i✏ prescription chooses

the appropriate boundary condition for the retarded propagator.

From Eq. (11) it is clear that the only relevant cases for are either ⇢ = 0 or ⇢ = z. In both

these cases the integral over dkz in Eq. (13) can be further simplified by dividing the left hand

side to two equal parts and changing the integration variable kz ! �kz in the latter part. As

long as the background over which Gdressed is computed is time translation invariant (as it is

in all the cases we are considering), changing the sign of the real part of the frequency turns

a retarded Green function into advanced, which is given by the complex conjugate of the

retarded function. As in all the cases we are interested, the retarded function is multiplied

by a single power of kz, we get for the integrand

Z
dkz

2⇡
ikzG

dressed
µ⌫,↵� =

Z
dkz

2⇡

ikz

2
(Gdressed

µ⌫,↵� � (Gdressed
µ⌫,↵� )⇤) (15)

= �

Z
dkz

2⇡
kzImGdressed

µ⌫,↵� . (16)

The fact that we are interested merely in the imaginary part as well as the +i✏ prescription

give us a convenient prescription how the contour should be closed in the dkz integration.

With a little bit of algebra one can show that the force is then given simply by

F z = �
m2

2�2

Z
d2k?

(2⇡)2
dkz

2⇡
kzIm

⇥
Gdressed

⇤
, (17)

with

Gdressed
⌘

⇥
Gdressed

µ⌫,↵�

⇤
u↵u�uµu⌫ , (18)

where we additionally used that (�v! + v2 1
2kz) = �

v2

2 kz and the explicit structure of the

vector uµ as it appears below Eq (5).

C. Scale separation and EFT validity range

Now that we have developed the machinery to calculate the drag force when the retarded

two-point correlation functions are known, let us return to the issue of scale separation
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Structure one could predict 
from optical theorem

Qualities of the perturber and 
the matter perfectly factorize



RECIPE: HOW TO CALCULATE THE 
DRAG FORCE IN ANY REGIME

Find an expression for the excitation of matter: particle 
retarded propagator in the case of the ideal gas, sound 
modes for the ideal fluid in ideal liquid… 

Use it to calculate the retarded propagator of the dressed 
graviton 

Contract with the four-velocity of the bullet  

Calculate the drag force as the Fourier transform of the 
imaginary part of the contracted dressed graviton  



SCALES OF THE PROBLEM 

RIR — the largest relevant distance, the size of the cloud  

RUV — the smallest distance, the size of the bullet (Schwarzschild radius) 

The mean free path — at this scale the liquid EFT starts breaking down, 
must be replaced by full kinetic theory

Relevant scales:

What is the k-dependence in various regimes?

General dimensional considerations:   F ∝ m2 G2

!10

Comes from general expression Gravitational  coupling2  from the 
dressed propagator



STRUCTURE OF THE DRAG 
FORCE EXPRESSION

!11

Lowest frequencies — largest wavelengths: ideal 
liquid regime 

Introduce first order corrections: viscous liquid.  
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Already has dimensions of force. Namely the force is k-finite or ∝ log k. Since 
gravity is a long-range force, we would expect a divergence log k. 
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Both have one derivative — 
viscosities are dim. 3 

From dimensional analysis 
considerations:
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STRUCTURE OF THE DRAG 
FORCE EXPRESSION

!12

Another limit: very high frequencies, ideal gas. The 
only parameter again is the energy density, we expect:  
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Viscous fluid is an EFT, where 

we consider the first order 
corrections to the low-k 

approximation. We also know 
the high-k limit (ideal gas). 
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give a finite result



THE KINETIC THEORY 

In these expression the coe�cient cX(k) (which is obviously a function of k) stands for the

cross over regime that is calculated in the interacting kinetic theory. In fact, it represents

the resummation of all the terms of type (�skUV )n that clearly cannot be captured using

merely the language of the EFT. We schematically illustrate this situation on Fig XXX.

(Add the picture – ak)

Of course, three di↵erent regimes presented in Eq. (20) should smoothly interpolate

between one another. We will further analyze the interacting kinetic theory in the relaxation

time approximation. While this is still an approximation in the vast majority of the systems

we are interested in, it is su�cient for most of our needs. With ⌧ being the relaxation time,

we will be able to recover the viscid hydrodynamic regime by taking a limit ⌧!, ⌧ |k| ⌧ 1.

By further setting to zero the viscosity we recover the very well known ideal liquid solution.

In the opposite limit, ⌧!, ⌧ |k| � 1 one of course recovers the free streaming regime. We

will perform the explicit calculations in the next section.

III. CALCULATION OF THE DRAG FORCE

Now we apply the formalism that we have developed in the previous section to the actual

problem of the dynamical friction. First, let us clarify the question, how do we compute the

response function of the medium (7) that is further used in the calculation of the dressed

graviton propagator (10). Note, that this function is known in certain limiting cases, e.g.

it has been calculated for the massless gas in [13] and the viscid hydrodynamical case was

analyzed in [12]. However, the generic case is not known and will be analyzed here (though

partially numerically).

We will closely follow the prescription of [13] and will also work in the time relaxation

approximation. In this approximation the Boltzmann equation for the distribution function

is

pµ@µf � �↵
��p

�p�r(p)
↵ f =

p↵u↵

⌧
(f � feq) . (21)

The term on the right hand side stands for the interactions between the particles of the

medium, and ⌧ is the relaxation time. At this stage we will not assume any specific form

for the distribution function feq, however we assume that it is isotropic and depends only

on the energy of the particle p0, rather than on ~p and m separately, i.e. f = f(p0/T ). The

10

To capture the effects of the interactions between the gas 
particles, use relaxation time approximation. 𝜏 is  the time scale 

of the interactions 

interaction kernel, with 𝜏 is the 
interactions time scale 

!13

Boltzmann equation: 

Ideal liquid regime: (k𝜏) << 1 

viscosities: ∽𝜏 

Interacting gas — the “transitional regime”: (k𝜏) ~ O(1)

limiting regimes  
quantified 



MATTER EXCITATIONS 
AND KINETIC THEORY 

Formal solution: 

Energy momentum tensor

Christo↵el symbols �↵
�� are calculated as a function of the metric perturbation hµ⌫ . We

have also introduced a notation ~vp ⌘ ~p/p0. Assuming a small correction �f = f � f0 due to

the metric perturbation this equation can be formally solved in the Fourier space

�f =
1

p0
�feq/⌧ + �↵

��p
�p�r(p)

↵ f0

�i! + i~vp · ~k + 1/⌧
. (22)

Note that since the unperturbed distribution f0 depends only on p0, one can calculate the

second term in the numerator either taking only the time derivative ↵ = 0 or taking only

the spatial derivatives. These two approaches are fully equivalent. Note that for �feq we

assume a locally thermal distribution �feq = f0
p0

T

�
(~v · �~u)+ �T/T

�
. Of course we expect this

assumption to break down for ⌧ ! 1, namely in the free streaming case. However since the

importance of this term scales as ⌧�1, we are not sensitive to this assumption in this limit.

When we know the perturbation �f we can finally calculate the correlator

Gµ⌫↵�
kin =

�T µ⌫

�h↵�
with �T µ⌫ =

Z
d3p

(2⇡)3
pµp⌫

p0
�f (23)

where the dependence on h↵� comes from the Christo↵el symbols. Interestingly, the object

Gkin is not fully equivalent to the object that we have defined in the Eq. (7). Nonetheless,

one can show that they merely di↵er by contact terms, i.e. terms that do not contain new

poles in the kz complex plane and therefore the contribution of these terms will vanish in the

final answer. (Aleksi, make sure you agree with this explanation – ak) Finally, once

we have the object Gkin, we can go ahead and construct the dressed graviton propagator.

A. Free streaming scenario

Let us first try to reproduce the results for the non-interacting gas in the non-relativistic

and ultra-relativistic cases. The force exerted on a body by a gas of non-interacting rela-

tivistic particles using the results of [1] and [4] is:

F =
4⇡G2m2

b⇢v

v2
log ⇤ . (24)

(Translate to the relativistic language – ak) In this expression ⇢ is the energy density

of a gas of non-relativistic particles, namely ⇢v = mn, where n is the number density of

particles whose velocity does not exceed the bullet velocity,. In the opposite regime of the
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Basic assumptions: feq is isotropic, 
depends only on p0 

Machinery: how do we solve the kinetic theory 
(technical)

!14

Matter excitation (retarded correlator of 
energy momentum tensor):



WARM UP: IDEAL GAS

!15

ultrarelativistic gas the result is derived in [10] was

F =
64⇡

3
G2m2

b⇢v�2 log ⇤ . (25)

Note that the result in the intermediate case and the interpolation between the two limiting

cases to the best of our knowledge does not appear in the literature and we present it here

for the first time. As we will shortly see, our techniques allows us to get to an analytic

expression that smoothly interpolates between two these limits.

Note that this case is relatively simple compared to the full case, since the expression for

the variation of the distribution function reduces to

�f =
1

p0
�i

��p
�p�r(p)

i f0

�i! + i~vp · ~k
(26)

and one solves this equation straightforwardly without �feq. With these simplifications mul-

tiple integrals that we perform here become manageable and can be performed analytically.

Notice that with our assumptions f0(p0/T ) , we have

r
(p)
i f0 =

pi
p0

f 0
0(p

0). (27)

The rest of the calculation is pretty straightforward. First, we are interested in the

dressed graviton propagator. In our formalism the integral expression for this object reads

Gdressed =

Z
d3p

(2⇡)3

✓


�(! + i✏)2 + k2

◆2

I��,µ⌫I↵�,⇢�
��i

!⇠

�h⇢�

pµp⌫p!p⇠

(p0)2T

f 0
0(p

0)

�i! + i~k ·
~p
p0

u�u�u⇢u� (28)

where as usual p0 =
p

~p2 + m2. One can analytically perform the angular integration in the

momentum space and project onto the four-velocities of the bullet to get an expression of

the following form:

=

Z
kzG

dresseddkz = =

Z
kzdkz

Z
dp

f 0(p0)p�4

240⇡2(k2
? + k2

z)
4(p0)2(k2

? � k2
z(�1 + v2))2

⇥ (29)

 
R(kz, k?; p, p0; v + S(kz, k?; p, p0; v) log

kzp0v +
p

k2
z + k2

?p

kzp0v �
p

k2
z + k2

?p

!

after we have substituted ! = kzv. Functions R and S are fully analytic in all their variables.

Before we proceed further, we should be bit more careful with the analytic structure of our

integrals. A priori our integration contour goes slightly above the real axis. However, since

we are merely interested in the imaginary part of this expression, we can subtract from this

integral its complex conjugate, namely allow the contour simply to circumvent clockwise the
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The formal solution is much 
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two completely analytic 
functions of kz

contributes to the branch 
cut along the real axis

For sufficiently big p > ɣmpv the log is always negative and the 
entire imaginary part comes from the jump over the branch cut



IDEAL GAS: ANALYTIC STRUCTURE 
OF THE DRESSED PROPAGATOR

Re

Im kz

◊

◊

Re

Im kz
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◊

FIG. 3: Analytic structure of integrand in (29) as function of kz. The figure on the right hand

side shows the structure for high-momenta p > �mgv, where the branch cut (the blue wavy line)

extends over the entire real axis, and on the left-hand side for lower momenta, where the branch

cut is limited by the end points (34). The contribution to the imaginary part of the integral of

kz comes from the jump over the branch cut. The red crosses represent the graviton propagator

poles on the imaginary axis that do not contribute to the integral.

a very compact expression:

dF

d log k?
=

m2
b�

22

24⇡3
v

Z 1

0

p5f 0
0(p

0)

p0
dp (36)

and the derivative of the distribution function is taken over p0. If one uses the thermal

distribution f = e�p/T and the relativistic energy density ⇢ = 3T 4/⇡2, the result (25) is

readily recovered.

Of course in the more generic case, when we keep the mass of the gas particles non-zero,

the result is much more complicated and one should numerically perform the integration

both over (31) and (35), finally sewing them together. It is instructive to compare the

dynamical friction in the purely massless and the massive case. We compare these results

in Fig 2. Note that as long as the mass of the particle is comparable to the temperature,

the relativistic approximation still gives us a decent accuracy, while the e↵ect drops rapidly

as the mass of the particles in the gas increases.

Our next objective is to recover Eq. (24) from our generic result. Our basic assumptions
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FIG. 2: The dynamical friction of the free streaming gas. The figure on the left hand side shows

the drag force as a function of the perturber velocity given the mass of the gas particle in units

of temperature, while the figure on the right hand side shows the force as a function of the gas

particles mass species for a given perturber mass. The inset figure on the left hand side plot shows

the same e↵ect on the linear (rather than log) scale of the perturber velocities.

but is rather located between the points:

�
k?pq

p2(v2 � 1) + v2m2
g

< kz < �
k?pq

p2(v2 � 1) + v2m2
g

(34)

We show the entire complex analytic structure of the integrand of the kz in these two di↵erent

physical regions on Fig 3. The result of the integration in the second physical region is

=

Z
kzG

dressed
II dkz =

�42

48⇡k2
?v2

Z �mgv

0

dp
f 0
0(p

0)p

p0
⇥ (35)

h
� 3p(p0)3(9 � 14v2 + 5v4) + p3p0(29 � 54v2 + 9v4) +

3(p2 � (p0)2)(�1 + v2)
�
(p0)2(9 � 5v2) + p2(�5 + v2)

�
arctanh

✓
p

p0

◆i

Now let us compare the expressions that we have found to the known expressions in the

literature, namely the relativistic and non-relativistic limit. The former is the simplest to

reproduce: as we have already mentioned the branch cut extends over the entire real axis

and only the dressed propagator from Eq. (31) contributes, with the lower integration limit

trivially replaced by 0. In the limit that we are interested in the entire second term in the

bracket vanishes while the second vanishes at the order v, such that we are finally left with

14

Compare to the known results

the spatial derivatives. These two approaches are fully equivalent. Note that for �feq we

assume a locally thermal distribution �feq = f0
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. Of course we expect this

assumption to break down for ⌧ ! 1, namely in the free streaming case. However since the

importance of this term scales as ⌧�1, we are not sensitive to this assumption in this limit.

When we know the perturbation �f we can finally calculate the correlator

Gµ⌫↵�
kin =

�T µ⌫

�h↵�
with �T µ⌫ =

Z
d3p

(2⇡)3
pµp⌫

p0
�f (23)

where the dependence on h↵� comes from the Christo↵el symbols. Interestingly, the object

Gkin is not fully equivalent to the object that we have defined in the Eq. (7). Nonetheless,

one can show that they merely di↵er by contact terms, i.e. terms that do not contain new

poles in the kz complex plane and therefore the contribution of these terms will vanish in the

final answer. (Aleksi, make sure you agree with this explanation – ak) Finally, once

we have the object Gkin, we can go ahead and construct the dressed graviton propagator.

A. Free streaming scenario

Let us first try to reproduce the results for the non-interacting gas in the non-relativistic

and ultra-relativistic cases. The force exerted on a body by a gas of non-interacting rela-

tivistic particles using the results of [1] and [4] is:

F =
4⇡G2m2

b⇢v

v2
log ⇤ . (24)

(Translate to the relativistic language – ak) In this expression ⇢ is the energy density

of a gas of non-relativistic particles, namely ⇢v = mn, where n is the number density of

particles whose velocity does not exceed the bullet velocity,. In the opposite regime of the

ultrarelativistic gas the result is derived in [10] was

F =
64⇡

3
G2m2

b⇢v�2 log ⇤ . (25)

Note that the result in the intermediate case and the interpolation between the two limiting

cases to the best of our knowledge does not appear in the literature and we present it here

for the first time. As we will shortly see, our techniques allows us to get to an analytic

expression that smoothly interpolates between two these limits.
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P “ 1 ´ e
´⌧ (144)

�� „ !�t „ Op1q (145)
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a
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⇢
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e
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ª
dr
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m

2
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ª v

0
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1
v

12
fpv1q log⇤ (156)

F “ 4⇡m2
G

2
�
2p1 ` v
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v2

log⇤ ✓pv ´ csq (157)

10

photons gas:

Chandrasekhar:

without any 
dissipation:
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2
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2
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F9m
2
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2
⇢0 log k (161)

dF

d log k
log k (162)

@
rT ↵�

, T
µ⌫s

D
“ �T
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�hµ⌫
` contact terms (163)

p ° �mpv p † �mpv (164)

F „ m
2
G

2p⌘sk ` a2k
2 ` a3k

3 ` . . .q (165)

G
dressedp! ` i✏q “ G

˚dressedp! ´ i✏q (166)
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IDEAL GAS: GENERIC 
SOLUTION

Because of the analytic structure of the kz integral, the generic solution 
breaks down into two integrals over p, one of them running from p=0 

to p = ɣmpv, and another running from p = ɣmpv to infinity. The 
integrands are continuous at the stitching point.

!17
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The known limits (Chandrasekhar+photons gas) are 
easily reproduced from the general expression



INVISCID FLUID

Here the energy momentum tensor and the propagators are 
well known. Dressed propagator: 

Gdressed(! = vkz + i✏) =

 
�2

(1 � v2)k2
z + ~k2

?

!2
f ideal
sound(~k),

(c2s � v2)k2
z + c2s~k

2
? � i✏vkz

. (38)

with

f ideal
sound =

⇢0 + P0

2

"
16k2

zv
2!2

k2
+
⇣
!(8kzv + (v2 � 3)!) � k2(v2 + 1)

⇣
c2s(v

2
� 3) � v2 � 1

⌘⌘#
(39)

Because (1 � v2) > 0, it is simple to see that the graviton propagators will never go on

shell and the propagator is an analytic function of kz for all v. Same is true for the sound

mode as long as v < cs, and for subsonic velocities the propagator is perfectly analytic and

the bullet feels no drag force in the inviscid fluid, in full agreement with the old result of [4].

The only long-lived asymptotic states in inviscid fluid dynamics are the sound modes, or

phonons. However, the gravitational field of the bullet excites only virtual o↵-shell phonons

in the hydrodynamic medium that cannot propagate far. There is no phase space available

to excite a real on-shell phonons that could carry energy asymptotically far away from the

bullet, and as energy cannot be given to long lived modes, there can be no total energy loss

on the bullet because of energy conservation.

However, when the bullet moves with a supersonic velocity, namely v2
�c2s > 0, the phase

space opens up for the hydrodynamic propagator to go on shell when

kz = ±
csk?p
v2 � c2s

, (40)

leading in to an imaginary part arising from the i✏ prescription

1

(c2s � v2)k2
z + c2s~k

2
? � i✏vkz

= P

 
1

(c2s � v2)k2
z + c2s~k

2
?)

!
+ i⇡�

⇣
(c2s � v2)k2

z + c2s~k
2
?

⌘
, (41)

where P denotes the real principal value integral. Inserting (41) to (38) and further to (59)

we get a simple form for the drag force

dF z

d log k?
= �✓(v � cs)m

22�2 (1 + v2)2(P0 + ⇢0)

32⇡v2
(42)

in agreement with [11], if we take into account that  = 8⇡G.

That is, we see the energy loss arises from transferring energy from the bullet to the long-

lived asymptotic states—which in the case of fluid dynamics are the sound modes—that can

transport the energy far away from the bullet. The condition (40) equivalently reads

cos ✓ = kz/|k| = cs/v (43)
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all the gravitational poles are on 
imaginary axis

sound poles: on the imaginary axis for subsonic 
velocities, real otherwise. The virtual phonons 

become real  

!18

As in the ideal gas case, without dissipation 
there is no contribution from the gravity 

poles
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Subsonic bullet — no poles on the real axis, 
integral is perfectly real, confirming the 

result of Rephaeli-Slapeter 

real axis (of course, up to a factor of 2). With this deformation it is clear that R is analytic

in the full complex plane and does not contribute to the integral. The function S however

multiplies a log, which contains a cut on the real axis.

There are two distinct structures that the integral over kz can have depending on the

parameter p. For su�ciently large p, namely

p > �mgv (30)

(here mg stands for the mass of the particle in the gas), the denominator of the log is always

negative, meaning that the branch cut goes extends over the entire real axis. In this case

the contribution due to the jump over the branch cut is 2⇡i, and the rest (the S functions

and the prefactor) is simply integrated from minus to plus infinity. The final result reads

=

Z
kzG

dressed
I dkz =

�42

96⇡k2
?v2

Z 1

�mgv

dp
p

p0
df0
dp0

⇥ (31)

h
2v
�
3p4(�5 + 3v2) + (p0)4(�27 + 29v2) � 6p2(p0)2(�7 + 9v2) +

�

3(p2 � (p0)2)(�1 + v2)
�
(p0)2(9 � 5v2) + p2(�5 + v2) log

1 + v

1 � v

�i

Using p
p0

df0
dp0 = df0

dp and performing the partial integral the expression simply reads

=

Z
kzG

dressed
I dkz = �

�42

12⇡k2
?v2

Z 1

�mgv

dp pf0 ⇥ (32)

h
2m2

g

�
v2

� 3
�
v � 16p2v3 + 3m2

g

�
v2

� 1
�2

log

✓
v + 1

1 � v

◆i

plus a boundary term at p = �mgv, which we see will always exactly cancels with the

p < �mgv contribution as the integrand is continuous. Note that in the ultra-relativistic

regime the branch cut always extends over the entire real axis and therefore the entire

contribution to the dynamical friction is given by (31) with the integration running from

zero to infinity.

However, in the generic case this is not the only contribution. The contribution of the

integral over low-p is negligible in the case of ultra-relativistic particles, however becomes

dominant in the non-relativistic limit. For small momenta, namely

p < �mgv (33)

the branch cut is located on the real axis, however it does not extend all the way to infinity,
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MORE REALISTIC PICTURE: 
ADD THE VISCOSITY

!19

In the system with dissipations the calculation is more 
involved and we cannot disregard the analytic structure 

outside the real axis.

The viscosity 
contributions blow up at 
the speed of sound. The 
results are also linearly 
sensitive to the cutoff of 

the EFT  
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SOLVE THE FULL KINETIC 
THEORYChristo↵el symbols �↵

�� are calculated as a function of the metric perturbation hµ⌫ . We

have also introduced a notation ~vp ⌘ ~p/p0. Assuming a small correction �f = f � f0 due to

the metric perturbation this equation can be formally solved in the Fourier space

�f =
1

p0
�feq/⌧ + �↵

��p
�p�r(p)

↵ f0

�i! + i~vp · ~k + 1/⌧
. (22)

Note that since the unperturbed distribution f0 depends only on p0, one can calculate the

second term in the numerator either taking only the time derivative ↵ = 0 or taking only

the spatial derivatives. These two approaches are fully equivalent. Note that for �feq we

assume a locally thermal distribution �feq = f0
p0

T

�
(~v · �~u)+ �T/T

�
. Of course we expect this

assumption to break down for ⌧ ! 1, namely in the free streaming case. However since the

importance of this term scales as ⌧�1, we are not sensitive to this assumption in this limit.

When we know the perturbation �f we can finally calculate the correlator

Gµ⌫↵�
kin =

�T µ⌫

�h↵�
with �T µ⌫ =

Z
d3p

(2⇡)3
pµp⌫

p0
�f (23)

where the dependence on h↵� comes from the Christo↵el symbols. Interestingly, the object

Gkin is not fully equivalent to the object that we have defined in the Eq. (7). Nonetheless,

one can show that they merely di↵er by contact terms, i.e. terms that do not contain new

poles in the kz complex plane and therefore the contribution of these terms will vanish in the

final answer. (Aleksi, make sure you agree with this explanation – ak) Finally, once

we have the object Gkin, we can go ahead and construct the dressed graviton propagator.

A. Free streaming scenario

Let us first try to reproduce the results for the non-interacting gas in the non-relativistic

and ultra-relativistic cases. The force exerted on a body by a gas of non-interacting rela-

tivistic particles using the results of [1] and [4] is:

F =
4⇡G2m2

b⇢v

v2
log ⇤ . (24)

(Translate to the relativistic language – ak) In this expression ⇢ is the energy density

of a gas of non-relativistic particles, namely ⇢v = mn, where n is the number density of

particles whose velocity does not exceed the bullet velocity,. In the opposite regime of the

11

Formal solution:

That is, the viscous correction is regular in the infrared as one could have expected. However,

the correction to the force is seen to be linearly UV divergent. As shortest wavelengths

receive largest corrections, and the leading order result depended without a bound on all

frequencies, it is no surprise that the viscous correction comes with a linear UV divergence.

This UV divergence turns the logarithmic dependence of the UV-cuto↵ kUV to a linear one.

The corresponding length scale �xUV ⇠ 1/kUV is the shortest distance scale at which the

approximations of our calculation are valid, and we see that in a system with non-zero

viscosity, i.e., in all physical materials, the viscous correction is sensitive to the microscopic

physics, as explained in Sec II. In order to know the behavior of the theory at distances below

�xUV we approximate the full theory by a kinetic theory in relaxation time approximations.

The viscous fluid theory will emerge (as expected) as a low energy limit of this theory with

bulk shear viscosity as functions of mg and relaxation time ⌧ .

C. The interacting gas

Now we have generic results in the regimes of the non-interacting gas and viscous fluid,

however these results looks vastly di↵erent and one would like to have theory that smoothly

interpolates between two these regimes, yielding them as the limiting cases.

With the theoretical machinery that we have described in Sec II and assuming the fluc-

tuations in the equilibrium distribution function

�feq = f0(p
0)

p0

T

✓
~vp · ~�u +

�T

T

◆
(50)

we get the following expression for the fluctuating energy-momentum tensor in the Fourier

space:

�T µ⌫ =

Z
p2dp

2⇡2 T

Z
d' d cos ✓

4⇡

"
f0(p0)

⇣
~vp · ~�u + �T/T

⌘
� T ⌧�i

↵�p
↵p�r(p)

i f0

1 + ⌧(ı! + i~vp · ~k)

#
(51)

again, closely following the derivation of [13]. We can interpret the upper row of �T µ⌫ from

Eq. (51) as an equation on �T and ~�u. In particular, we identify

�⇢ = �T 00 with �⇢ =
@⇢

@T
�T (52)

�ui =
�T 0i

⇢ + P
with ⇢ =

Z
d3p

(2⇡)3
f0(p)p0(p) (53)

20

Here closely following Romatschke, 
1512.02641

We have 4 unknown variables: 𝛿T, and three components of 
𝛿u. Plugging this back into the expression for energy 

momentum tensor we have 4 different equations to solve: 
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approximations of our calculation are valid, and we see that in a system with non-zero
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Use the unperturbed f to 
calculate the energy density



RESULTS FROM THE FULL 
KINETIC THEORY

Smooth interpolation:

!21
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MAPPING THE HYDRO EFT 
ONTO THE FULL THEORY
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COMMENTS ON “OSTRKIER’S 
CORRECTIONS”

– 10 –

Fig. 3.— Solid curves: Dynamical friction force in a gaseous medium as a function of Mach

number M = V/cs. Curves correspond to ln(cst/rmin) = 4, 6, 8, ..., 16. Dashed curves:

Corresponding dynamical friction force in a collisionless medium with particle velocity

dispersion σ = cs and rmax ≡ V t = Mcst.

In contrast with our results and the 
results of Rephaeli-Salpeter the 

force does not vanish identically in 
the subsonic regime 

speed of sound
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p ° �mpv p † �mpv (164)

F „ m
2
G

2p⌘sk ` a2k
2 ` a3k

3 ` . . .q (165)

G
dressedp! ` i✏q “ G

˚dressedp! ´ i✏q (166)

kz “ ˘i
kK?
1 ´ v2

kz “ cskKa
c2s ´ v2

(167)

F “ 4⇡G2
m

2
b⇢0

v2
log

ˆ
1 ` M
1 ´ M

˙
(168)
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Finite (but might be numerically 
important), boundary effect in time

Way to reproduce 
in our formalism:

IV. COMMENTS ON BOUNDARY EFFECTS

In the previous section we considered a stationary situation where the medium extends

over an infinite volume and the bullet has traveled in the medium for an infinite time.

While these are exactly the assumptions of the classical dynamical friction problem, some

variations are known. While the explicit calculations in more intricate situation is somewhat

beyond the scope of this our work, we will show how one can attack non-trivial boundary

conditions in space and time with our formalism. Of course, it would be interesting to see

explicit calculations along these line.

We first follow the setup set by Ostriker in [7], where the medium still has an infinite

extent but the bullet appears in the unperturbed medium at time t = 0. This framework

was originally considered to resolve the “paradox” of the subsonic bullet moving in the ideal

liquid, and according to the previous calculation does not feel any force at all (of course, as

we have shown, this is not the case in the viscous fluid).

In order to analyze this frame, one follows exactly the same steps we went through in

Sec II, however the energy-momentum tensor of the bullet looks di↵erent now:

T µ⌫
bullet(~x, t) = � m �(z � vt)�2(~x?)vµv⌫

⇥ ✓(t) (56)

T µ⌫
bullet(

~k, !) = � m
�ivµv⌫

�! + kzv � i✏
(57)

The (derivative of) the gravitational field of the wake then reads

@⇢h
wake
µ⌫ (x? = 0, z = vt > 0) = i2�mv↵v�

Z
d4k

(2⇡)4
e�it(!�ikzv)k⇢G

dressed
µ⌫,↵� (k)

�ivµv⌫

�! + kzv � i✏
,

(58)

and the force

F z =
m2�2

2

Z
d2k?

(2⇡)2
dkz

2⇡
kz Gdressed

�! + kzv � i✏
+ m2�2

Z
d2k?

(2⇡)2
dkz

2⇡
(! � kzv)

G̃dressed

�! + kzv � i✏

(59)

with

G̃dressed = Gdressed
zµ↵� ṽµv↵v�, ṽµ = {1, 0, 0,�v} (60)

This is pretty di↵erent from what one gets in (17), and moreover one cannot write it down

as an imaginary part of a closed expression. In principle, after evaluated, these integrals

should yield a relativistic generalization of results of [7], that we leave for future studies.
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And proceed 
with a similar 

calculation

!23



CONCLUSIONS
Proposed a completely generic method to calculate the classical dynamical friction in any 
regime 

Showed a completely generic analytic expression for the ideal gas in any regime of 
temperatures/ velocities 

Developed the expression for viscous fluids within the EFT that make important contributions 
in the subsonic regime 

Showed the smooth interpolations between the low and high-k regimes within the full kinetic 
theory 

These improved results can now be used in plethora of physical problems: interacting DM, 
propagating of the BHs through the compact objects, physics of the accretion discs etc. 

Extension of the existing results to include the boundary effects, post-Newtonian corrections is 
straightforward (though laborious) using our formalism
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