EFT approach for the electron EDM at two loops

Marc Riembau Université de Genève

NPKI, May 2019

Based on 1810.09413, with Giuliano Panico and Alex Pomarol

$$
H = -\mu \vec{B} \cdot \frac{\vec{S}}{S} - d\vec{E} \cdot \frac{\vec{S}}{S}
$$
\n
$$
\downarrow \text{relativistic limit}
$$
\n
$$
\mathcal{L}_{dipole} = -\frac{\mu}{2} \bar{\Psi} \sigma^{\mu \nu} F_{\mu \nu} \Psi - \frac{d}{2} \bar{\Psi} \sigma^{\mu \nu} i \gamma^5 F_{\mu \nu} \Psi
$$
\n
$$
S \text{M}
$$
\n
$$
\mathcal{L} \supset \frac{c_W^e}{\Lambda^2} y_e g \bar{\ell}_L \sigma_{\mu \nu} e_R \sigma^a H W^a_{\mu \nu} + \frac{c_B^e}{\Lambda^2} y_e g' \bar{\ell}_L \sigma_{\mu \nu} e_R H B_{\mu \nu} + h.c.
$$
\n
$$
d_e(\mu) = \frac{\sqrt{2}v}{\Lambda^2} \text{Im} \left[s_{\theta_W} C_{eW}(\mu) - c_{\theta_W} C_{eB}(\mu) \right]
$$

$$
H = -\mu \vec{B} \cdot \frac{\vec{S}}{S} - d \vec{E} \cdot \frac{\vec{S}}{S}
$$
\nrelativeistic limit\n
$$
\mathcal{L}_{dipole} = -\frac{\mu}{2} \bar{\Psi} \sigma^{\mu \nu} F_{\mu \nu} \Psi - \frac{d}{2} \bar{\Psi} \sigma^{\mu \nu} i \gamma^5 F_{\mu \nu} \Psi
$$
\n
$$
\downarrow \qquad \text{SM}
$$
\n
$$
\mathcal{L} \supset \frac{c_{W}^{e}}{\Lambda^{2}} y_{e} g \bar{\ell}_{L} \sigma_{\mu \nu} e_{R} \sigma^{a} H W_{\mu \nu}^{a} + \frac{c_{B}^{e}}{\Lambda^{2}} y_{e} g' \bar{\ell}_{L} \sigma_{\mu \nu} e_{R} H B_{\mu \nu} + h.c.
$$
\n
$$
d_{e}(\mu) = \frac{\sqrt{2} v}{\Lambda^{2}} \text{Im} \left[s_{\theta_{W}} C_{eW}(\mu) - c_{\theta_{W}} C_{eB}(\mu) \right]
$$
\n
$$
\geq
$$

$$
\begin{array}{c}\n\text{SM prediction:} \\
\begin{array}{c}\n2 \\
1 \\
3\n\end{array}\n\end{array}
$$
\n
$$
\begin{array}{c}\n2 \\
2 \\
3\n\end{array}\n\end{array}
$$
\n
$$
\begin{array}{c}\n2 \\
2 \\
3\n\end{array}\n\end{array}
$$
\n
$$
\begin{array}{c}\n2 \\
2 \\
3\n\end{array}\n\end{array}
$$
\ne

$$
\rightarrow d_e/e \sim 10^{-40} \text{ cm}
$$

SM contribution is ridiculously small, EDM is a clear sign of New Phisics

Larger Higgs-Boson-Exchange Terms in the Neutron Electric Dipole Moment

Steven Weinberg

Theory Group, Department of Physics, University of Texas, Austin, Texas 78712 (Received 25 August 1989)

The neutron electric dipole moment (d_n) due to Higgs-boson exchange is reconsidered, now without assuming that Higgs-boson exchange is solely responsible for $K_1^0 \rightarrow 2\pi$. The dominant contribution to d_n arises from a three-gluon operator, produced in integrating out top quarks and neutral Higgs bosons. The estimated result together with current experimental bounds on d_n show, even for the largest plausible Higgs-boson masses, that CP is not maximally violated in neutral-Higgs-boson exchange.

> This is very large compared with other contributions. and potentially in conflict with the experimental results for d_n , $(-14 \pm 6) \times 10^{-26}$ e cm from Leningrad²⁰ and $(-3\pm 5) \times 10^{-26}$ e cm from Grenoble.²¹ We do not know m_H or m_t , but the experimental lower bound on m_t is rapidly increasing, and it is hard to imagine that m_H could be larger than $10m_t$. This gives ¹⁵ $h > 0.015$. The experimental bound²¹ $|d_n| < 1.2 \times 10^{-25}$ e cm thus requires that $|\text{Im}Z_2| < 8 \times 10^{-5}$. Our conclusion is that CP is not maximally violated in the neutral Higgs sector.¹⁴ The only way that I can see for this to be natural is for the Higgs sector to be very simple: no more than two doublets, and with two doublets, no mixing with any scalar singlets.

Evolution of electron EDM constraints

Translation of ACME constraints to particle physics:

$$
\frac{d_e}{e} \sim \frac{1}{(16\pi^2)^2} \frac{m_e}{\Lambda^2} \qquad \to \Lambda > 3 \,\text{TeV}
$$

Relevant constraints even at two loops.

We want to characterize all effects that enter with

This is the key to help organize the contributions

$$
\frac{d}{d\ln\mu}\text{Im}\left(\frac{C_{eB}}{C_{eW}}\right) = -\frac{y_{e}g}{16\pi^2} \left(\frac{0}{1} - \frac{2t_{\theta_W}(Y_L + Y_e)}{0} - \frac{\frac{3}{2}}{t_{\theta_W}(Y_L + Y_e)} \right) \left(\frac{C_{W\widetilde{W}}}{C_{B\widetilde{B}}} \right)
$$
\nIt is useful to write the parameters
\nin a more physical way\n
$$
\frac{v h}{\Lambda^2} \left(\tilde{\kappa}_{\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu} + 2\tilde{\kappa}_{\gamma Z} F_{\mu\nu} \tilde{Z}^{\mu\nu} \right) + ie \delta \tilde{\kappa}_{\gamma} W^+_{\mu} W^-_{\nu} \tilde{F}^{\mu\nu}
$$
\n
$$
\frac{d}{d\ln\mu} d_e(\mu) = \frac{e}{8\pi^2} \frac{m_e}{\Lambda^2} \left[4Q_e \tilde{\kappa}_{\gamma\gamma} - \frac{4}{s_{2\theta_W}} \left(\frac{1}{2} + 2Q_e s_{\theta_W}^2 \right) \tilde{\kappa}_{\gamma Z} + \frac{\Lambda^2}{v^2} \delta \tilde{\kappa}_{\gamma} \right] \overline{L}_L
$$
\n
$$
P_R
$$

Due to approximate accidental cancellation, 1/2+2 Qe sin^2 ~ 0.04, Z boson contribution negligible.

$$
O_{lequ}^{(1)} = (L_{LeR})(Q_{L^{u}R})
$$
 enters through $O_{luge} = (L_{L^{u}R})(Q_{L^{e}R})$
only a-fermion that renormalizes it

This one is interesting, since a two loop, log^2 contribution competes with the single loop, no log contribution

which is $O(1)$ for $\Lambda \sim 5$ TeV

Accidental cancellation makes it smaller and only hypercharge contributes to EDM

$$
\frac{d}{d\ln\mu}\text{Im}\left(\frac{C_{eB}}{C_{eW}}\right) = \frac{y_d g^3}{(16\pi^2)^2} \frac{N_c}{4} \left(\frac{3t_{\theta_W} Y_Q + 4t_{\theta_W}^3 (Y_L + Y_e)(Y_Q^2 + Y_d^2)}{\frac{1}{2} + 2t_{\theta_W}^2 (Y_L + Y_e)Y_Q}\right) C_{le\bar{d}\bar{q}} \hspace{2cm} H \sim \text{Var}(Y_L + Y_e) \left(\frac{C_{eB}}{C_{eW}}\right)
$$
\n
$$
\frac{d}{d\ln\mu}\text{Im}\left(\frac{C_{eB}}{C_{eW}}\right) = \frac{y_{e'} g^3}{(16\pi^2)^2} \frac{1}{4} \left(\frac{3t_{\theta_W} Y_L + 4t_{\theta_W}^3 (Y_L + Y_e)(Y_L^2 + Y_e^2)}{\frac{1}{2} + 2t_{\theta_W}^2 (Y_L + Y_e)Y_L}\right) C_{le\bar{e}'\bar{l}'}.
$$
\n
$$
L_L
$$

The other 4-fermions enter only at 2 loops, single log Again, a cancellation for ledq: $\sim g^2 \rightarrow \frac{g'^2}{8}$

14

Impact on BSM

Impact on BSM

Fix $\Lambda = 10$ TeV.

two-loops
\n
$$
\begin{array}{|c|c|}\n&\text{two-loops} \\
\hline\nC_{tequ} & 3.8 \times 10^{-2} y_e y_t \\
C_{\tau W} & 260 y_{\tau} g \\
C_{tW} & 380 y_{\tau} g' \\
C_{tW} & 6.9 \times 10^{-3} y_t g \\
C_{bW} & 64 y_b g \\
C_{bB} & 47 y_b g' \\
C_{le\bar{d}\bar{q}} & 10 y_e y_t (y_t/y_b) \\
C_{le\bar{e}'} \bar{v} & 0.63 y_e y_t (y_t/y_{\tau})\n\end{array}
$$

 $two\mbox{-}loops$ finite C_{y_e} $14\,y_e \lambda_h$ $\begin{array}{|c|c|} \hline \begin{array}{c} \textbf{C}_{y_e} \ \hline \begin{array}{c} C_{y_h} \ \end{array} & \textbf{14}\,y_t \lambda_h \ \hline \begin{array}{c} C_{y_b} \ \end{array} & \textbf{2.9}\times\textbf{10}^3\,y_b \lambda_h \ \hline \begin{array}{c} C_{y_\tau} \ \end{array} & \textbf{3.1}\times\textbf{10}^4\,y_\tau \lambda_h \ \hline \end{array}$

Leptoquarks

 $\mathcal{L}% _{G}$

EDM sets strong constraints to leptoquarks that couple to both left and right leptons

$$
(3, 2, 7/6)
$$
\n
$$
\mathcal{L} = -y_2^{RL} \bar{t}_R R^a \varepsilon^{ab} L_{L_1}^b + y_2^{LR} \bar{e}_R R^{a*} Q_{L_3}^a + \text{h.c.},
$$
\n
$$
\mathcal{L}_{\text{eff}}^R = \frac{y_2^{LR} y_2^{RL}}{m_{R_2}^2} O_{\text{luqe}}
$$
\n
$$
(3, 1, 1/3)
$$
\n
$$
\mathcal{L} = y_1^{LL} \overline{Q}_{L_3}^{Ca} S_1 \varepsilon^{ab} L_{L_1}^b + y_1^{RR} \bar{t}_R S_1 \varepsilon_R + \text{h.c.}
$$
\n
$$
\mathcal{L}_{\text{eff}}^S = \frac{y_1^{LL} y_1^{RR}}{m_{S_1}^2} \left[O_{\text{luqe}} + O_{\text{lequ}}^{(1)} \right]
$$
\n
$$
(3, 1, 2/3)
$$
\n
$$
\mathcal{L} = x_2^{RL} \overline{b}_R^C \gamma^{\mu} V_{2,\mu}^a \varepsilon^{ab} L_{L_1}^b + x_2^{LR} \overline{Q}_{L_3}^{Ca} \gamma^{\mu} \varepsilon^{ab} V_{2,\mu}^b \varepsilon_R \qquad \mathcal{L} = x_1^{LL} \overline{Q}_{L_3}^a \gamma^{\mu} U_{1,\mu} L_{L_1}^a + x_1^{RR} \overline{b}_R \gamma^{\mu} U_{1,\mu} \varepsilon_R
$$
\n
$$
m_{V_2} \gtrsim 5.5 \text{ TeV } \sqrt{\frac{\text{Im}(x_2^{LR} x_2^{RL})}{y_e y_b}} \qquad m_{V_1} \gtrsim 2.5 \text{ TeV } \sqrt{\frac{\text{Im}(x_2^{RR} x_2^{LL})}{y_e y_b}}
$$

Supersymmetry: 1 loop + tree

One loop EDMs are very important in SUSY.

Exact expressions are very complicated, but now we know superpartners are heavy.

$$
m_{\tilde{L}_L} \gtrsim 25\,(50)~{\rm TeV}~~{\rm for}~ m_{\tilde{L}_L} = M_2 = \mu~(m_{\tilde{L}_L} \gg \mu = M_2)
$$

Supersymmetry: 2 loop + tree

At two loops, a Barr-Zee diagram gives sensitivity to stops.

Also understood via RGE of AFF to dipole. After integrating out the stops,

 $\mathcal{L} \sim y_u^2 (H_u H_d A_u \mu^{\star} + H_u^{\star} H_d^{\star} A_u^{\star} \mu) F_{\mu\nu} F_{\mu\nu} \sim y_u^2 (s_{\beta} v_u + c_{\beta} v_d) \text{Im}(A_u \mu^{\star}) A^0 F_{\mu\nu} F_{\mu\nu}$

$$
\frac{d_e}{e} \sim \frac{e}{16\pi^2} \frac{4}{9} \frac{m_e}{m_A^2} \tan\beta \frac{|\mu A_t|}{m_{\tilde{t}}^2} \sin\arg(\mu A_t) \log\frac{m_{\tilde{t}}^2}{m_A^2}
$$

 $m_{\tilde{t}} > 5 \text{TeV}$ for $\tan \beta \sim \sin \arg A_t \mu \sim 1, m_A \sim \mu \sim A_t \sim 1 \text{TeV}$

Supersymmetry: 1 loop + 1loop, HHFF

Since the decoupling 1/scalars^4, EDM via HHFF relevant in Split SUSY

$$
C_{W\widetilde{W}} = C_{loop} \frac{-8 + 27\rho - 24\rho^2 + 5\rho^3 + 6\rho^2 \ln \rho}{16(\rho - 1)^3} ,
$$

\n
$$
C_{B\widetilde{B}} = t_{\theta_W}^2 C_{loop} \frac{\rho(11 - 16\rho + 5\rho^2 - 2(\rho - 4)\ln \rho)}{16(\rho - 1)^3} ,
$$

\n
$$
C_{W\widetilde{B}} = t_{\theta_W} C_{loop} \frac{\rho(7 - 8\rho + \rho^2 + 2(\rho + 2)\ln \rho)}{8(\rho - 1)^3} ,
$$

$$
C_{loop} \equiv \frac{g^4 \sin 2\beta \sin \varphi}{16\pi^2 |M_2\mu|} \ , \quad \varphi = \text{Arg}[m_{12}^2 \mu^* M_2^*] \qquad \qquad \rho \equiv |M_2/\mu|^2
$$

For tan beta \sim CP phases \sim O(1)

$$
\sqrt{|M_2\mu|}\gtrsim 4\,\text{TeV}
$$

Supersymmetry: 1 loop + 1loop, luqe

Contribution to luqe via squark-gauginos loop

$$
\mathrm{Im}\, C_{luqe} = -y_e y_u \frac{3 g^2 \, \mathrm{Im}[\mu M_2]}{16 \pi^2 \sin 2 \beta} F(m_i^2) \qquad \text{with} \qquad \quad F(m_i^2) = - \sum_i \frac{m_i^2 \ln m_i^2}{\Pi_{i \neq j} (m_i^2 - m_j^2)}
$$

For degenerate superpartner masses,

 $m_i \gtrsim 7.5 \,\textrm{TeV}$

EDM sets very strong constraints to naive anarchic compositeness for leptons

$$
\frac{d_e}{e} \sim \frac{1}{8\pi^2} \frac{m_e}{f^2} \qquad \qquad \longrightarrow \qquad f \gtrsim 107 \text{ TeV}
$$

There are ways to avoid this, e.g. by $O(2)$ symmetries or mass generation by bilinears

Panico, Pomarol, 1603.06609

Decoupling scale 1 Operator $\mathcal{L}_{\text{lin}} = \epsilon_{f_i} \, \bar{f}_i \, \mathcal{O}_{f_i}$ Δ_u
 Δ_d
 Δ_d
 Δ_s
 Δ_s
 Δ_s
 Δ_s
 Δ_{ν}
 $\$

somehow this is solved.

We focus on the EDM generated by **top partners**

Take SO(5)/SO(4):

Take SO(5)/SO(4):

Take SO(5)/SO(4):

$$
\mathcal{L} = i \overline{q}_L \mathcal{D} q_L + i \overline{t}_R \mathcal{D} t_R + i \overline{\psi}_4 (\mathcal{D} - i \phi) \psi_4 - (m_4 \overline{\psi}_{4L} \psi_{4R} + \text{h.c.})
$$
\n
$$
+ \left(-\overline{(c_t \psi_{4R}^i \gamma^\mu d_\mu^i t_R + \frac{y_{Lt}}{2} f(U^t \overline{q}_L^{14} U)_{55} t_R + y_{L4} f(U^t \overline{q}_L^{14} U)_{i5} \psi_{4R}^i + \text{h.c.} \right)
$$
\n
$$
-i c_t \overline{\psi}_{4R}^i \gamma^\mu d_\mu^i t_R + \text{h.c.} \supset i \frac{c_t}{f} \partial_\mu h \left(\overline{\hat{X}}_{2/3R} \gamma^\mu t_R - \overline{\hat{T}}_R \gamma^\mu t_R \right) + \text{h.c.}
$$
\n
$$
\sum_{\ell} \gamma
$$
\n
$$
\sum_{\ell} \gamma
$$
\n
$$
\frac{d_e}{e} = -\frac{e^2}{48\pi^4} \frac{y_e}{\sqrt{2}} \text{Im } c_t \frac{2y_{L4}}{\sqrt{m_4^2 + y_{L4}^2 f^2}} \frac{m_{top}}{m_T} \log \frac{m_T^2}{m_{top}^2}
$$
\n
$$
\frac{e}{\sqrt{m_4^2 + y_{L4}^2 f^2}} \frac{m_{top}}{m_T} \log \frac{m_{top}^2}{m_{top}^2}
$$

$$
\mathcal{L} = i\overline{q}_L \mathcal{D}q_L + i\overline{t}_R \mathcal{D}t_R + i\overline{\psi}_4(\mathcal{D} - i\phi)\psi_4 - (m_4\overline{\psi}_{4L}\psi_{4R} + \text{h.c.})
$$

+
$$
\left(-\overline{\psi}_4\overline{\psi}_4^i_R\gamma^\mu d^i_\mu t_R + \overline{\psi}_2\overline{\psi}_1(U^t\overline{q}_L^{14}U)_{55}t_R + \overline{\psi}_4\overline{\psi}_1(U^t\overline{q}_L^{14}U)_{i5}\psi_{4R}^i + \text{h.c.}\right)
$$

CPV controled by $c_t y_{Lt}^* y_{L4}$

For complete, degenerate multiplets the diagram is proportional to $tr c_t \sim tr T^a \sim 0$

Im(ct) has to be of order 0.01 if we want to be within LHC reach

The future of the electron EDM

Evolution of electron EDM constraints

Evolution of electron EDM constraints

- After some time of promises of improvements with nothing happening, it seems that there will be further progress in a short time scale.

- If there is a positive signal, we'll have confirmation very quickly.

- There are some proposals for a total breakthrough.

Conclusions

Conclusions

- Map of the most relevant effects at two loops:

- CPV in Higgs sector pushed way outside any current or future collider reach
- Bounds of 1-100TeV for generic theories of leptoquarks
- Characterization of relevant constraints for the MSSM
- In composite models, CPV from top sector important. Top partners pushed outside LHC range, unless they have CP preserving couplings
- Unless there is a reason why, contrary to SM, BSM sector respects CP, ACME result makes these theories much less natural

Conclusions

- Map of the most relevant effects at two loops:

- CPV in Higgs sector pushed way outside any current or future collider reach
- Bounds of 1-100TeV for generic theories of leptoquarks
- Characterization of relevant constraints for the MSSM
- In composite models, CPV from top sector important. Top partners pushed outside LHC range, unless they have CP preserving couplings
- Unless there is a reason why, contrary to SM, BSM sector respects CP, ACME result makes these theories much less natural

Thanks!