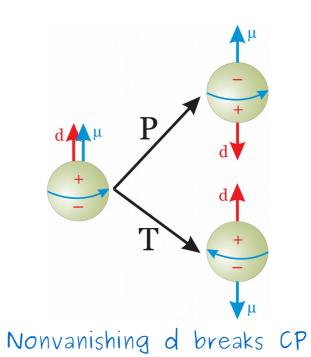
EFT approach for the electron EDM at two loops

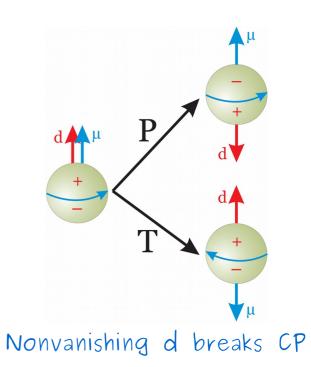
Marc Riembau Université de Genève

NPKI, May 2019

Based on 1810.09413, with Giuliano Panico and Alex Pomarol



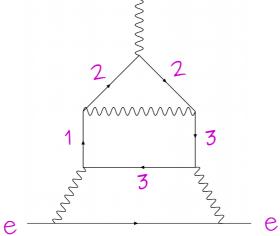
$$\begin{split} H &= -\mu \, \vec{B} \cdot \frac{\vec{S}}{S} \, - \, d \, \vec{E} \cdot \frac{\vec{S}}{S} \\ & \downarrow \quad \text{relativistic limit} \\ \mathcal{L}_{dipole} &= -\frac{\mu}{2} \bar{\Psi} \sigma^{\mu\nu} F_{\mu\nu} \Psi - \frac{d}{2} \bar{\Psi} \sigma^{\mu\nu} i \gamma^5 F_{\mu\nu} \Psi \\ & \downarrow \quad \text{SM} \\ \mathcal{L} \supset \frac{c_W^e}{\Lambda^2} y_e g \, \bar{\ell}_L \sigma_{\mu\nu} e_R \sigma^a H W_{\mu\nu}^a + \frac{c_B^e}{\Lambda^2} y_e g' \, \bar{\ell}_L \sigma_{\mu\nu} e_R H B_{\mu\nu} + h.c. \\ \hline d_e(\mu) &= \frac{\sqrt{2}v}{\Lambda^2} \text{Im} \left[s_{\theta_W} \, C_{eW}(\mu) - c_{\theta_W} \, C_{eB}(\mu) \right] \end{split}$$



$$3 \rightarrow d_e/e \sim 10^{-40} \ cm$$

SM contribution is ridiculously small, EDM is a clear sign of New Phisics

SM prediction:



3

Larger Higgs-Boson-Exchange Terms in the Neutron Electric Dipole Moment

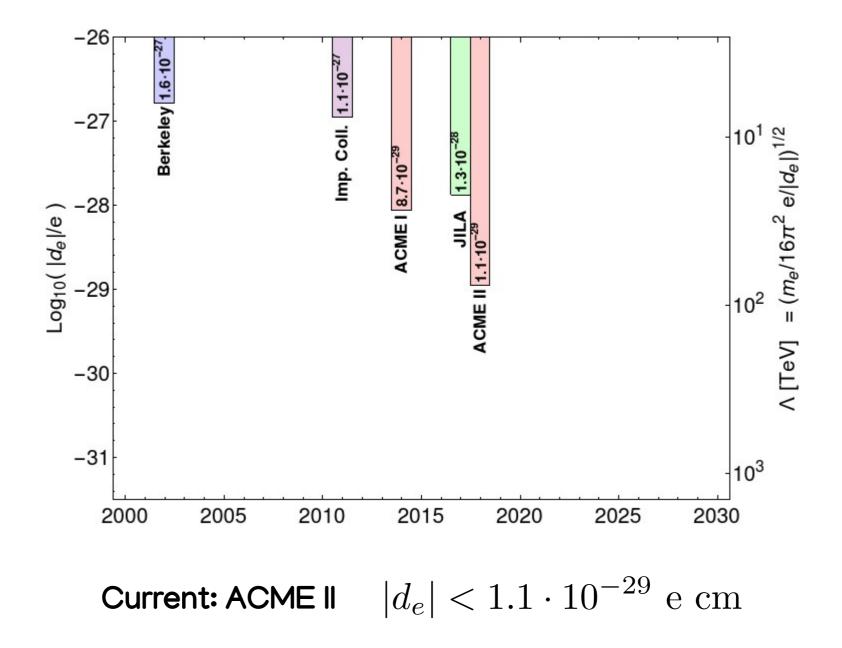
Steven Weinberg

Theory Group, Department of Physics, University of Texas, Austin, Texas 78712 (Received 25 August 1989)

The neutron electric dipole moment (d_n) due to Higgs-boson exchange is reconsidered, now without assuming that Higgs-boson exchange is solely responsible for $K_L^0 \rightarrow 2\pi$. The dominant contribution to d_n arises from a three-gluon operator, produced in integrating out top quarks and neutral Higgs bosons. The estimated result together with current experimental bounds on d_n show, even for the largest plausible Higgs-boson masses, that *CP* is not maximally violated in neutral-Higgs-boson exchange.

This is very large compared with other contributions, and potentially in conflict with the experimental results for d_n , $(-14\pm 6)\times 10^{-26} e \text{ cm}$ from Leningrad²⁰ and $(-3\pm 5)\times 10^{-26} e \text{ cm}$ from Grenoble.²¹ We do not know m_H or m_t , but the experimental lower bound on m_t is rapidly increasing, and it is hard to imagine that m_H could be larger than $10m_t$. This gives¹⁵ h > 0.015. The experimental bound²¹ $|d_n| < 1.2 \times 10^{-25} e \text{ cm}$ thus requires that $|\text{Im}Z_2| < 8 \times 10^{-5}$. Our conclusion is that *CP* is not maximally violated in the neutral Higgs sector.¹⁴ The only way that I can see for this to be natural is for the Higgs sector to be very simple: no more than two doublets, and with two doublets, no mixing with any scalar singlets.

Evolution of electron EDM constraints



Translation of ACME constraints to particle physics:

$$\frac{d_e}{e} \sim \frac{1}{(16\pi^2)^2} \frac{m_e}{\Lambda^2} \longrightarrow \Lambda > 3 \,\mathrm{TeV}$$

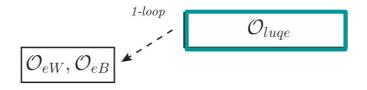
Relevant constraints even at two loops.

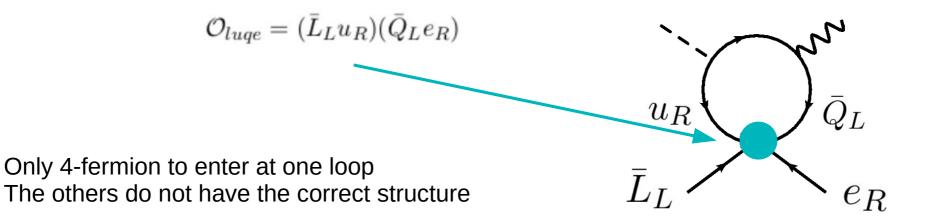
We want to characterize all effects that enter with

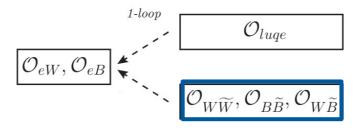
Two loops

Chirality flip

This is the key to help organize the contributions







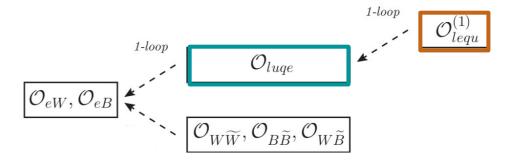
$$\frac{d}{d\ln\mu} \operatorname{Im} \begin{pmatrix} C_{eB} \\ C_{eW} \end{pmatrix} = -\frac{y_e g}{16\pi^2} \begin{pmatrix} 0 & 2t_{\theta_W}(Y_L + Y_e) & \frac{3}{2} \\ 1 & 0 & t_{\theta_W}(Y_L + Y_e) \end{pmatrix} \begin{pmatrix} C_{W\widetilde{W}} \\ C_{B\widetilde{B}} \\ C_{W\widetilde{B}} \end{pmatrix}$$

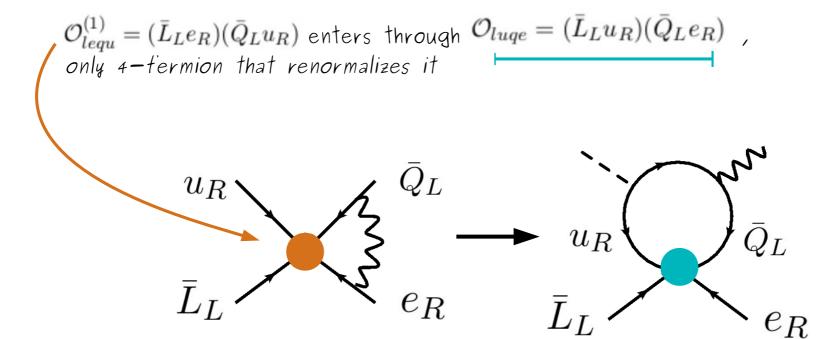
$$\downarrow \quad \text{It is useful to write the parameters} \quad \text{in a more physical way}$$

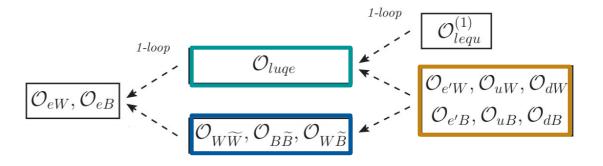
$$\frac{vh}{\Lambda^2} \left(\tilde{\kappa}_{\gamma\gamma} F_{\mu\nu} \widetilde{F}^{\mu\nu} + 2\tilde{\kappa}_{\gamma Z} F_{\mu\nu} \widetilde{Z}^{\mu\nu} \right) + ie\delta \tilde{\kappa}_{\gamma} W^+_{\mu} W^-_{\nu} \widetilde{F}^{\mu\nu}$$

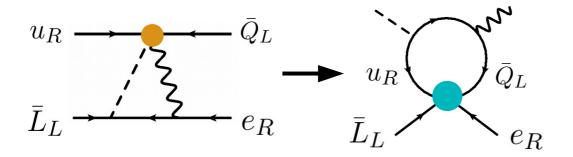
$$\frac{d}{d\ln\mu} d_e(\mu) = \frac{e}{8\pi^2} \frac{m_e}{\Lambda^2} \left[4Q_e \tilde{\kappa}_{\gamma\gamma} - \frac{4}{s_{2\theta_W}} \left(\frac{1}{2} + 2Q_e s^2_{\theta_W} \right) \tilde{\kappa}_{\gamma Z} + \frac{\Lambda^2}{v^2} \delta \tilde{\kappa}_{\gamma} \right] \quad \overline{L} \qquad e_R$$

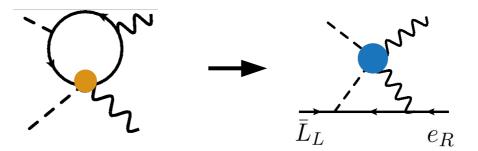
Due to approximate accidental cancellation, 1/2+2 Qe sin² ~ 0.04, Z boson contribution negligible.

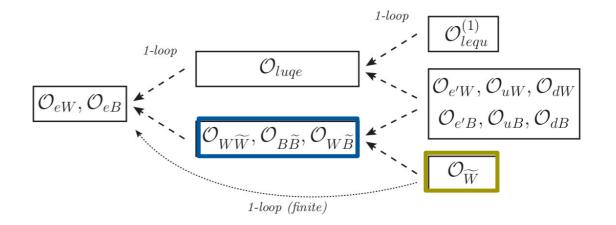




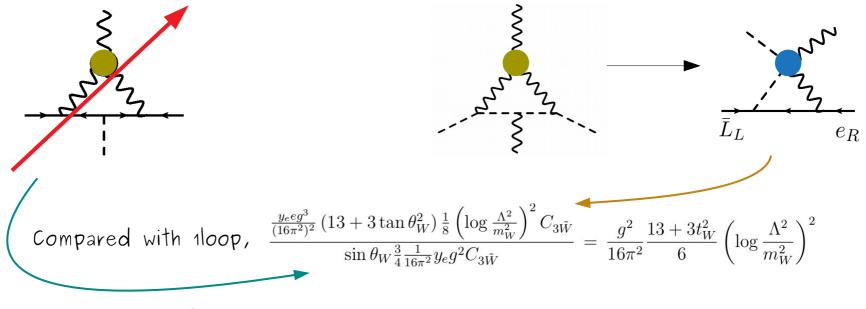




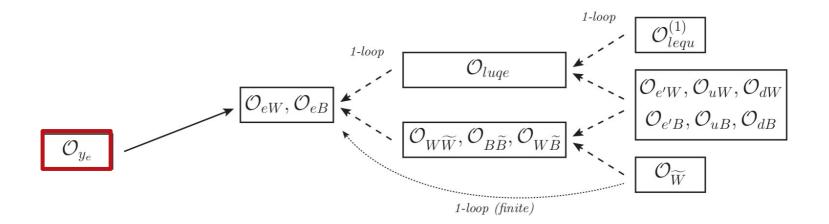




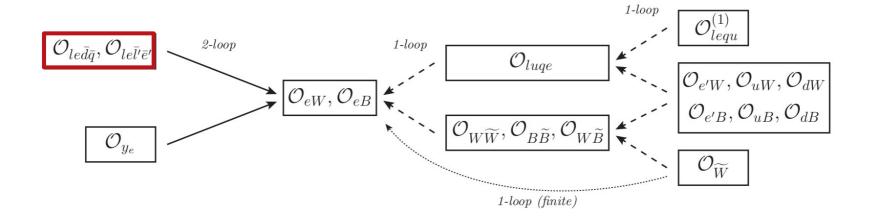
This one is interesting, since a two loop, log² contribution competes with the single loop, no log contribution



which is O(1) for $\Lambda \sim$ 5TeV



Accidental cancellation makes it smaller and only hypercharge contributes to EDM



$$\frac{d}{d\ln\mu} \operatorname{Im} \begin{pmatrix} C_{eB} \\ C_{eW} \end{pmatrix} = \frac{y_d g^3}{(16\pi^2)^2} \frac{N_c}{4} \begin{pmatrix} 3t_{\theta_W} Y_Q + 4t_{\theta_W}^3 (Y_L + Y_e) (Y_Q^2 + Y_d^2) \\ \frac{1}{2} + 2t_{\theta_W}^2 (Y_L + Y_e) Y_Q \end{pmatrix} C_{le\bar{d}\bar{q}} \qquad \qquad H \qquad \qquad V_\mu$$

$$\frac{d}{d\ln\mu} \operatorname{Im} \begin{pmatrix} C_{eB} \\ C_{eW} \end{pmatrix} = \frac{y_{e'} g^3}{(16\pi^2)^2} \frac{1}{4} \begin{pmatrix} 3t_{\theta_W} Y_L + 4t_{\theta_W}^3 (Y_L + Y_e) (Y_L^2 + Y_e^2) \\ \frac{1}{2} + 2t_{\theta_W}^2 (Y_L + Y_e) Y_L \end{pmatrix} C_{le\bar{e'}\bar{l'}} \cdot L_L \qquad \qquad E_R$$

The other 4-fermions enter only at 2 loops, single log Again, a cancellation for ledg: $\sim g^2 \rightarrow \frac{g'^2}{8}$ 14

Impact on BSM

Impact on BSM

Fix $\Lambda = 10~TeV$

tree-level	
C_{eW}	$5.5 \times 10^{-5} y_e g$
C_{eB}	$5.5 \times 10^{-5} y_e g'$
one-loop	
Cluqe	$1.0 \times 10^{-3} y_e y_t$
$C_{W\widetilde{W}}$	$4.7 \times 10^{-3} g^2$
$C_{B\widetilde{B}}$	$5.2 imes 10^{-3} g'^{2}$
$C_{W\widetilde{B}}$	$2.4\times 10^{-3}gg'$
$C_{\widetilde{W}}$	$6.4 \times 10^{-2} g^3$

$$\begin{array}{|c|c|c|c|c|} two-loops \\\hline C_{lequ} & 3.8 \times 10^{-2} \, y_e y_t \\ C_{\tau W} & 260 \, y_{\tau} g \\ C_{\tau B} & 380 \, y_{\tau} g' \\ C_{tW} & 6.9 \times 10^{-3} \, y_t g \\ C_{tB} & 1.2 \times 10^{-2} \, y_t g' \\ C_{bW} & 64 \, y_b g \\ C_{bB} & 47 \, y_b g' \\ C_{le\bar{d}\bar{q}} & 10 \, y_e y_t (y_t/y_b) \\ C_{le\bar{e}'\bar{l}'} & 0.63 \, y_e y_t (y_t/y_{\tau}) \\ \end{array}$$

two-loops finite
$$C_{y_e}$$
 $14 y_e \lambda_h$ C_{y_t} $14 y_t \lambda_h$ C_{y_b} $2.9 \times 10^3 y_b \lambda_h$ $C_{y_{\tau}}$ $3.1 \times 10^4 y_{\tau} \lambda_h$

Leptoquarks

EDM sets strong constraints to leptoquarks that couple to both left and right leptons

$$\begin{aligned} & (\mathbf{3}, \mathbf{2}, \mathbf{7/6}) \\ \mathcal{L} &= -y_2^{RL} \overline{t}_R R^a \varepsilon^{ab} L_{L_1}^b + y_2^{LR} \overline{e}_R R^{a*} Q_{L_3}^a + \text{h.c.}, \\ \mathcal{L}_{eff}^{R_2} &= \frac{y_2^{LR*} y_2^{RL*}}{m_{R_2}^2} \mathcal{O}_{luqe} \\ & (\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1/3}) \\ \mathcal{L} &= y_1^{LL} \overline{Q}_{L_3}^{Ca} S_1 \varepsilon^{ab} L_{L_1}^b + y_1^{RR} \overline{t}_R S_1 e_R + \text{h.c.} \\ \mathcal{L}_{eff}^{S_1} &= \frac{y_1^{LL*} y_1^{RR}}{m_{S_1}^2} \left[\mathcal{O}_{luqe} + \mathcal{O}_{lequ}^{(1)} \right] \\ \end{array}$$

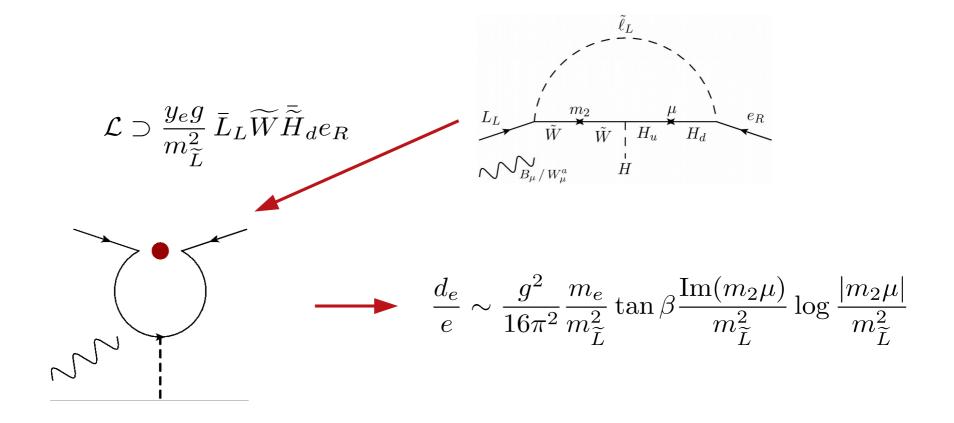
$$(\overline{\mathbf{3}}, \mathbf{2}, \mathbf{5/6}) \\ \mathcal{L} &= x_2^{RL} \overline{b}_R^C \gamma^{\mu} V_{2,\mu}^a \varepsilon^{ab} L_{L_1}^b + x_2^{LR} \overline{Q}_{L_3}^{Ca} \gamma^{\mu} \varepsilon^{ab} V_{2,\mu}^b e_R \\ m_{V_2} &\gtrsim 5.5 \,\text{TeV} \, \sqrt{\frac{\text{Im}(x_2^{LR} x_2^{RL*})}{y_e y_b}} \\ \end{aligned}$$

$$(\overline{\mathbf{3}}, \mathbf{2}, \mathbf{5/6}) \\ m_{V_2} &\gtrsim 5.5 \,\text{TeV} \, \sqrt{\frac{\text{Im}(x_2^{LR} x_2^{RL*})}{y_e y_b}} \\ \end{aligned}$$

Supersymmetry: 1 loop + tree

One loop EDMs are very important in SUSY.

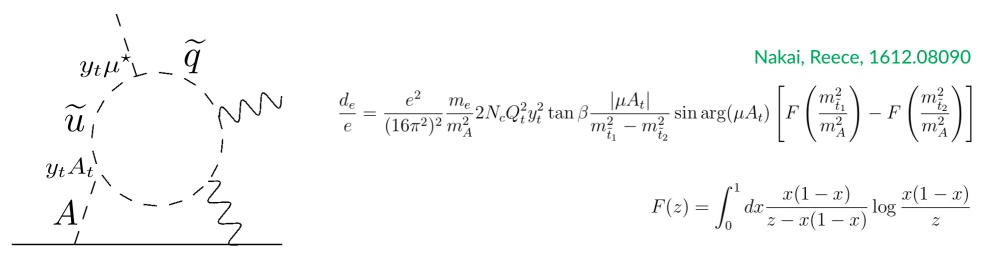
Exact expressions are very complicated, but now we know superpartners are heavy.



$$m_{\tilde{L}_L} \gtrsim 25\,(50) \text{ TeV} \quad \text{for } m_{\tilde{L}_L} = M_2 = \mu \ (m_{\tilde{L}_L} \gg \mu = M_2)$$

Supersymmetry: 2 loop + tree

At two loops, a Barr-Zee diagram gives sensitivity to stops.



Also understood via RGE of AFF to dipole. After integrating out the stops,

 $\mathcal{L} \sim y_u^2 (H_u H_d A_u \mu^* + H_u^* H_d^* A_u^* \mu) F_{\mu\nu} F_{\mu\nu} \sim y_u^2 (s_\beta v_u + c_\beta v_d) \mathrm{Im}(A_u \mu^*) A^0 F_{\mu\nu} F_{\mu\nu}$

$$\frac{d_e}{e} \sim \frac{e}{16\pi^2} \frac{4}{9} \frac{m_e}{m_A^2} \tan\beta \frac{|\mu A_t|}{m_{\tilde{t}}^2} \sin\arg(\mu A_t) \log\frac{m_{\tilde{t}}^2}{m_A^2}$$

 $\blacktriangleright \quad m_{\tilde{t}} > 5 \text{TeV for } \tan \beta \sim \sin \arg A_t \mu \sim 1, m_A \sim \mu \sim A_t \sim 1 \text{TeV}$

Supersymmetry: 1 loop + 1loop, HHFF

Since the decoupling 1/scalars^4, EDM via HHFF relevant in split SUSY

$$\begin{split} C_{W\widetilde{W}} &= C_{loop} \, \frac{-8 + 27\rho - 24\rho^2 + 5\rho^3 + 6\rho^2 \ln\rho}{16(\rho - 1)^3} \,, \\ C_{B\widetilde{B}} &= t_{\theta_W}^2 C_{loop} \, \frac{\rho(11 - 16\rho + 5\rho^2 - 2(\rho - 4)\ln\rho)}{16(\rho - 1)^3} \,, \\ C_{W\widetilde{B}} &= t_{\theta_W} C_{loop} \, \frac{\rho(7 - 8\rho + \rho^2 + 2(\rho + 2)\ln\rho)}{8(\rho - 1)^3} \,, \end{split}$$

$$\begin{array}{c}
H \\ & \tilde{H}_{u} \\
 & \tilde{H}_{u} \\
 & \tilde{H}_{d} \\
 & \tilde{$$

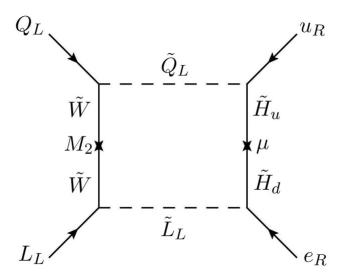
$$C_{loop} \equiv \frac{g^4 \sin 2\beta \sin \varphi}{16\pi^2 |M_2\mu|} , \quad \varphi = \operatorname{Arg}[m_{12}^2 \mu^* M_2^*] \qquad \rho \equiv |M_2/\mu|^2$$

For tan beta ~ CP phases ~ O(1)

$$\sqrt{|M_2\mu|} \gtrsim 4 \,\mathrm{TeV}$$

Supersymmetry: 1 loop + 1loop, luqe

Contribution to luge via squark-gauginos loop



$$\operatorname{Im} C_{luqe} = -y_e y_u \frac{3g^2 \operatorname{Im}[\mu M_2]}{16\pi^2 \sin 2\beta} F(m_i^2) \quad \text{with} \quad F(m_i^2) = -\sum_i \frac{m_i^2 \ln m_i^2}{\prod_{i \neq j} (m_i^2 - m_j^2)}$$

For degenerate superpartner masses,

 $m_i \gtrsim 7.5 \,\mathrm{TeV}$

EDM sets very strong constraints to naive anarchic compositeness for leptons

There are ways to avoid this, e.g. by O(2) symmetries or mass generation by bilinears

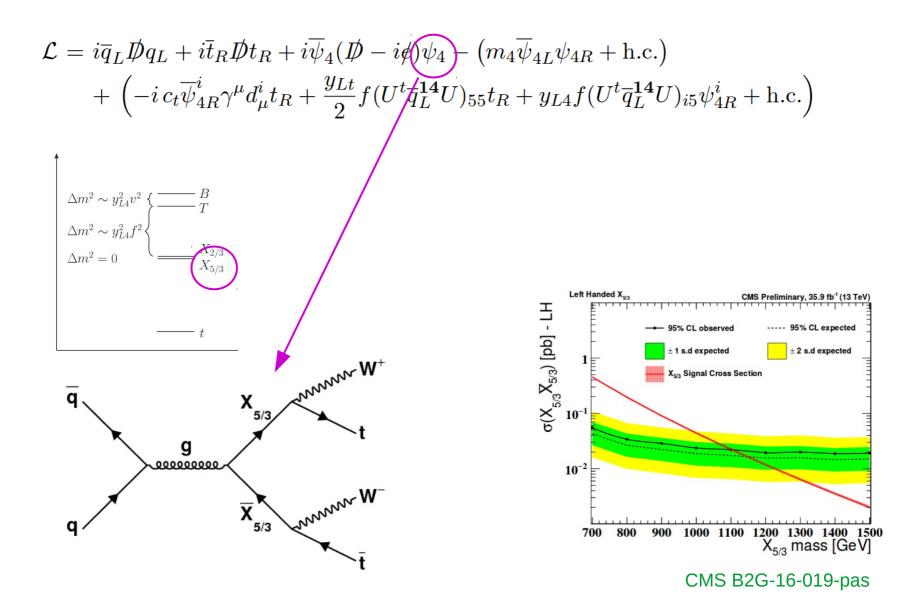
Panico, Pomarol, 1603.06609

Decoupling scale Λ_u Λ_u Λ_d Λ_d Ω_{u_R} $\Omega_{d_R}, \mathcal{O}_{Q_{L1}}$ Λ_s Ω_{s_R} Λ_c Λ_b $\Omega_{c_R}, \mathcal{O}_{Q_{L2}}$ Λ_b $\Omega_{t_R}, \mathcal{O}_{Q_{L2}}$ Λ_b $\Omega_{t_R}, \mathcal{O}_{Q_{L3}}$ $\mathcal{L}_{bil} = \frac{1}{\Lambda_i^{d_H-1}} (\epsilon_i f_i) \mathcal{O}_H (\epsilon_j f_j)$ $\mathcal{L}_{bil} = \frac{1}{\Lambda_i^{d_H-1}} (\epsilon_j f_j) \mathcal{O}_H (\epsilon_j f_j)$ $\mathcal{L}_{bil} = \frac{1}{\Lambda_i^{d_H-1}} (\epsilon_j f_j) \mathcal{O}_H (\epsilon_j f_j)$ \mathcal{L}_{bi

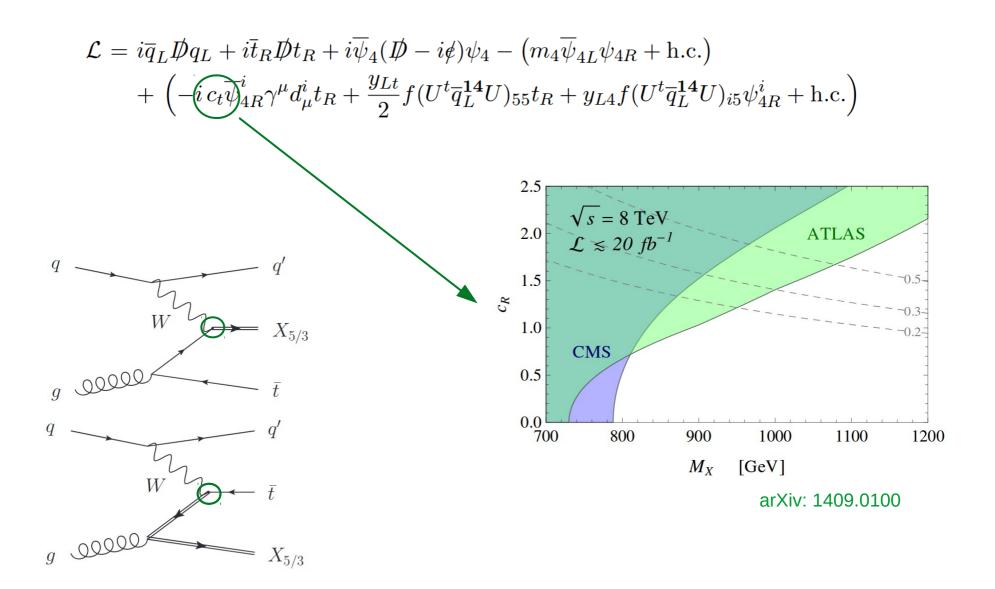
We assume that somehow this is solved.

We focus on the EDM generated by top partners

Take SO(5)/SO(4):



Take SO(5)/SO(4):



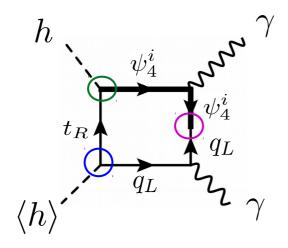
Take SO(5)/SO(4):

e

$$\mathcal{L} = i\overline{q}_{L} \not D q_{L} + i\overline{t}_{R} \not D t_{R} + i\overline{\psi}_{4} (\not D - i\phi)\psi_{4} - (m_{4}\overline{\psi}_{4L}\psi_{4R} + \text{h.c.}) + \left(-ic_{t}\overline{\psi}_{4R}^{i}\gamma^{\mu}d_{\mu}^{i}t_{R} + \frac{y_{Lt}}{2}f(U^{t}\overline{q}_{L}^{14}U)_{55}t_{R} + y_{L4}f(U^{t}\overline{q}_{L}^{14}U)_{i5}\psi_{4R}^{i} + \text{h.c.}) - ic_{t}\overline{\psi}_{4R}^{i}\gamma^{\mu}d_{\mu}^{i}t_{R} + \text{h.c.} \supset i\frac{c_{t}}{f}\partial_{\mu}h\left(\overline{\hat{X}}_{2/3R}\gamma^{\mu}t_{R} - \overline{\hat{T}}_{R}\gamma^{\mu}t_{R}\right) + \text{h.c.}$$

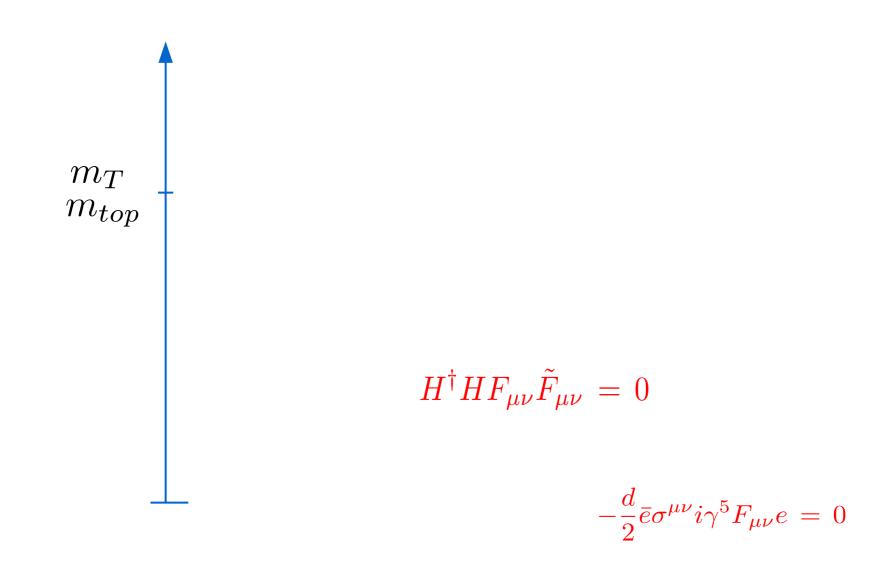
$$\int \gamma de e = -\frac{e^{2}}{48\pi^{4}}\frac{y_{e}}{\sqrt{2}}\text{Im} c_{t}\frac{2y_{L4}}{\sqrt{m_{4}^{2} + y_{L4}^{2}f^{2}}}\frac{m_{top}}{m_{T}}\log\frac{m_{T}^{2}}{m_{top}^{2}}$$

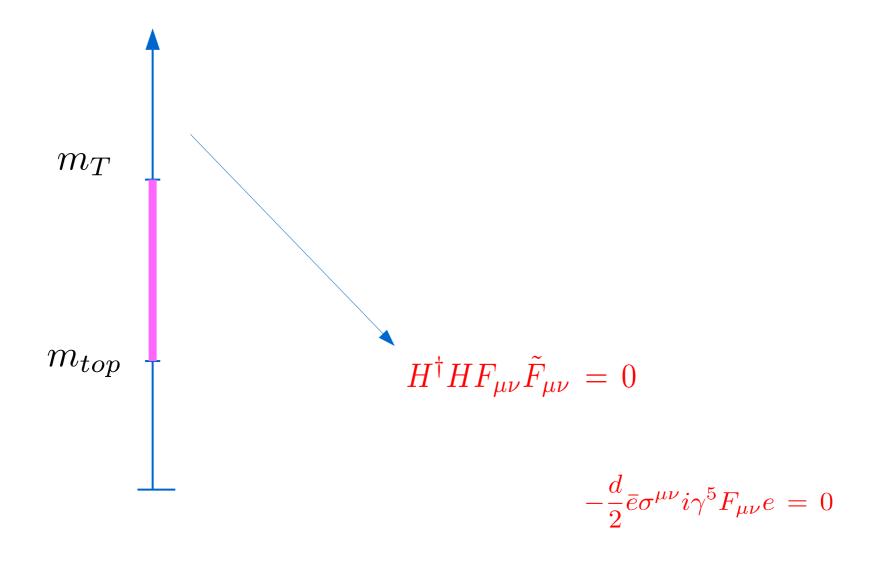
$$\mathcal{L} = i\overline{q}_L \not{D} q_L + i\overline{t}_R \not{D} t_R + i\overline{\psi}_4 (\not{D} - i\not{e})\psi_4 - \left(m_4 \overline{\psi}_{4L} \psi_{4R} + \text{h.c.}\right) \\ + \left(-ic_t \overline{\psi}_{4R}^i \gamma^\mu d^i_\mu t_R + \underbrace{\cancel{\mathcal{Y}}_{Lt}}_2 f(U^t \overline{q}_L^{\mathbf{14}} U)_{55} t_R + \underbrace{y_{L4}}_4 f(U^t \overline{q}_L^{\mathbf{14}} U)_{i5} \psi^i_{4R} + \text{h.c.}\right)$$

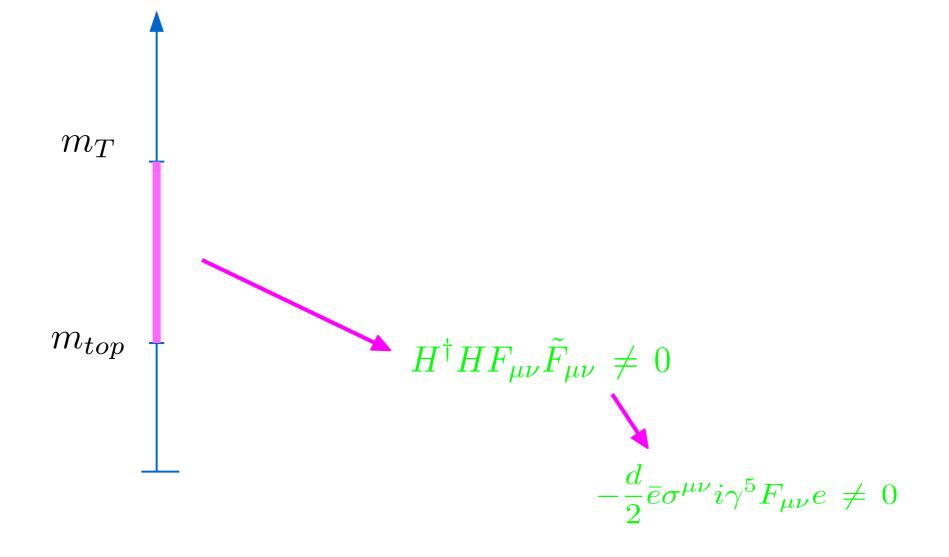


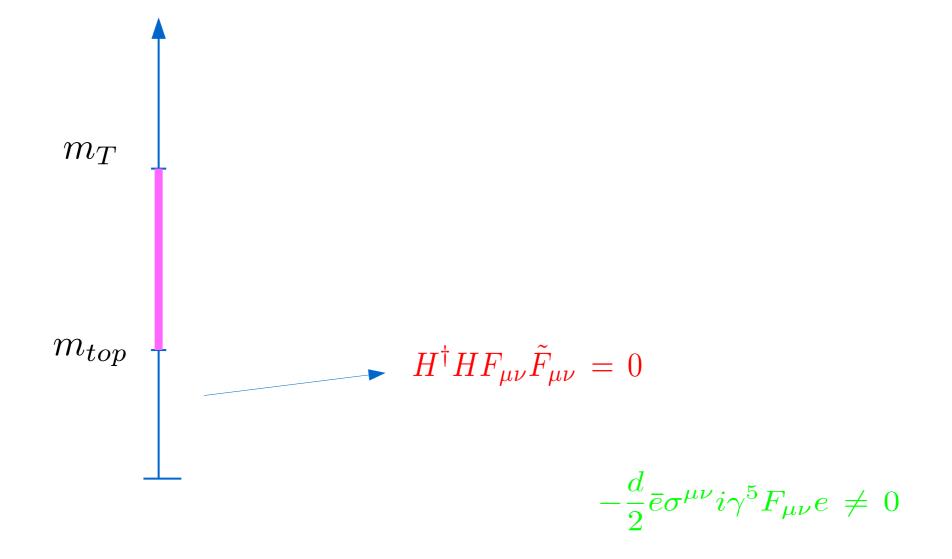
CPV controled by $c_t y_{Lt}^* y_{L4}$

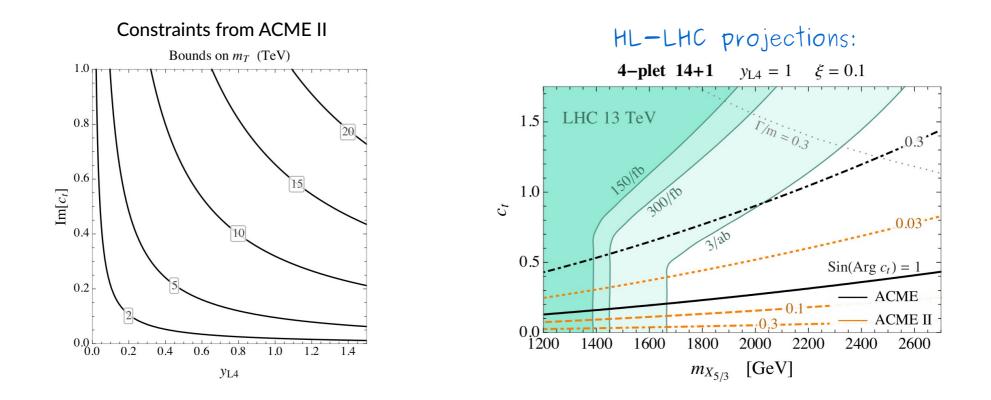
For complete, degenerate multiplets the diagram is proportional to $tr c_t \sim tr T^a \sim 0$







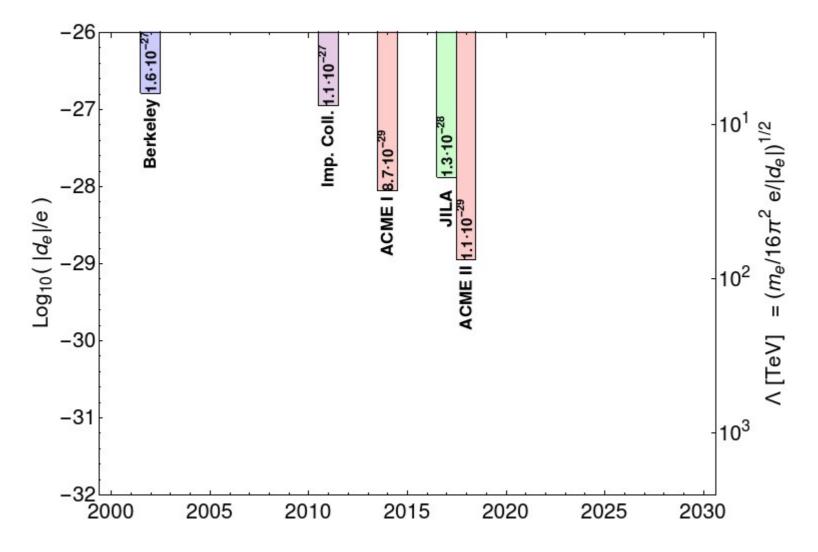




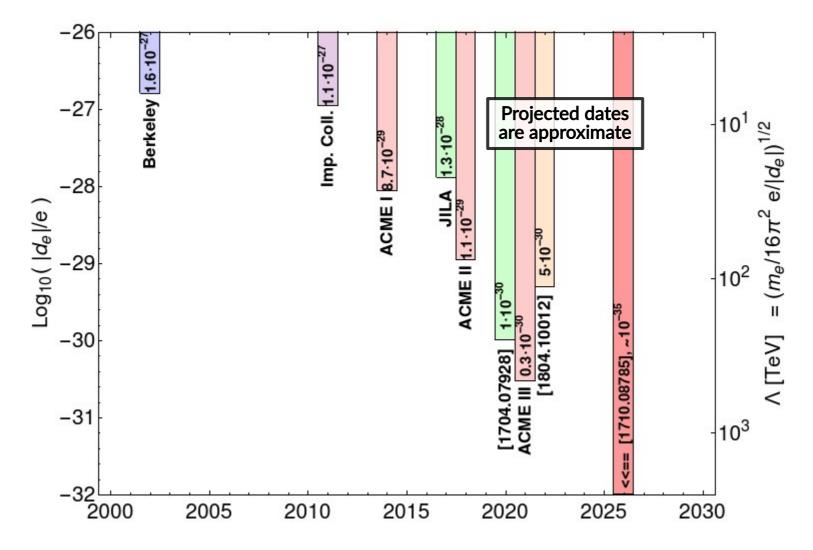
Im(ct) has to be of order 0.01 if we want to be within LHC reach

The future of the electron EDM

Evolution of electron EDM constraints



Evolution of electron EDM constraints



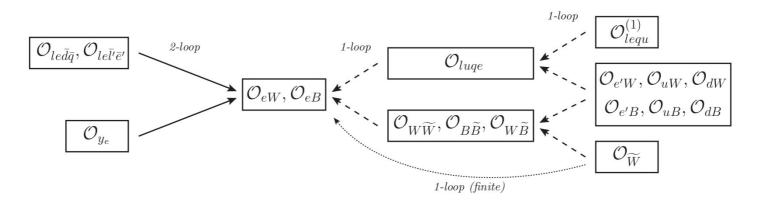
- After some time of promises of improvements with nothing happening, it seems that there will be further progress in a short time scale. - If there is a positive signal, we'll have confirmation very quickly.

- There are some proposals for a total breakthrough.

Conclusions

Conclusions

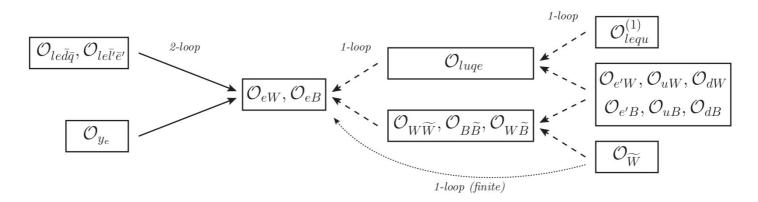
- Map of the most relevant effects at two loops:



- CPV in Higgs sector pushed way outside any current or future collider reach
- Bounds of 1-100TeV for generic theories of leptoquarks
- Characterization of relevant constraints for the MSSM
- In composite models, CPV from top sector important. Top partners pushed outside LHC range, unless they have CP preserving couplings
- Unless there is a reason why, contrary to SM, BSM sector respects CP, ACME result makes these theories much less natural

Conclusions

- Map of the most relevant effects at two loops:



- CPV in Higgs sector pushed way outside any current or future collider reach
- Bounds of 1-100TeV for generic theories of leptoquarks
- Characterization of relevant constraints for the MSSM
- In composite models, CPV from top sector important. Top partners pushed outside LHC range, unless they have CP preserving couplings
- Unless there is a reason why, contrary to SM, BSM sector respects CP, ACME result makes these theories much less natural

Thanks!