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The RD/RD* anomalies

R(D) and R(D⇤) — 4� tension with SM

• BaBar, Belle, LHCb: enhanced ⌧ rates, R(D(⇤)) =
�(B ! D(⇤)⌧⌫̄)

�(B ! D(⇤)l⌫̄)
(l = e, µ)

Notation: ` = e, µ, ⌧ and l = e, µ
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Ratio is theoretically clean, probe of lepton flavor universality

JCP (D⇤) = 1�
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The RD/RD* anomalies

Multiple channels, three experiments: consistently high
See T. Kitahara’s talk on Monday for more details



The RD/RD* anomalies

See T. Kitahara’s talk on Monday for more details

Combined significance: 3.1σ (was 3.8σ before Moriond ’19)



Dim 6 effective Hamiltonian for b→cτν transitions:

to their discriminating power, they should be considered a high priority. Our results

highlight the importance of finding experimental strategies for their measurement.

The outline of our paper is as follows. In Sec. 2, we describe those single operators and

simplified models which can explain both RD(⇤) anomalies and survive other experimental

constraints. We also define in detail the two di↵erent scenarios for Belle II measurements

of RD(⇤) described above, and show how these measurements alone can significantly

reduce the set of viable models. In Sec. 3, we define the angular observables (forward-

backward and polarization asymmetries) and calculate their dependence on the Wilson

coe�cients. We further discuss their experimental status and review a recent proposal

[47] with higher projected sensitivity for their measurements at Belle II. Finally, in

Sec. 4, we show which combinations of angular observables can be used to distinguish

the viable models with LH and RH neutrinos. We show that for di↵erent outcomes at

Belle II, we will be able to tell di↵erent types of neutrinos apart, and in almost all cases

can distinguish individual models as well. We conclude in Sec. 5 with a brief summary

and outlook.

Several appendices are included in the end. In App. A we list the leptonic matrix

elements used in our calculation as well as some hadronic functions needed for the

calculation involving RH neutrinos. App. B includes further details on the calculation

of the asymmetries and full analytic formulas for each of them. Finally, in App. C we

point out a linear relationship between di↵erent CP-even observables we study in this

work and explain a numerical scan that we perform over the viable range of Wilson

coe�cients.

2 Simplified Models for RD(⇤)

The set of all possible dimension-6 operators modifying the b ! c⌧⌫ decay rate can be

written as

He↵ =
4GFVcbp

2

0

B@OV

LL
+

X

X=S,V,T
M,N=L,R

CX

MN
OX

MN

1

CA (2.1)

where the pre-factor normalizes the SM Wilson coe�cient to unity, and the four-fermion

e↵ective operators are defined as

OS

MN
⌘ (c̄PMb)(⌧̄PN⌫)

OV

MN
⌘ (c̄�µPMb)(⌧̄ �µPN⌫) (2.2)

OT

MN
⌘ (c̄�µ⌫PMb)(⌧̄�µ⌫PN⌫),
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55 SM Wilson operators:

• Only LH neutrinos

• O
T
RL = 0
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Implications of the anomaly



Implications of the anomaly

Need:

• Light mediator

• Large couplings

• Tree-level

Possibilities: charged Higgs, W’ or leptoquark

b

c ⌧

⌫

⌧/⌫

⌫/⌧b

c

Vcb

m2
W

⇠ 1

⇤2
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Implications of the anomaly

• Charged Higgs: contributes to Bc→τν.  Indirect bounds from 
total width (Br(Bc→τν) ≾ 30%) and LEP search for Bu→τν 
(Br(Bc→τν) ≾ 10%) rule out these explanations of the anomaly.  
(Alonso, Grinstein & Camalich 1611.06676; Akeroyd & Chen 1708.04072)
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• W primes: Strong constraints from Z’→ττ searches rule out 
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Implications of the anomaly

• Charged Higgs: contributes to Bc→τν.  Indirect bounds from 
total width (Br(Bc→τν) ≾ 30%) and LEP search for Bu→τν 
(Br(Bc→τν) ≾ 10%) rule out these explanations of the anomaly.  
(Alonso, Grinstein & Camalich 1611.06676; Akeroyd & Chen 1708.04072)

• W primes: Strong constraints from Z’→ττ searches rule out 
these models (Faroughy et al 1609.07138,   Crivellin et al 1703.09226)

• Leptoquarks: Strong LHC constraints from pair production, DY, 
and mono-tau, but much parameter space remains  
(many people….see e.g. Schmaltz & Zhong 1810.10017; Greljo et al 1811.07920)
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ARE WE SURE THAT THESE ARE SM NEUTRINOS?
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c

⌧

⌫

ARE WE SURE THAT THESE ARE SM NEUTRINOS?

➡ Could be a light, weakly-interacting BSM particle instead?



Allowing for RH neutrinos opens up new avenues for model building and 
phenomenology (Asadi, Buckley & DS 1804.04135, 1810.06597)

b

c

⌧

⌫R

He & Valencia 1211.0348
Dutta et al 1307.6653

Cline 1512.02210
Becirevic et al 1608.08501
Bardhan et al 1610.03038
Dutta & Bhol 1611.00231

Azatov et al 1807.10745
Heeck et al 1808.07492
Carena et al 1809.01107
Iguro et al 1810.05843

Iguro & Omura 1802.01732
Greljo et al 1804.04642

Abdullah et al 1805.01869
Robinson et al 1807.04753



Mediator Operator Combination Viability

Colorless Scalars OS

XL
7 (Br (Bc ! ⌧⌫))

W 0µ (LH fermions) OV

LL
7 (collider bounds)

S1 LQ (3̄, 1, 1/3) (LH fermions) OS

LL
� xOT

LL
, OV

LL
3

Uµ

1 LQ (3, 1, 2/3) (LH fermions) OS

RL
, OV

LL
3

R2 LQ (3, 2, 7/6) OS

LL
+ xOT

LL
3

S3 LQ (3̄, 3, 1/3) OV

LL
7 (b ! s⌫⌫)

Uµ

3 LQ (3, 3, 2/3) OV

LL
7 (b ! s⌫⌫)

V µ

2 LQ (3̄, 2, 5/6) OS

RL
7 (RD(⇤) value)

Colorless Scalars OS

XR
7 (Br (Bc ! ⌧⌫))

W 0µ (RH fermions) OV

RR
3

R̃2 LQ (3, 2, 1/6) OS

RR
+ xOT

RR
7 (b ! s⌫⌫)

S1 LQ (3̄, 1, 1/3) (RH fermions) OV

RR
, OS

RR
� xOT

RR
3

Uµ

1 LQ (3, 1, 2/3) (RH fermions) OS

LR
, OV

RR
3

Table 2: A complete list of the simplified mediator models and resulting e↵ective operators that are

possibly relevant for the RD(⇤) anomalies. The Uµ
1 and S1 LQs as well as the colorless scalars can give

rise to two independent Wilson coe�cients, while the rest of the mediators can generate only one. We

use x = 1/8 in this work, see the text for more details. We indicate in the last column if the model is

still viable (by 3) and if not, what experimental constraint rules it out (see Sec. 2.3 for discussion of

these constraints). The operators in red are severely constrained by the b ! s⌫⌫ constraints as well.

this work we consider these possibilities as separate solutions to the anomalies and will

try to distinguish them from one another.

The factor of x in Tab. 2 relates the Wilson coe�cients of scalar and tensor operators

in some models after Fierz transformation. At the mediator scale, x = 1/4 for all the

models in Tab. 2; as we run down to the GeV scale x changes to ⇠ 1/8 [66–68], with the

exact value depending on the mediator scale. For simplicity, we use the fiducial value

x = 1/8 in our analysis.

In Fig. 3, we show the values of RD and RD⇤ which can be obtained by each of the

relevant mediators in Tab. 2, scanning over complex Wilson coe�cient(s). In these plots

the superscripts L and R on S1 and U1 LQs refer to the neutrino chirality they couple to.

8

Summary of models

(from Asadi, Buckley & DS 1810.06597)



Beyond RD/RD*

Several more observables that are sensitive to NP in b → cτν transitions have 
been measured recently. 

These have the potential to help distinguish between different models and 
motivate new model-building directions.

Today’s talk: 

Recent measurements of FLD* and R(J/psi)



FIG. 4. The measured cos ✓hel distribution in B0 ! D⇤�⌧+⌫⌧ decays (data points with statistical
errors); the fit result is overlaid (red line) with FD⇤

L = 0.60. The yellow band represents the SM
prediction of Ref. [20].

TABLE I. Summary of systematic uncertainties

Source �FD⇤
L

Monte Carlo AR shape and peaking background ±0.032

statistics CB shape ±0.010

Background scale factors ±0.001

Background B ! D⇤⇤`⌫ ±0.003

modeling B ! D⇤⇤⌧⌫ ±0.011

B ! hadrons ±0.005

B ! D̄⇤M ±0.004

Signal modeling Form factors ±0.002

cos ✓hel resolution ±0.003

Acceptance non-uniformity +0.015
�0.005

Total +0.039
�0.037

CONCLUSIONS

We report the first measurement of the D⇤ polarization in semitauonic decay B0 !
D⇤�⌧+⌫⌧ . The result is based on a data sample of 772 ⇥ 106 BB̄ pairs collected with
the Belle detector. The fraction of D⇤� longitudinal polarization, measured assuming SM
dynamics, is found to be FD⇤

L = 0.60 ± 0.08(stat) ± 0.04(syst), and agrees within 1.6 (1.8)
standard deviations with the SM predicted values (FD⇤

L )SM = 0.457±0.010 [21] (0.441±0.006
[20]).

We thank the KEKB group for the excellent operation of the accelerator, the KEK
cryogenics group for the e�cient operation of the solenoid, and the KEK computer group and
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Belle measurement of FLD* 
(1903.03102)

Maximizing The Impact of New Physics in b ! c⌧⌫ Anomalies

Pouya Asadi1 and David Shih1

1
New High Energy Theory Center, Department of Physics and Astronomy,

Rutgers University, Piscataway, NJ 08854, USA

The Belle collaboration has recently released its first measurement of the D⇤ polarization in the
B ! D⇤⌧⌫ decay. The LHCb collaboration has released a measurement of RJ/ as well. Both of
these measurements show an upward fluctuation compared to the Standard Model prediction. It
has, however, been shown that none of the existing minimal models in the literature can explain
these observations. In this work we carry out a model-independent study of the contribution of the
dimension 6 e↵ective operators with left-handed neutrinos relevant for these observables and RD(⇤) .
We will show that there are no combination of these operators that can explain the observed RJ/ 

value within 1� error bar. We will also highlight the necessity of NP with the e↵ective operators
O

V
RL = (c̄�µPRb) (⌧̄ �µPL⌫), O

T
LL = (c̄�µ⌫PLb) (⌧̄�µ⌫PL⌫), and O

V
LL = (c̄�µPLb) (⌧̄ �µPL⌫) in order

to explain the observed FL
D⇤ . This study indicates the need for new model-building directions in

order to explain the observed RJ/ . It also motivates models generating O
V
RL; we devise the first

such model in a companion paper.

I. INTRODUCTION

Hints of new physics (NP) violating the lepton flavor
universality (LFU) have been observed in the charged
current decays [1–7], captured in the ratios

RD =
�(B̄ ! D⌧⌫)

�(B̄ ! D`⌫)
, RD⇤ =

�(B̄ ! D⇤⌧⌫)

�(B̄ ! D⇤`⌫)
, (1)

where ` stands for either electrons or muons. The Stan-
dard Model (SM) prediction for these ratios is [3, 4, 8–15]

RD = 0.299± 0.003, RD⇤ = 0.258± 0.005. (2)

The global average of the observed values is

RD = 0.407± 0.046, RD⇤ = 0.304± 0.015, (3)

showing ⇠ 3.8� discrepancy [14] with the Standard
Model predictions.1

The e↵ective Hamiltonian relevant for these observ-
ables is

He↵ =
4GFVcbp

2

X

X=S,V,T
M,N=L,R

CX
MNOX

MN , (4)

where the only Wilson coe�cient (WC) generated in the
SM is CV

LL = 1, and the four-fermion e↵ective operators
are defined as

OS
MN ⌘ (c̄PMb)(⌧̄PN⌫),

OV
MN ⌘ (c̄�µPMb)(⌧̄ �µPN⌫), (5)

OT
MN ⌘ (c̄�µ⌫PMb)(⌧̄�µ⌫PN⌫),

for M,N = R or L. The two tensor operators OT
RL and

OT
LR are identically zero; thus, the Hamiltonian includes

1
In this work we are not including the prelimenary results from

the most recent Belle analysis on RD(⇤) [16].

5 operators with either types of neutrinos. In this work
we focus on the final state neutrinos being left-handed
(LH) ⌫⌧ . We leave a similar study including the e↵ect of
RH neutrinos for future works.
A similar upward fluctuation has been observed in the

following ratio as well

RJ/ =
�(B̄ ! J/ ⌧⌫)

�(B̄ ! J/ `⌫)
. (6)

Using di↵erent models to calculate the relevant form fac-
tors will give rise to very di↵erent results, see [17] and the
references therein, which amounts to a large uncertainty
in the predictions for this ratio in the SM [17–21]

RJ/ 
SM 2 (0.2, 0.39) , (7)

while the the observed value is [22]

RJ/ = 0.71± 0.17± 0.18. (8)

Here the first (second) uncertainty is due to statistics
(systematics). It has been shown that none of the ex-
isting minimal solutions of RD(⇤) can explain all these
anomalies upto 1� [17, 19, 20]. 2

There is also a host of di↵erent polarization and asym-
metry observables [9, 24–36] that can be measured in
these decays. Recently, Belle has released preliminary
results on the measurement of the D⇤ polarization in the
B ! D⇤⌧⌫ decay [37]

FL
D⇤ = 0.60± 0.08± 0.035, (9)

where

FL
D⇤ =

�(B̄ ! D⇤

L⌧⌫)

�(B̄ ! D⇤

L⌧⌫) + �(B̄ ! D⇤

T ⌧⌫)
. (10)

2
Ref. [23] considers the possibility of RH neutrinos as well and

reports pairs of WCs that are claimed to explain the observed

RJ/ . We were unable to reproduce their results in our calcula-

tions.
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LHCb measurement of R(J/psi)
(1711.05623)

This bound is found to be less than the uncertainty in the  (2S) yield, and thus no
additional uncertainty is assigned. In general, the e↵ect of charmonium states above the
open-charm threshold, which have large total width, are negligible as a result of their small
decay rate to final states containing J/ . The uncertainty due to the small contribution
of semitauonic decays involving �c states is assessed by assuming that the entire yield for
this mode is absorbed in the signal mode, and is summed in quadrature with that from
the  (2S) feed-down mode.

The systematic uncertainty due to the weighting of the simulation distributions of
event parameters (the track multiplicity and the separation significances of the J/ and of
the unpaired muon) is determined by varying the criteria for the definition of the subset
of the data sample enriched in the normalization mode used in the weighting procedure,
and employing alternative methods to account for the misidentified muon candidates in
the sample. The uncertainty in the e�ciency ratio measured in simulation is propagated
to R(J/ ), and is dominated by the statistical uncertainty of the simulation sample.

In summary, the decay B
+
c ! J/ ⌧

+
⌫⌧ is studied using data corresponding to 3 fb�1

recorded with the LHCb detector during 2011 and 2012, leading to the first measurement
of the ratio of branching fractions

R(J/ ) =
B(B+

c ! J/ ⌧
+
⌫⌧ )

B(B+
c ! J/ µ+⌫µ)

= 0.71± 0.17 (stat) ± 0.18 (syst). (3)

This result lies within 2 standard deviations of the range of central values currently
predicted from the Standard Model, 0.25 to 0.28.
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Maximizing the impact of new physics in b ! c⌧⌫ anomalies

Pouya Asadi1 and David Shih1

1
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The Belle collaboration has recently released its first measurement of the D⇤ polarization in the
B ! D⇤⌧⌫ decay. The LHCb collaboration has released a measurement of RJ/ as well. Both of
these measurements show an upward fluctuation compared to the Standard Model prediction. It
has, however, been shown that none of the existing minimal models in the literature can explain
these observations. In this work we carry out a model-independent study of the contribution of the
dimension 6 e↵ective operators with left-handed neutrinos relevant for these observables and RD(⇤) .
We will show that there are no combination of these operators that can explain the observed RJ/ 

value within 1� error bar. We will also highlight the necessity of NP with the e↵ective operators
O

V
RL = (c̄�µPRb) (⌧̄ �µPL⌫) and O

T
LL = (c̄�µ⌫PLb) (⌧̄�µ⌫PL⌫) in order to explain the observed FL

D⇤ ;
even with these operators, NP still has to generate a host of other e↵ective operators to explain the
measured value of RD(⇤) and FL

D⇤ . This study motivates models generating O
V
RL for these anomalies;

we devise the first such model in a companion paper.

I. INTRODUCTION

Hints of new physics (NP) violating the lepton flavor
universality (LFU) have been observed in the charged
current decays [1–7], captured in the ratios

RD =
�(B̄ ! D⌧⌫)

�(B̄ ! D`⌫)
, RD⇤ =

�(B̄ ! D
⇤
⌧⌫)

�(B̄ ! D⇤`⌫)
, (1)

where ` stands for either electrons or muons. The Stan-
dard Model (SM) prediction for these ratios is [3, 4, 8–15]

RD = 0.299± 0.003, RD⇤ = 0.258± 0.005. (2)

The global average of the observed values is

RD = 0.407± 0.046, RD⇤ = 0.304± 0.015, (3)

showing ⇠ 3.8� discrepancy [14] with the Standard
Model predictions.1

The e↵ective Hamiltonian relevant for these observ-
ables is

He↵ =
4GFVcbp

2

X

X=S,V,T
M,N=L,R

C
X
MNOX

MN , (4)

where the only Wilson coe�cient (WC) generated in the
SM is CV

LL = 1, and the four-fermion e↵ective operators
are defined as

OS
MN ⌘ (c̄PMb)(⌧̄PN⌫),

OV
MN ⌘ (c̄�µPMb)(⌧̄ �µPN⌫), (5)

OT
MN ⌘ (c̄�µ⌫

PMb)(⌧̄�µ⌫PN⌫),

for M,N = R or L. The two tensor operators OT
RL and

OT
LR are identically zero; thus, the Hamiltonian includes

1
In this work we are not including the prelimenary results from

the most recent Belle analysis on RD(⇤) [16].

5 operators with either types of neutrinos. In this work
we focus on the final state neutrinos being left-handed
(LH) ⌫⌧ . We leave a similar study including the e↵ect of
RH neutrinos for future works.
A similar upward fluctuation has been observed in the

following ratio as well

RJ/ =
�(B̄ ! J/ ⌧⌫)

�(B̄ ! J/ `⌫)
. (6)

Using di↵erent models to calculate the relevant form fac-
tors will give rise to very di↵erent results, see [17] and the
references therein, which amounts to a large uncertainty
in the predictions for this ratio in the SM [17–21]

RJ/ 
SM 2 (0.2, 0.39) , (7)

while the the observed value is [22]

RJ/ = 0.71± 0.17± 0.18. (8)

Here the first (second) uncertainty is due to statistics
(systematics). It has been shown that none of the ex-
isting minimal solutions of RD(⇤) can explain all these
anomalies upto 1� [17, 19, 20]. 2

There is also a host of di↵erent polarization and asym-
metry observables [9, 24–36] that can be measured in
these decays. Recently, Belle has released preliminary
results on the measurement of the D⇤ polarization in the
B ! D

⇤
⌧⌫ decay [37]

F
L
D⇤ = 0.60± 0.08± 0.035, (9)

where

F
L
D⇤ =

�(B̄ ! D
⇤

L⌧⌫)

�(B̄ ! D
⇤

L⌧⌫) + �(B̄ ! D
⇤

T ⌧⌫)
. (10)

2
Ref. [23] considers the possibility of RH neutrinos as well and

reports pairs of WCs that are claimed to explain the observed

RJ/ . We were unable to reproduce their results in our calcula-

tions.
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Figure 1: Distributions of (top) m2
miss, (middle) decay time, and (bottom) Z of the signal data,

overlaid with projections of the fit model with all normalization and shape parameters at their
best-fit values. Below each panel di↵erences between the data and fit are shown, normalized by
the Poisson uncertainty in the data; the dashed lines are at the values ±2.

of Refs. [37, 38]. In the nominal fit, the B
+
c ! J/ form factor parameters, except for

the scalar form factor that primarily a↵ects the semitauonic mode, are fixed to the values
obtained from a fit to a subset of the data enriched in the normalization mode. To assess
the e↵ect on R(J/ ) due to this procedure, an alternative fit is performed with the form
factor parameters allowed to vary, and the di↵erence in quadrature of the uncertainties is
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of Refs. [37, 38]. In the nominal fit, the B
+
c ! J/ form factor parameters, except for

the scalar form factor that primarily a↵ects the semitauonic mode, are fixed to the values
obtained from a fit to a subset of the data enriched in the normalization mode. To assess
the e↵ect on R(J/ ) due to this procedure, an alternative fit is performed with the form
factor parameters allowed to vary, and the di↵erence in quadrature of the uncertainties is
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The di↵erences in the kinematic distributions of the various processes are exploited to
disentangle their respective contributions to the selected J/ µ

+ sample. The large µ–⌧
mass di↵erence and the presence of extra neutrinos from the decay ⌧+ ! µ

+
⌫µ⌫⌧ result in

distinct distributions for the signal relative to the normalization mode. Three kinematic
quantities are used: the unpaired-muon energy in the B+

c rest frame, E⇤
µ; the missing mass

squared, defined as m2
miss = (pB+

c
�pJ/ �pµ)2; and the squared four-momentum transfer to

the lepton system, q2 = (pB+
c
� pJ/ )2, where pB+

c
, pJ/ and pµ are the four-momenta of

the B+
c meson, the J/ meson, and the unpaired muon, respectively. These quantities are

approximated using a technique developed in Ref. [7] that estimates the B
+
c momentum

despite the presence of one or more missing neutrinos, using the flight direction of the
candidate, determined from the vector joining the associated PV and the decay vertex, and
the momenta of its decay products. The lifetime of the B

+
c meson, which is nearly three

times shorter than that of other b hadrons, provides an additional handle for discriminating
against the large background that originates from lighter b hadrons. The decay time
for each J/ µ

+ candidate is approximated using the decay distance of the candidate,
determined from the approximated B

+
c momentum vector and the displacement of its

reconstructed vertex relative to its associated PV.
The contributions of various components to the sample of J/ µ

+ candidates are
represented by three-dimensional histogram templates, binned in m

2
miss, the decay time

of the B
+
c candidate, and a categorical quantity Z, representing eight bins in (E⇤

µ, q
2).

The values 0–3 of Z correspond to bins where q
2
< 7.15 GeV2

/c4 and E
⇤
µ is divided with

thresholds at [0.68, 1.15, 1.64]GeV. The values 4–7 correspond to bins with the same E
⇤
µ

ranges, but where q2 � 7.15 GeV2
/c4. These multidimensional histograms reflect nontrivial

correlations among the three quantities. The sources of the components represented in
the fit, and the procedures used to obtain their corresponding templates from simulation
and data, are outlined below.

The templates are derived from simulation for the signal and the normalization modes,
which requires knowledge of the B

+
c ! J/ `

+
⌫` form factors. These have not yet been

precisely determined and the theoretical predictions, e.g. those from Refs. [18] and [31],
are yet to be tested against data. Thus, for this measurement, the shared form factors for
the signal and normalization modes are determined directly from the data by employing a
z-expansion parametrization inspired by Ref. [32] to fit a subsample of the data excluding
events with missing mass greater than 1GeV2

/c
4. In this expansion, the form factors V (q2),

A0(q2), A1(q2), and A2(q2) (following the convention of Ref. [31]) are fit by functions of
the form

f(q2) =
1

1� q2/M2
pole

KX

k=0

akz(q
2)k, (2)

where z(q2) is defined in Ref. [32]. The pole mass Mpole is the mass of the excited B
+
c

state with quantum numbers corresponding to the form factor: the J
P = 1� state for the

form factor V (q2), taken to be 6.33 GeV/c2; the 0� state for A0(q2), which is the B+
c mass

itself; and finally the 1+ state for A1(q2) and A2(q2), taken to be 6.73 GeV/c [18,31]. The
form factor A2(q2) is fit to K = 0 order, while the others are fit to the linear K = 1 order.
The parameters ak obtained from this procedure contain the e↵ects of the reconstruction
resolution of the kinematic parameters and cannot be directly compared with existing
theoretical predictions.

Simulation is used to determine the templates for the feed-down processes B
+
c !

3



Status of models

Table 1. Predicted ranges of the polarizations for R2, S1 and U1 LQ models (µLQ = 1.5TeV), which

satisfy the current 1� data of RD(⇤) and the bound of B(B+
c ! ⌧+⌫) < 0.3. The SM predictions,

the current data, and the expected sensitivity at Belle II with 50 ab
�1

data [61, 67, 104] are also

shown. The sensitivities for FD⇤
L and PD⇤

⌧ are absolute uncertainty while the others are relative.

FD⇤
L PD

⌧ PD⇤
⌧ RD RD⇤

R2 LQ [0.43, 0.44] [0.42, 0.57] [�0.44, �0.39] 1� data 1� data

S1 LQ [0.42, 0.48] [0.11, 0.63] [�0.51, �0.41] 1� data 1� data

U1 LQ [0.43, 0.47] [0.23, 0.52] [�0.57,�0.47] 1� data 1� data

SM 0.46(4) 0.325(9) �0.497(13) 0.299(3) 0.258(5)

data 0.60(9) - �0.38(55) 0.407(46) 0.306(15)

Belle II 0.04 3% 0.07 3% 2%

In turn, we study correlation between RD(⇤) and the ⌧ polarizations PD(⇤)
⌧ . In Fig. 3,

the contours of PD
⌧ and PD⇤

⌧ are shown with dashed lines in magenta and blue, respectively.
The other legends in the plots are the same as Fig. 2. We can see that each LQ model
predicts unique ranges for PD

⌧ and PD⇤
⌧ , which can be used to distinguish these LQ models:

(PD
⌧ , PD⇤

⌧ ) with ([0.42, 0.57], [�0.44, �0.39]) for R2 LQ, ([0.11, 0.63], [�0.51, �0.41]) for S1

LQ and ([0.23, 0.52], [�0.57,�0.47]) for U1 LQ are predicted where the current data of RD(⇤)

at 1 � and the bound of B(B+
c ! ⌧+⌫) < 0.3 are satisfied. Here, CV1(µLQ) is also varied in

S1 and U1 LQ models. Note that the predicted ranges of PD⇤
⌧ are consistent with the latest

result by the Belle experiment [7, 101]

PD⇤

⌧ = �0.38± 0.51(stat.)+0.21
�0.16(syst.). (3.17)

Since Belle II with 50 ab�1 data can measure PD
⌧ with 3% accuracy [67],#8 and PD⇤

⌧ with
±0.07 [61], we point out that the future measurement of PD

⌧ has su�cient sensitivity to
distinguish between the LQ models. Note that W 0 models predict PD

⌧ = PD
⌧, SM for any

values of CV1 and CV2 . Thus, PD
⌧ is a good observable for discrimination between W 0 and

LQ models.
In Table 1, we summarize our results of the predictions on the polarization observables for

the LQ models. This can be partly compared with Ref. [102] based on the SM e↵ective field
theory. Note that the uncertainties for the SM predictions are taken from Refs. [7, 12, 65].
We also stress that our study provides the theoretically possible ranges of the polarization
observables which satisfy the current RD(⇤) data at 1� level, by scanning the full set of
the parameters in the LQ models. On the other hand, model-independent and -dependent
parameter fits from the data including FD⇤

L are performed in Refs. [76, 103].

#8
Only statistical uncertainty has been considered [67].
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(see also Tran et al 1801.06927, 
Blanke et al 1811.09603)

the coupling being pure real or imaginary results in a decrease in the ratio R⌘c . This is due to
the negative interference between SL and TL , Eq. (3.8). The shaded region shows the 2� allowed
region for VL, SL = 4TL, SL,R parameters in the 1D fit, with the central value shown by a dashed
line. In case of the 2D scenarios the results are presented for the best fit point. As expected, the
ratio R⌘c is more sensitive to the scalar and the tensor operators, whereas RJ/ is more sensitive to
VL. The values of RJ/ and R⌘c in the presence of di↵erent NP scenarios are listed in Table 4. The

Figure 4: Ratios of branching fractions R⌘c(q
2) (upper panel), RJ/ (q

2) (lower panel) as a function of

q2. The blue dotted lines are the SM prediction, the green dashed line is for the best fit values of the NP

couplings in the 1D scenario as discussed in the text. The green band represents the NP e↵ects from the

2� allowed regions in the 1D scenarios. The third figure in both panels is the result for the best fit points

in the 2D scenarios.

results are presented for the best fit points, as well as for the 2� allowed regions in the 1D scenario.
Note that any of the considered NP scenarios derived from the recent global fit analysis on

available experimental data on semileptonic B ! (D,D⇤)`⌫` decays [41] cannot explain the 2�
tension with the experiment Eq. 1.1 of RJ/ ratio.

SM VL SL SR SL = 4TL (VL, SL = �4TL) (SR, SL) (VL, SR) Re,Im[SL = 4TL]

R⌘c 0.32 0.390.420.36 0.44
0.55
0.33 0.49

0.59
0.40 0.260.340.20 0.42 0.45 0.44 0.43

RJ/ 0.23 0.290.310.26 0.24
0.24
0.23 0.23

0.22
0.23 0.250.260.23 0.29 0.22 0.27 0.26

Table 4: The values of R⌘c and RJ/ in the presence of di↵erent NP scenarios. The subscript and the

superscript are the values for the 2� range of the NP couplings.

3.2 Forward-backward asymmetry, convexity parameter and the ⌧ polarization

The di↵erential distributions defined in Eqs. (3.8, 3.10) can be written in a simple form as a function
of cos ✓` as

d�

dq2d cos ✓`
=

G2
F |Vcb|

2
|p2|q2v2

32(2⇡)3m2
Bc

(A(q2) + B(q2) cos ✓` + C(q2) cos2 ✓`). (3.14)

Observables depending on the polar angle distribution of the emitted leptons such as the forward-
backward lepton asymmetry and the convexity parameter are considered first. They are defined
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3

V1

T

LQ+
LQ�

V2

S1,2

FIG. 1: Correlation between RD⇤ and RJ/ in the presence of one NP operator, V1, V2, S2, or T (left) and of LQ specific
operators with CS2 = ±7.8CT (right). The red dot shows the SM predictions with the error bar for RJ/ . Note that S1 and
S2 have the same contribution.

QCD [62, 63] and then the following parametrizations are given:

V
c(q2) = V

c(0) exp
h
0.065 q

2 + 0.0015 (q2)2
i
, (11)

A
c
0(q

2) = A
c
0(0) exp

h
0.047 q

2 + 0.0017 (q2)2
i
, (12)

A
c
1(q

2) = A
c
1(0) exp

h
0.038 q

2 + 0.0015 (q2)2
i
, (13)

A
c
2(q

2) = A
c
2(0) exp

h
0.064 q

2 + 0.0041 (q2)2
i
, (14)

where the values for the q
2 = 0 point are obtained by the fit; V

c(0) = 0.42 ± 0.01 ± 0.01, A
c
0(0) = 0.59 ± 0.02 ± 0.01,

A
c
1(0) = 0.46±0.02±0.01, and A

c
2(0) = 0.64±0.02±0.01 [61]. As for the tensor FFs, we simply adopt the quark-level

equation of motion, (see Ref. [8].) That is,

T
c
1 (q2) =

mb + mc

mBc + mJ/ 
V

c(q2) , (15)

T
c
2 (q2) =

mb � mc

mBc � mJ/ 
A

c
1(q

2) , (16)

T
c
3 (q2) = �mb � mc

q2

h
mBc

�
A

c
1(q

2) � A
c
2(q

2)
�

+ mJ/ 

�
A

c
2(q

2) + A
c
1(q

2) � 2A
c
0(q

2)
�i

. (17)

Therefore, we are now ready to calculate the decay rate in any type of NP model.

3. NUMERICAL ANALYSIS

For numerical evaluation on RJ/ , we take the following values for input; mBc = 6.275 GeV, mJ/ = 3.096 GeV,
m⌧ = 1.777 GeV, mb + mc = 6.2 GeV, and mb � mc = 3.45 GeV [64]. Then, the SM predicts

R
SM
J/ = 0.283 ± 0.048 , (18)

where the uncertainty comes from the inputs of V
c(0), A

c
0(0), A

c
1(0), and A

c
2(0). The result is consistent with

Refs. [65, 66]. This is compared with (3) and thus, one finds that there exists a 1.7� deviation from the SM, i.e.,
[�2]SM

J/ ' 2.9. Note that the RJ/ measurement still include a large uncertainty. Combined with the RD and RD⇤

measurements [60, 67], it turns out [�2]SM
J/ +D+D⇤ ' 22.

In fig. 1, we show correlation between RD⇤ and RJ/ in the presence of one NP operator (V1, V2, S2, or T ) and LQ
specific operators (LQ± : CS2 = ±7.8CT ), where the NP type is denoted in the plot and the dashed lines show the

Watanabe 1709.08644 Iguro et al 1811.08899



Maximizing FLD* and R(J/psi)

The measured values of FLD* and R(J/psi) are too high even for NP models!

So far just single mediators, single and pairs of Wilson coefficients studied…

Question: fix RD, RD* and Br(Bc→τν). 

How large can we make FLD* and R(J/psi)?

(Asadi & DS, 1905.03311)



2

Here D⇤

L and D⇤

T denote a D⇤ with longitudinal or trans-
verse polarization, respectively. The first (second) uncer-
tainty in (9) is due to statistics (systematics). This mea-
surement implies a ⇠ 1.5� upward fluctuation compared
to various SM calculations [32, 38, 39], e.g. [38]

FL
D⇤ = 0.457± 0.010. (11)

While this seems to be an interesting addition to the
RD(⇤) anomaly, it is in tension not only with the SM pre-
diction, but also with all the minimal beyond SM (BSM)
models [40, 41]. This makes one wonder if such a large
value of FL

D⇤ is at all attainable with any combination of
the relevant operators.

In this note, we will generalize the study of these ob-
servables to the full space of dimension 6 Wilson coe�-
cients relevant for these decays with LH neutrinos. We
maximize RJ/ and FL

D⇤ over di↵erent subspaces of the
space of all such operators to find a set of necessary con-
ditions to explain these observations.

In order to find the maximum of each observable we
carry out a series of shifts, rescaling, and rotations on
the WCs to find a small subset of these 10 real WCs that
each observable depends on and then find the maximum
on this significantly smaller subspace. These transfor-
mations simplify the numerical equations and allow us
to show that, under a certain constraint, the maximum
value of each of these observables on the space of LH neu-
trino operators will be obtained with all the WCs being
real. This will significantly simplify the process of finding
the maximum of these observables.

We can also find the maximum of each observable when

a certain WC is held fixed. Using this approach, we find
that to reach the observed value of FL

D⇤ , NP should give
rise to the WCs CV

RL and CT
LL and should partially cancel

the SM contribution to CV
LL. Furthermore, we will show

that the observed value of RJ/ can not be explained
with any combination of these operators.
As our results highlight the necessity of CV

RL in ex-
plaining the observed value of FL

D⇤ , and since there are
currently no models in the literature generating this WC,
we will devise the first such model in a separate work [42]
The outline of the paper is as follows. In the next

section we explain our general approach for studying the
space of all WCs. Next we will elaborate more on how we
maximize these observables over the space of dimension
6 operators with LH neutrinos, see Sec III. In Sec. IV we
implement our maximization approach and discuss the
importance of various WCs in explaining the observed
value of FL

D⇤ ; we will also show that the observed value
of RJ/ can not be explained with any combination of
these operators. We conclude in Sec. V.

II. GENERAL SETUP

The observables of interest in this work are O =
RJ/ , F

L
D⇤ , RD, RD⇤ , Br(Bc ! ⌧⌫). The first four ob-

servables show a discrepancy with the SM predictions,
while the bounds on Br(Bc ! ⌧⌫) can be used to severely
constrain various BSM explanations of these anomalies
[43–46]. In our study of these observables, we use the
numerical formulas in [40],

RD = 0.299
�
|CV

+L|2 + 1.02|CS
+L|2 + 0.9|CT

LL|2 +Re
⇥
(CV

+L)(1.49(C
S
+L)

⇤ + 1.14(CT
LL)

⇤)
⇤�

,

RD⇤ = 0.257
�
0.95|CV

�L|2 + 0.05|CV
+L|2 + 0.04|CS

�L|2 + 16.07|CT
LL|2

+ Re
⇥
CV

�L(+0.11(CS
�L)

⇤ � 5.89(CT
LL)

⇤)
⇤
+ 0.77Re

⇥
CV

+L(C
T
LL)

⇤
⇤�

,

RD⇤FL
D⇤ = 0.116

�
|CV

�L|2 + 0.08|CS
�L|2 + 7.02|CT

LL|2 +Re
⇥
(CV

�L)(0.24(C
S
�L)

⇤ � 4.37(CT
LL)

⇤)
⇤�

,

Br(Bc ! ⌧⌫) = 0.023
�
|CV

�L + 4.33CS
�L|2

�
,

(12)

where we are defining CS
±L ⌘ CS

RL ± CS
LL and CV

±L ⌘
CV

LL ± CV
RL. In deriving these formulas, the authors of

[40] use the NLO results of the heavy quark e↵ective the-
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As for the RJ/ , there are di↵erent calculations for
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factors calculated in [50]. Using these form factors we can
calculate the numerical contribution of di↵erent WCs to
RJ/ 

RJ/ = 0.289
�
0.98|CV

�L|2 + 0.02|CV
+L|2 + 0.05|CS

�L|2 + 10.67|CT
LL|2

+ Re
⇥
CV

�L(0.14(C
S
�L)

⇤ � 5.15(CT
LL)

⇤)
⇤
+ 0.24Re

⇥
CV

+L(C
T
LL)

⇤
⇤�

,
(13)

2

Here D⇤

L and D⇤

T denote a D⇤ with longitudinal or trans-
verse polarization, respectively. The first (second) uncer-
tainty in (9) is due to statistics (systematics). This mea-
surement implies a ⇠ 1.5� upward fluctuation compared
to various SM calculations [32, 38, 39], e.g. [38]

FL
D⇤ = 0.457± 0.010. (11)

While this seems to be an interesting addition to the
RD(⇤) anomaly, it is in tension not only with the SM pre-
diction, but also with all the minimal beyond SM (BSM)
models [40, 41]. This makes one wonder if such a large
value of FL

D⇤ is at all attainable with any combination of
the relevant operators.

In this note, we will generalize the study of these ob-
servables to the full space of dimension 6 Wilson coe�-
cients relevant for these decays with LH neutrinos. We
maximize RJ/ and FL

D⇤ over di↵erent subspaces of the
space of all such operators to find a set of necessary con-
ditions to explain these observations.

In order to find the maximum of each observable we
carry out a series of shifts, rescaling, and rotations on
the WCs to find a small subset of these 10 real WCs that
each observable depends on and then find the maximum
on this significantly smaller subspace. These transfor-
mations simplify the numerical equations and allow us
to show that, under a certain constraint, the maximum
value of each of these observables on the space of LH neu-
trino operators will be obtained with all the WCs being
real. This will significantly simplify the process of finding
the maximum of these observables.

We can also find the maximum of each observable when

a certain WC is held fixed. Using this approach, we find
that to reach the observed value of FL

D⇤ , NP should give
rise to the WCs CV

RL and CT
LL and should partially cancel

the SM contribution to CV
LL. Furthermore, we will show

that the observed value of RJ/ can not be explained
with any combination of these operators.
As our results highlight the necessity of CV

RL in ex-
plaining the observed value of FL

D⇤ , and since there are
currently no models in the literature generating this WC,
we will devise the first such model in a separate work [42]
The outline of the paper is as follows. In the next

section we explain our general approach for studying the
space of all WCs. Next we will elaborate more on how we
maximize these observables over the space of dimension
6 operators with LH neutrinos, see Sec III. In Sec. IV we
implement our maximization approach and discuss the
importance of various WCs in explaining the observed
value of FL

D⇤ ; we will also show that the observed value
of RJ/ can not be explained with any combination of
these operators. We conclude in Sec. V.
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D⇤ over di↵erent subspaces of the
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ditions to explain these observations.

In order to find the maximum of each observable we
carry out a series of shifts, rescaling, and rotations on
the WCs to find a small subset of these 10 real WCs that
each observable depends on and then find the maximum
on this significantly smaller subspace. These transfor-
mations simplify the numerical equations and allow us
to show that, under a certain constraint, the maximum
value of each of these observables on the space of LH neu-
trino operators will be obtained with all the WCs being
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We can also find the maximum of each observable when
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that to reach the observed value of FL

D⇤ , NP should give
rise to the WCs CV
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LL and should partially cancel

the SM contribution to CV
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As our results highlight the necessity of CV
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plaining the observed value of FL

D⇤ , and since there are
currently no models in the literature generating this WC,
we will devise the first such model in a separate work [42]
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T denote a D⇤ with longitudinal or trans-
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to various SM calculations [32, 38, 39], e.g. [38]
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ditions to explain these observations.

In order to find the maximum of each observable we
carry out a series of shifts, rescaling, and rotations on
the WCs to find a small subset of these 10 real WCs that
each observable depends on and then find the maximum
on this significantly smaller subspace. These transfor-
mations simplify the numerical equations and allow us
to show that, under a certain constraint, the maximum
value of each of these observables on the space of LH neu-
trino operators will be obtained with all the WCs being
real. This will significantly simplify the process of finding
the maximum of these observables.

We can also find the maximum of each observable when

a certain WC is held fixed. Using this approach, we find
that to reach the observed value of FL

D⇤ , NP should give
rise to the WCs CV
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LL and should partially cancel

the SM contribution to CV
LL. Furthermore, we will show

that the observed value of RJ/ can not be explained
with any combination of these operators.
As our results highlight the necessity of CV

RL in ex-
plaining the observed value of FL

D⇤ , and since there are
currently no models in the literature generating this WC,
we will devise the first such model in a separate work [42]
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A nontrivial optimization problem. 10 real dimensional space. 

into them may be premature. Nevertheless we feel a closer examination of these two

observables is a useful exercise to attempt now, in that it may inspire interesting new

directions in model building. The general method we develop for maximizing observables

given the constraints, taming the huge parameter space of Wilson coe�cients, may be

of use to others interested in other observables, e.g. R⇤b
. Finally, the study done here is

something to keep in mind for the near future, where much more precise measurements

of these observables with much more data from LHCb and Belle II are expected.

The outline of the paper is as follows. In Sec. 2 we explain our general approach for

studying the space of all WCs. In Sec. 3, we will describe our results for the global max-

ima of FL
D⇤ and RJ/ subject to the constraints. In Sec. 4 we maximize the observables

while fixing some of the WCs.

2 General setup

The observables of interest in this work are O = RJ/ , F
L
D⇤ , RD, RD⇤ ,Br(Bc ! ⌧⌫). The

first four observables show discrepancies with the SM predictions, while the bounds

on Br(Bc ! ⌧⌫) can be used to severely constrain various BSM explanations of these

anomalies [42–45]. Measurements of the total width of the Bc meson and Bu ! ⌧⌫

decay have been used in [42–44] and [45] to put bounds of Br(Bc ! ⌧⌫) . 30% and

Br(Bc ! ⌧⌫) . 10%, respectively. Meanwhile the SM prediction is Br(Bc ! ⌧⌫) =

2.3%. We will use these three reference values for Br(Bc ! ⌧⌫) throughout this work.
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formulas, the authors of [39] use the NLO results of the heavy quark e↵ective theory

from [49] for the hadronic matrix elements. Similar numerical formulas can be found in
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As for RJ/ , there are di↵erent calculations for the relevant form factors. In this work
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[52] using the perturbative QCD factorization. Using these form factors we can calculate

the numerical contribution of di↵erent WCs to RJ/ 
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which also indicates that we find RJ/ 
SM = 0.289, compatible with various other cal-

culations in the literature [18–22]. Using other calculations for the form factors would

result in di↵erent numerical formulas and may a↵ect our final conclusions regarding the

maximum attainable value of RJ/ . This merits further study. However, it is worth

noting that our method for maximizing it remains completely general and unchanged

and can be adapted to any future version of the numerical formula.

We will be interested in calculating the following quantities:

max F
L
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��
RD,RD⇤ ,Br(Bc!⌧⌫)

, max RJ/ 

��
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(2.3)

where the global maximum is taken over the full space of WCs with LH neutrinos.

(Again, see the end of this section for a generalization to LH+RH neutrinos.) This

is a 10 real-dimensional space, making the maximization of FL
D⇤ and RJ/ seem like a

daunting, if not impossible task. Yet we will accomplish this task by leveraging several
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O = z
†

5MOz5 = x
T
5MOx5 + y

T
5 MOy5, (2.4)
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and the MO matrices are real and positive semidefinite.

• There is one overall rephasing freedom in defining the WCs, i.e. by multiplying all

the WCs by a common phase the prediction for these observables does not change.

Using these properties (in particular the first one), we can prove that the maxima

(2.3) actually exist. We observe that the MRD and MRD⇤ matrices in (2.4) have orthog-

onal null vectors corresponding to C
S
�L, C

V
�L and C

S
+L, respectively. Hence, fixing RD

and RD⇤ results in a compact space in the full WC space. Any function on a compact

space must have a maximum somewhere in that space.
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Idea: use method of Lagrange multipliers

Maximum occurs for real WCs
We can also prove that the global maximum occurs at real values of the WCs (modulo

the overall rephasing invariance). The proof uses the method of Lagrange multipliers.

Let’s define (for O = F
L
D⇤ and RJ/ ):

Õ = O � �1(RD �R
(0)
D )� �2(RD⇤ �R

(0)
D⇤)� �3(Br(Bc ! ⌧⌫)� Br(Bc ! ⌧⌫)(0))

= x
T
5 (MO � �1MD � �2MD⇤ � �3MBc)x5 + y

T
5 (MO � �1MD � �2MD⇤ � �3MBc)y5

+ �1R
(0)
D + �2R

(0)
D⇤ + �3Br(Bc ! ⌧⌫)(0)

(2.6)

Setting the derivatives of Õ with respect to x5 and y5 to zero yields

(MO � �1MD � �2MD⇤ � �3MBc)x5 = (MO � �1MD � �2MD⇤ � �3MBc)y5 = 0 (2.7)

The matrix M
Õ
⌘ MO � �1MD � �2MD⇤ � �3MBc must be degenerate for this equation

to have non-trivial solutions. Yet we cannot tune the �s to get more than one zero

eigenvalue.3 As a result, the null space is one-dimensional, which means x5 and y5 are

parallel to each other. Using the rephasing invariance we can set y5 = 0, i.e. the WCs

at the global maximum can all be taken real.4

The proof trivially extends to the case of fixing a WC to a particular value. For

instance, later we will be interested in fixing |CV
RL| to some value and maximizing the

observables with respect to all the other WCs. In that case, we can simply add another

quadratic constraint |CV
RL|2 = (|CV

RL|2)(0) to the mix and the above argument proceeds

exactly as before.

So for the rest of the paper we will restrict to real WCs without loss of generality. This

reduces the parameter space from 10 ! 5 real dimensional. With the three constraints

RD = R
0
D, RD⇤ = R

0
D⇤ and Br(Bc ! ⌧⌫) = B

0
c it amounts to maximizing in 2 real

dimensions, or with an additional WC held fixed, in just 1 real dimension.

Finally, we comment on the generalization to LH+RH neutrinos. Since there is no

interference between LH and RH neutrinos, all the numerical formulas in the presence of

both types of neutrinos are of the form z
†

5Mz5+z̃
†

5Mz̃5 where z̃5 refers to the RH neutrino

Wilson coe�cients [35]. So the Lagrange multiplier argument proceeds as before, and

z̃5 functions as “additional imaginary parts”, i.e. there is an enhanced SO(4) symmetry

3
A proof for generic matrices: in order for M

Õ
to be rank less than 4, all of its first minors must be

zero. There are 25 such minors, generically independent. So it is impossible to set them all to zero using

just three parameters �1,2,3. We explicitly check that this argument is true for the matrix combination

in (2.7).

4
As a side note, we can check that the number of unknowns and number of equations match. There

are three remaining constraints to satisfy, and three unknowns: �2, �3 and the modulus of the null

vector x5.
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5Mz̃5 where z̃5 refers to the RH neutrino
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@x5Õ = @y5Õ = 0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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quadratic constraint |CV
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Õ = O � �1(RD �R
(0)
D )� �2(RD⇤ �R

(0)
D⇤)� �3(Br(Bc ! ⌧⌫)� Br(Bc ! ⌧⌫)(0))

= x
T
5 (MO � �1MD � �2MD⇤ � �3MBc)x5 + y

T
5 (MO � �1MD � �2MD⇤ � �3MBc)y5

+ �1R
(0)
D + �2R

(0)
D⇤ + �3Br(Bc ! ⌧⌫)(0)

(2.6)
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to have non-trivial solutions. Yet we cannot tune the �s to get more than one zero
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RL| to some value and maximizing the

observables with respect to all the other WCs. In that case, we can simply add another

quadratic constraint |CV
RL|2 = (|CV

RL|2)(0) to the mix and the above argument proceeds
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D, RD⇤ = R

0
D⇤ and Br(Bc ! ⌧⌫) = B

0
c it amounts to maximizing in 2 real

dimensions, or with an additional WC held fixed, in just 1 real dimension.

Finally, we comment on the generalization to LH+RH neutrinos. Since there is no

interference between LH and RH neutrinos, all the numerical formulas in the presence of

both types of neutrinos are of the form z
†

5Mz5+z̃
†

5Mz̃5 where z̃5 refers to the RH neutrino

Wilson coe�cients [35]. So the Lagrange multiplier argument proceeds as before, and

z̃5 functions as “additional imaginary parts”, i.e. there is an enhanced SO(4) symmetry

3
A proof for generic matrices: in order for M

Õ
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We can also prove that the global maximum occurs at real values of the WCs (modulo

the overall rephasing invariance). The proof uses the method of Lagrange multipliers.
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parallel to each other. Using the rephasing invariance we can set y5 = 0, i.e. the WCs
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The proof trivially extends to the case of fixing a WC to a particular value. For

instance, later we will be interested in fixing |CV
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D⇤ and Br(Bc ! ⌧⌫) = B
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c it amounts to maximizing in 2 real
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@x5Õ = @y5Õ = 0
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The matrix M
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⌘ MO � �1MD � �2MD⇤ � �3MBc must be degenerate for this equation

to have non-trivial solutions. Yet we cannot tune the �s to get more than one zero

eigenvalue.3 As a result, the null space is one-dimensional, which means x5 and y5 are

parallel to each other. Using the rephasing invariance we can set y5 = 0, i.e. the WCs

at the global maximum can all be taken real.4

The proof trivially extends to the case of fixing a WC to a particular value. For

instance, later we will be interested in fixing |CV
RL| to some value and maximizing the

observables with respect to all the other WCs. In that case, we can simply add another
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RL|2 = (|CV

RL|2)(0) to the mix and the above argument proceeds
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So for the rest of the paper we will restrict to real WCs without loss of generality. This

reduces the parameter space from 10 ! 5 real dimensional. With the three constraints
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0
D⇤ and Br(Bc ! ⌧⌫) = B
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c it amounts to maximizing in 2 real

dimensions, or with an additional WC held fixed, in just 1 real dimension.

Finally, we comment on the generalization to LH+RH neutrinos. Since there is no

interference between LH and RH neutrinos, all the numerical formulas in the presence of

both types of neutrinos are of the form z
†

5Mz5+z̃
†

5Mz̃5 where z̃5 refers to the RH neutrino

Wilson coe�cients [35]. So the Lagrange multiplier argument proceeds as before, and

z̃5 functions as “additional imaginary parts”, i.e. there is an enhanced SO(4) symmetry

3
A proof for generic matrices: in order for M
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zero. There are 25 such minors, generically independent. So it is impossible to set them all to zero using

just three parameters �1,2,3. We explicitly check that this argument is true for the matrix combination
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eigenvalue.3 As a result, the null space is one-dimensional, which means x5 and y5 are

parallel to each other. Using the rephasing invariance we can set y5 = 0, i.e. the WCs

at the global maximum can all be taken real.4

The proof trivially extends to the case of fixing a WC to a particular value. For
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RL| to some value and maximizing the

observables with respect to all the other WCs. In that case, we can simply add another

quadratic constraint |CV
RL|2 = (|CV

RL|2)(0) to the mix and the above argument proceeds
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So for the rest of the paper we will restrict to real WCs without loss of generality. This

reduces the parameter space from 10 ! 5 real dimensional. With the three constraints
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dimensions, or with an additional WC held fixed, in just 1 real dimension.

Finally, we comment on the generalization to LH+RH neutrinos. Since there is no

interference between LH and RH neutrinos, all the numerical formulas in the presence of

both types of neutrinos are of the form z
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5Mz̃5 where z̃5 refers to the RH neutrino
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We can also prove that the global maximum occurs at real values of the WCs (modulo
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Õ
to be rank less than 4, all of its first minors must be
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We can also prove that the global maximum occurs at real values of the WCs (modulo

the overall rephasing invariance). The proof uses the method of Lagrange multipliers.

Let’s define (for O = F
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eigenvalue.3 As a result, the null space is one-dimensional, which means x5 and y5 are

parallel to each other. Using the rephasing invariance we can set y5 = 0, i.e. the WCs

at the global maximum can all be taken real.4
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c it amounts to maximizing in 2 real
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interference between LH and RH neutrinos, all the numerical formulas in the presence of

both types of neutrinos are of the form z
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5Mz̃5 where z̃5 refers to the RH neutrino

Wilson coe�cients [35]. So the Lagrange multiplier argument proceeds as before, and

z̃5 functions as “additional imaginary parts”, i.e. there is an enhanced SO(4) symmetry
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to be rank less than 4, all of its first minors must be

zero. There are 25 such minors, generically independent. So it is impossible to set them all to zero using

just three parameters �1,2,3. We explicitly check that this argument is true for the matrix combination

in (2.7).

4
As a side note, we can check that the number of unknowns and number of equations match. There

are three remaining constraints to satisfy, and three unknowns: �2, �3 and the modulus of the null

vector x5.
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We can also prove that the global maximum occurs at real values of the WCs (modulo

the overall rephasing invariance). The proof uses the method of Lagrange multipliers.

Let’s define (for O = F
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(MO � �1MD � �2MD⇤ � �3MBc)x5 = (MO � �1MD � �2MD⇤ � �3MBc)y5 = 0 (2.7)

The matrix M
Õ
⌘ MO � �1MD � �2MD⇤ � �3MBc must be degenerate for this equation

to have non-trivial solutions. Yet we cannot tune the �s to get more than one zero

eigenvalue.3 As a result, the null space is one-dimensional, which means x5 and y5 are

parallel to each other. Using the rephasing invariance we can set y5 = 0, i.e. the WCs

at the global maximum can all be taken real.4

The proof trivially extends to the case of fixing a WC to a particular value. For

instance, later we will be interested in fixing |CV
RL| to some value and maximizing the

observables with respect to all the other WCs. In that case, we can simply add another

quadratic constraint |CV
RL|2 = (|CV

RL|2)(0) to the mix and the above argument proceeds

exactly as before.

So for the rest of the paper we will restrict to real WCs without loss of generality. This

reduces the parameter space from 10 ! 5 real dimensional. With the three constraints

RD = R
0
D, RD⇤ = R

0
D⇤ and Br(Bc ! ⌧⌫) = B
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c it amounts to maximizing in 2 real

dimensions, or with an additional WC held fixed, in just 1 real dimension.

Finally, we comment on the generalization to LH+RH neutrinos. Since there is no

interference between LH and RH neutrinos, all the numerical formulas in the presence of

both types of neutrinos are of the form z
†
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5Mz̃5 where z̃5 refers to the RH neutrino

Wilson coe�cients [35]. So the Lagrange multiplier argument proceeds as before, and

z̃5 functions as “additional imaginary parts”, i.e. there is an enhanced SO(4) symmetry
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to be rank less than 4, all of its first minors must be

zero. There are 25 such minors, generically independent. So it is impossible to set them all to zero using

just three parameters �1,2,3. We explicitly check that this argument is true for the matrix combination
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As a side note, we can check that the number of unknowns and number of equations match. There
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We can also prove that the global maximum occurs at real values of the WCs (modulo

the overall rephasing invariance). The proof uses the method of Lagrange multipliers.
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Setting the derivatives of Õ with respect to x5 and y5 to zero yields

(MO � �1MD � �2MD⇤ � �3MBc)x5 = (MO � �1MD � �2MD⇤ � �3MBc)y5 = 0 (2.7)

The matrix M
Õ
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to have non-trivial solutions. Yet we cannot tune the �s to get more than one zero

eigenvalue.3 As a result, the null space is one-dimensional, which means x5 and y5 are

parallel to each other. Using the rephasing invariance we can set y5 = 0, i.e. the WCs

at the global maximum can all be taken real.4

The proof trivially extends to the case of fixing a WC to a particular value. For

instance, later we will be interested in fixing |CV
RL| to some value and maximizing the

observables with respect to all the other WCs. In that case, we can simply add another

quadratic constraint |CV
RL|2 = (|CV

RL|2)(0) to the mix and the above argument proceeds

exactly as before.
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0
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c it amounts to maximizing in 2 real
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Finally, we comment on the generalization to LH+RH neutrinos. Since there is no

interference between LH and RH neutrinos, all the numerical formulas in the presence of

both types of neutrinos are of the form z
†
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5Mz̃5 where z̃5 refers to the RH neutrino
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to be rank less than 4, all of its first minors must be

zero. There are 25 such minors, generically independent. So it is impossible to set them all to zero using

just three parameters �1,2,3. We explicitly check that this argument is true for the matrix combination

in (2.7).

4
As a side note, we can check that the number of unknowns and number of equations match. There

are three remaining constraints to satisfy, and three unknowns: �2, �3 and the modulus of the null
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We can also prove that the global maximum occurs at real values of the WCs (modulo

the overall rephasing invariance). The proof uses the method of Lagrange multipliers.

Let’s define (for O = F
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eigenvalue.3 As a result, the null space is one-dimensional, which means x5 and y5 are

parallel to each other. Using the rephasing invariance we can set y5 = 0, i.e. the WCs

at the global maximum can all be taken real.4

The proof trivially extends to the case of fixing a WC to a particular value. For

instance, later we will be interested in fixing |CV
RL| to some value and maximizing the

observables with respect to all the other WCs. In that case, we can simply add another
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RL|2 = (|CV

RL|2)(0) to the mix and the above argument proceeds
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So for the rest of the paper we will restrict to real WCs without loss of generality. This
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D, RD⇤ = R

0
D⇤ and Br(Bc ! ⌧⌫) = B

0
c it amounts to maximizing in 2 real

dimensions, or with an additional WC held fixed, in just 1 real dimension.

Finally, we comment on the generalization to LH+RH neutrinos. Since there is no

interference between LH and RH neutrinos, all the numerical formulas in the presence of

both types of neutrinos are of the form z
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z̃5 functions as “additional imaginary parts”, i.e. there is an enhanced SO(4) symmetry

3
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to be rank less than 4, all of its first minors must be
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just three parameters �1,2,3. We explicitly check that this argument is true for the matrix combination

in (2.7).

4
As a side note, we can check that the number of unknowns and number of equations match. There

are three remaining constraints to satisfy, and three unknowns: �2, �3 and the modulus of the null

vector x5.
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We can also prove that the global maximum occurs at real values of the WCs (modulo
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0
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dimensions, or with an additional WC held fixed, in just 1 real dimension.

Finally, we comment on the generalization to LH+RH neutrinos. Since there is no
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both types of neutrinos are of the form z
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zero. There are 25 such minors, generically independent. So it is impossible to set them all to zero using

just three parameters �1,2,3. We explicitly check that this argument is true for the matrix combination

in (2.7).

4
As a side note, we can check that the number of unknowns and number of equations match. There

are three remaining constraints to satisfy, and three unknowns: �2, �3 and the modulus of the null

vector x5.

6

cannot tune to get more than one null eigenvector 

�1,2,3
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must be parallel
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Can extend this argument to show that including RH neutrinos doesn’t affect 
the global maximum. 

Reduce parameter space from 10 or 20 -> 5.  Solve three constraints: 5->2. 

Can numerically maximize and explicitly verify with a plot.

Maximizing FLD* and R(J/psi)
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The Belle collaboration has recently released its first measurement of the D⇤ polarization in the
B ! D⇤⌧⌫ decay. The LHCb collaboration has released a measurement of RJ/ as well. Both of
these measurements show an upward fluctuation compared to the Standard Model prediction. It
has, however, been shown that none of the existing minimal models in the literature can explain
these observations. In this work we carry out a model-independent study of the contribution of the
dimension 6 e↵ective operators with left-handed neutrinos relevant for these observables and RD(⇤) .
We will show that there are no combination of these operators that can explain the observed RJ/ 

value within 1� error bar. We will also highlight the necessity of NP with the e↵ective operators
O

V
RL = (c̄�µPRb) (⌧̄ �µPL⌫), O

T
LL = (c̄�µ⌫PLb) (⌧̄�µ⌫PL⌫), and O

V
LL = (c̄�µPLb) (⌧̄ �µPL⌫) in order

to explain the observed FL
D⇤ . This study indicates the need for new model-building directions in

order to explain the observed RJ/ . It also motivates models generating O
V
RL; we devise the first

such model in a companion paper.

I. INTRODUCTION

Hints of new physics (NP) violating the lepton flavor
universality (LFU) have been observed in the charged
current decays [1–7], captured in the ratios

RD =
�(B̄ ! D⌧⌫)

�(B̄ ! D`⌫)
, RD⇤ =

�(B̄ ! D⇤⌧⌫)

�(B̄ ! D⇤`⌫)
, (1)

where ` stands for either electrons or muons. The Stan-
dard Model (SM) prediction for these ratios is [3, 4, 8–15]

RD = 0.299± 0.003, RD⇤ = 0.258± 0.005. (2)

The global average of the observed values is

RD = 0.407± 0.046, RD⇤ = 0.304± 0.015, (3)

showing ⇠ 3.8� discrepancy [14] with the Standard
Model predictions.1

The e↵ective Hamiltonian relevant for these observ-
ables is

He↵ =
4GFVcbp

2

X

X=S,V,T
M,N=L,R

CX
MNOX

MN , (4)

where the only Wilson coe�cient (WC) generated in the
SM is CV

LL = 1, and the four-fermion e↵ective operators
are defined as

OS
MN ⌘ (c̄PMb)(⌧̄PN⌫),

OV
MN ⌘ (c̄�µPMb)(⌧̄ �µPN⌫), (5)

OT
MN ⌘ (c̄�µ⌫PMb)(⌧̄�µ⌫PN⌫),

for M,N = R or L. The two tensor operators OT
RL and

OT
LR are identically zero; thus, the Hamiltonian includes

1
In this work we are not including the prelimenary results from

the most recent Belle analysis on RD(⇤) [16].

5 operators with either types of neutrinos. In this work
we focus on the final state neutrinos being left-handed
(LH) ⌫⌧ . We leave a similar study including the e↵ect of
RH neutrinos for future works.
A similar upward fluctuation has been observed in the

following ratio as well

RJ/ =
�(B̄ ! J/ ⌧⌫)

�(B̄ ! J/ `⌫)
. (6)

Using di↵erent models to calculate the relevant form fac-
tors will give rise to very di↵erent results, see [17] and the
references therein, which amounts to a large uncertainty
in the predictions for this ratio in the SM [17–21]

RJ/ 
SM 2 (0.2, 0.39) , (7)

while the the observed value is [22]

RJ/ = 0.71± 0.17± 0.18. (8)

Here the first (second) uncertainty is due to statistics
(systematics). It has been shown that none of the ex-
isting minimal solutions of RD(⇤) can explain all these
anomalies upto 1� [17, 19, 20]. 2

There is also a host of di↵erent polarization and asym-
metry observables [9, 24–36] that can be measured in
these decays. Recently, Belle has released preliminary
results on the measurement of the D⇤ polarization in the
B ! D⇤⌧⌫ decay [37]

FL
D⇤ = 0.60± 0.08± 0.035, (9)

where

FL
D⇤ =

�(B̄ ! D⇤

L⌧⌫)

�(B̄ ! D⇤

L⌧⌫) + �(B̄ ! D⇤

T ⌧⌫)
. (10)

2
Ref. [23] considers the possibility of RH neutrinos as well and

reports pairs of WCs that are claimed to explain the observed

RJ/ . We were unable to reproduce their results in our calcula-

tions.
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However, central value of R(J/psi) 
measurement cannot be attained
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where ` stands for either electrons or muons. The Stan-
dard Model (SM) prediction for these ratios is [3, 4, 8–15]

RD = 0.299± 0.003, RD⇤ = 0.258± 0.005. (2)

The global average of the observed values is

RD = 0.407± 0.046, RD⇤ = 0.304± 0.015, (3)

showing ⇠ 3.8� discrepancy [14] with the Standard
Model predictions.1

The e↵ective Hamiltonian relevant for these observ-
ables is

He↵ =
4GFVcbp
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X

X=S,V,T
M,N=L,R

CX
MNOX

MN , (4)

where the only Wilson coe�cient (WC) generated in the
SM is CV

LL = 1, and the four-fermion e↵ective operators
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MN ⌘ (c̄PMb)(⌧̄PN⌫),
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MN ⌘ (c̄�µPMb)(⌧̄ �µPN⌫), (5)

OT
MN ⌘ (c̄�µ⌫PMb)(⌧̄�µ⌫PN⌫),

for M,N = R or L. The two tensor operators OT
RL and

OT
LR are identically zero; thus, the Hamiltonian includes

1
In this work we are not including the prelimenary results from

the most recent Belle analysis on RD(⇤) [16].

5 operators with either types of neutrinos. In this work
we focus on the final state neutrinos being left-handed
(LH) ⌫⌧ . We leave a similar study including the e↵ect of
RH neutrinos for future works.
A similar upward fluctuation has been observed in the

following ratio as well

RJ/ =
�(B̄ ! J/ ⌧⌫)

�(B̄ ! J/ `⌫)
. (6)

Using di↵erent models to calculate the relevant form fac-
tors will give rise to very di↵erent results, see [17] and the
references therein, which amounts to a large uncertainty
in the predictions for this ratio in the SM [17–21]

RJ/ 
SM 2 (0.2, 0.39) , (7)

while the the observed value is [22]

RJ/ = 0.71± 0.17± 0.18. (8)

Here the first (second) uncertainty is due to statistics
(systematics). It has been shown that none of the ex-
isting minimal solutions of RD(⇤) can explain all these
anomalies upto 1� [17, 19, 20]. 2

There is also a host of di↵erent polarization and asym-
metry observables [9, 24–36] that can be measured in
these decays. Recently, Belle has released preliminary
results on the measurement of the D⇤ polarization in the
B ! D⇤⌧⌫ decay [37]

FL
D⇤ = 0.60± 0.08± 0.035, (9)

where

FL
D⇤ =

�(B̄ ! D⇤

L⌧⌫)

�(B̄ ! D⇤

L⌧⌫) + �(B̄ ! D⇤

T ⌧⌫)
. (10)

2
Ref. [23] considers the possibility of RH neutrinos as well and

reports pairs of WCs that are claimed to explain the observed

RJ/ . We were unable to reproduce their results in our calcula-

tions.
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BBBB@

CV
+L

CT
LL

CV
�L

CS
+L

1

CCCCA
=

0

BBBB@

5.140 �7.769 8.113 0

�0.601 0.838 0.109 0

�3.572 1.473 0.266 0

�3.755 5.675 �5.926 1

1

CCCCA

0

BBBB@

˜CT
LL + 0.0097RBc

˜CV
�L � 0.0040RBc

˜CV
+L � 0.0007RBc

˜CS
+L

1

CCCCA
, (22)

we arrive at

RD = z̃†4M̃RD z̃4 +DRDRe
˜CV
�L + ERDRe

˜CT
LL + FRDRe

˜CV
+L +GRD ,

RD⇤ = z̃†4M̃RD⇤ z̃4 +GRD⇤ ,

RJ/ = z̃†4M̃RJ/ 
z4 +DRJ/ 

Re ˜CV
�L + ERJ/ 

Re ˜CT
LL + FRJ/ 

Re ˜CV
+L +GRJ/ 

,

(23)

where now

z̃ =

0

BBBB@

˜CT
LL
˜CV
�L
˜CV
+L
˜CS
+L

1

CCCCA
, M̃RD =

0

BBBB@

2.646 �4.049 4.931 0

�4.049 6.196 �7.552 0

4.931 �7.552 9.276 0

0 0 0 0.305

1

CCCCA
, M̃RD⇤ =

0

BBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

1

CCCCA
, M̃RJ/ 

=

0

BBBB@

1.349 0 0 0

0 0.770 0 0

0 0 0.402 0

0 0 0 0

1

CCCCA

DRJ/ 
= 0.0056RBc , ERJ/ 

= �0.0024RBc , FRJ/ 
= 0.0015RBc , GRJ/ 

= 0.00056 (RBc)
2 , GRD⇤ = 0.00044 (RBc)

2 ,

DRD = �0.117RBc , ERD = 0.077RBc , FRD =0.143RBc , GRD = 0.00055 (RBc)
2 .

We find a similar structure for the equations as before.
Hence, we can maximize RJ/ with real WCs as well.
This analysis shows that so long as Eq. (21) is not satu-
rated, we can limit our attention to the space of real WCs
to maximize FL

D⇤ or RJ/ . This significantly simplifies
the task of finding the maxima. When this saturation
happens, we have to maximize over the imaginary part
of the WCs as well.

In the next section we will use our maximization ap-
proach to draw interesting conclusions about the NP re-
sponsible for the observed FL

D⇤ and RJ/ .

IV. IMPLICATION FOR THE UNDERLYING
NP

We now use the general approach described above to
study the necessity of di↵erent WCs in explaining the ob-
served FL

D⇤ or RJ/ . First, we want to see if there exists
any combination of the WCs that can explain either FL

D⇤

or RJ/ . In Fig. 1, we find the maximum of FL
D⇤ or RJ/ 

over all the WCs for di↵erent values of Br(Bc ! ⌧⌫) and
RD(⇤) .

The figures indeed show that in order to explain the
observed RJ/ from Eq. (8), we have to look for some NP
that is not captured by the dimension 6 operators with
LH neutrinos that we are studying. The prime candidate
would be a contribution from the RH neutrinos.

As for FL
D⇤ , Fig. 1 indicates that there exists a combi-

nation of various WCs of these operators that can explain
the observed FL

D⇤ from Eq. (9). However, none of the ex-

CS
RL CS

LL CV
LL CV

RL CT
LL RD RD⇤ FL

D⇤ RJ/ Br(Bc ! ⌧⌫)

-0.669 -0.884 0.097 2.029 -0.329 0.407 0.304 0.620 0.406 0.023

-0.791 -0.739 0.118 1.977 -0.302 0.407 0.304 0.638 0.410 0.1

-0.972 -0.555 0.142 1.948 -0.298 0.407 0.304 0.662 0.412 0.3

CS
RL CS

LL CV
LL CV

RL CT
LL RD RD⇤ FL

D⇤ RJ/ Br(Bc ! ⌧⌫)

-0.659 -0.857 0.109 1.967 -0.286 0.407 0.304 0.620 0.409 0.023

-0.787 -0.726 0.124 1.948 -0.282 0.407 0.304 0.637 0.410 0.1

-0.967 -0.542 0.147 1.919 -0.277 0.407 0.304 0.660 0.413 0.3

TABLE I: (PA: check the scalars again)The combina-
tion of WCs that maximize FL

D⇤ (top) or RJ/ (bottom)
for the global average of RD(⇤) and with various values of
Br(Bc ! ⌧⌫). All these combinations exhibit a large value of
CV

RL and CT
LL; the SM contribution of CV

LL = 1 is also largely
canceled.

isting minimal models in the literature can generate such
a large enhancement to FL

D⇤ [40, 41]. The WCs that
maximize FL

D⇤ or RJ/ with RD(⇤) fixed to their global
averages in Eq. (3) and di↵erent values of Br(Bc ! ⌧⌫)
are reported in Tab. I. We observe that the WC combi-
nation that maximize each observable can almost reach
the maximum of the other one as well.
There are a few interesting features in this combina-

tion; in particular, we find a large value of CV
RL, C

T
LL

3,
and a substantial cancellation of the SM contribution to

3
Notice that all the existing models in the literature generate a

tensor WC with association with a scalar WC of CS
XL ⇠ 8CT

LL
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study the necessity of di↵erent WCs in explaining the ob-
served FL
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over all the WCs for di↵erent values of Br(Bc ! ⌧⌫) and
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The figures indeed show that in order to explain the
observed RJ/ from Eq. (8), we have to look for some NP
that is not captured by the dimension 6 operators with
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would be a contribution from the RH neutrinos.
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a large enhancement to FL
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maximize FL

D⇤ or RJ/ with RD(⇤) fixed to their global
averages in Eq. (3) and di↵erent values of Br(Bc ! ⌧⌫)
are reported in Tab. I. We observe that the WC combi-
nation that maximize each observable can almost reach
the maximum of the other one as well.
There are a few interesting features in this combina-

tion; in particular, we find a large value of CV
RL, C

T
LL

3,
and a substantial cancellation of the SM contribution to

3
Notice that all the existing models in the literature generate a

tensor WC with association with a scalar WC of CS
XL ⇠ 8CT

LL

max FLD*

max R(J/psi)

Points are uncannily similar…needs to be further understood…

Both require large CVRL!
See recent work of Murgui et al who reached similar conclusions via global fits 1904.09311
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Figure 2: The maximum attainable FL
D⇤ as a function of WCs CT

LL, C
V
RL, or CV

LL; in each plot we

marginalize over other WCs, given the constraints RD = 0.4 and RD⇤ = 0.3. The green and red

curves correspond to Br(Bc ! ⌧⌫) = 10% and Br(Bc ! ⌧⌫) = 30%, respectively. The purple (orange)

band shows the 1� error bar around the central observed value (SM prediction) of FL
D⇤ . These figures

highlight the necessity of NP with all of these WCs in order to explain the observed FL
D⇤ .

with the WCs in Tab. 3 that maximize F
L
D⇤ for any given C

V
RL; these benchmark points

can almost reach the maximum attainable RJ/ as well.

Note added. During the final stages of this work [53] appeared on arXiv with partially

overlapping results concerning FL
D⇤ andRJ/ . The authors of [53] carried out an extensive

global fit of various observables with the e↵ective operators involving LH neutrinos and

arrived at a similar conclusion as in this work regarding the importance of C
V
RL in

explaining F
L
D⇤ .

10

C
S
RL C

S
LL C

V
LL C

V
RL C

T
LL RD RD⇤ F

L
D⇤ RJ/ Br(Bc ! ⌧⌫)

0.330 0.152 1.012 -0.3 0.092 0.400 0.300 0.510 0.340 0.1

0.481 0.321 0.890 -0.5 0.118 0.400 0.300 0.532 0.347 0.1

0.614 0.471 0.764 -0.7 0.143 0.400 0.300 0.552 0.355 0.1

0.785 0.665 0.567 -1 0.180 0.400 0.300 0.580 0.365 0.1

Table 3: Benchmark points that can reach the maximum FL
D⇤ with a particular CV

RL and fixed RD(⇤)

and Br(Bc ! ⌧⌫). The RJ/ with the same set of WCs is calculated as well; these values of RJ/ are

very close to the maximum attainable RJ/ with the same CV
RL, see fig. 3.

BR(Bc→τν)=10%
BR(Bc→τν)=30%
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Figure 3: The maximum attainable RJ/ as a function of WCs CT
LL, C

V
RL, or CV

LL; in each plot we

marginalize over other WCs. The colors and bands are as in fig. 2. We see that we can not even reach

the 1� range of the observed RJ/ for any values of the WCs.
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Arguments against 

O
V
RL = (c̄�µPRb)(⌧̄ �µPL⌫)
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dimension 8 operator

dimension 6 operator 
but flavor universal

“No go theorem”



A loophole?

Key idea: use two leptoquarks that mix through Higgs vev

3

field can be written as H ⌘ (H̃,H) where H̃ ⌘ i�2H⇤

and transforms as (1, 2, 2)0 under the group G. Then,
the SU(2)L ⇥ SU(2)R transformations for R and H are
expressed as

H ! UL HU†
R
, R ! UL RU†

R
, (8)

where UL,R are SU(2)L,R rotations respectively.
The relevant terms in the Lagrangian of the model are

L � LR + LHR + LFR, (9)

where

LR = |@R2|2 + |@R̃2|2 �M2
R2

|R2|2 �M2
R̃2

|R̃2|2,

LHR = �RTr
�
R†H

�
Tr
�
H†R

�

= �R

n
|R†

2H|2 + |R̃†
2H̃|2 + (R̃†

2H̃H†R2 + h.c.)
o
,

LFR = gij1 ūi

R
R2✏L

j + g̃ij1 L̄j✏R̃†
2d

i

R
+ h.c.,

(10)

(PA: factors of 2 are correct in LHR? )where ✏ is
the anti-symmetric tensor with two SU(2)L indices and
i and j are quark and lepton flavor indices, respectively.
The first line of Eqs. (10) contain the mass terms MR2 ,
M

R̃2
for the LQs R2 and R̃2. In our model the mass of

the LQs of electric charge 5/3 and �1/3 are equal to MR2

and M
R̃2

, respectively. Although the custodial symme-
try requires MR2 = M

R̃2
, we assume they are di↵erent in

general as a di↵erence can be given rise to by any source
of custodial symmetry breaking. The quartic term in
the second line respects the custodial symmetry. We can
also write down single trace terms, Tr

�
HR†RH†� and

Tr
�
HH†RR†�, but it is only relevant for us that these

terms shift four leptoquark masses universally. This ef-
fect can be absorbed by the mass terms in the first line,
so we ignore them in the following discussions. The last
line contain the LQ couplings to the SM fermions and
explicitly breaks the custodial symmetry. (PA: should

mention that some of these will break the custo-

dial symmetry in the �s too.)

A similar model without the extended symmetry had
been used in the past [29] to explain two anomalies in the
HERA experiment [30, 31]. It should be noted that each
of these LQs have individually been proposed as solutions
to RD(⇤) in the past, see e.g. [32, 33], but our setup is the
first model using their mixing to produce CV

RL
or CV

LR
.

After the EWSB, R2
2/3 and R̃2/3

2 mix via the third

term in LHR. The mass matrix of the R2
2/3 and R̃2/3

2 is
given by

M2
2/3 =

 
M2

R2
� �Rv2 �Rv2

�Rv2 M2
R̃2

� �Rv2

!
, (11)

where v is the Higgs vev v ⇡ 246GeV. We can diagonalize
this matrix by the rotation, (PA: bad notation : R2

bR

⌧L

x
R̃2 R2

⌫L

cR
g̃331

g231
bR

⌧L

⌫L

cR
CV

RL

bL

⌧R

x
R2 R̃2

⌫R

cL
g332

g̃22
bL

⌧R

⌫R

cL
CV

LR

bL

⌧R

R2
⌫L

cR
g332

g231
bL

⌧R

⌫L

cR
CS

LL
, CT

LL

bR

⌧L

R̃2
⌫R

cL
g̃331

g̃22
bR

⌧L

⌫R

cL
CS

RR
, CT

RR

FIG. 2: The diagrams generating CV
RL (1st row), CV

LR (2nd
row), CS

LL = xCT
LL (3rd row), and CS

RR = xCT
RR (bottom row)

WCs in our model. After integrating the mediators out and
Fierz transformation, the WCs in Eqs. (13), (15), and (16)
are generated. The operators OV

RL and O
V
LR are proportional

to the mixing between the LQs. At the LQ scale x = 4, while
in the IR x ⇡ 8 [21, 34, 35]. The relevant couplings g from
Eqs. (10) and (14) are shown for each diagram.

doubly used.)

 
R1

R2

!
=

 
cos' � sin'

sin' cos'

! 
R2

2/3

R̃2/3
2

!
. (12)

Both mass eigenstates R1 and R2 inherit a coupling to
both RH and LH fermions of the SM after this rotation.
After rewriting LFR in terms of these mass eigenstates
and integrating them out at tree-level, we can generate
the operator O0

SR
⌘ (⌧̄PRb) (c̄PL⌫). After Fierz trans-

formation this operator morphs into OV

RL
with its WC

given by

CV

RL
= � v2

4Vcb

g231 g̃331 cos' sin'

✓
1

M2
2

� 1

M2
1

◆
, (13)

where M1 and M2 > M1 are the mass eigenvalues cor-
responding to the eigenstates R1 and R2 in Eq. (12),
respectively. The process of integrating out these medi-
ators to generate CV

RL
is depicted in Fig. 2.

The two LQs above can further give rise to the follow-
ing interactions

L � gij2 ēj
R
Qi

L
R2

† + g̃i2R̃2Q̄
i

L
⌫R + h.c., (14)

where again i and j are quark and lepton flavor indices,
respectively, and ⌫R is a new SM singlet RH neutrino.
Similar to the earlier discussion on CV

RL
, it can be shown

that these couplings can give rise to

CV

LR
= � v2

4Vcb

g332 g̃22 cos' sin'

✓
1

M2
2

� 1

M2
1

◆
. (15)

2

actually respect the SM gauge symmetries and further
model-building is required to generate them. Currently
there are no viable model in the literature generating
these two WCs. In the context of SM e↵ective field the-
ory (SMEFT), in the leading order, the Higgs-current
operator iH̃DµHū�µdR can generate the WCs after in-
tegrating out the W boson. However, LFUV through the
W is severely constrained [23, 24] and can not explain the
observed anomalies.

Despite all these constraints, as shown in a companion
paper (PA: cite the other paper?), the WC CV

RL
is

necessary for a simultaneous explanation of RD(⇤) , RJ/ 

[25], and FL

D⇤ [26]. As there are currently no model in
the literature generating CV

RL
, a simultaneous explana-

tion of all these anomalies is not possible yet. In this
paper we propose a new leptoquark (LQ) setup that can
circumvent various bounds and generate the WCs CV

RL
.

We will show that our setup can generate a non-zero CV

LR

instead. Interestingly, however, various bounds from fla-
vor physics prevents a simultaneous generation of both
CV

RL
and CV

LR
in our model.

The outline of the paper is as follows. In Sec. II we
introduce our model. The key element in the model is
a pair of SU(2)L doublet LQs that mix with each other
after the Electroweak symmetry breaking (EWSB). In
Sec. III we study the phenomenology of these LQs and
argue that they can be as light as a few hundred GeV.
With such a low scale of NP, we can easily produce large
enough WCs to explain the anomalies. We will also show
that the same model can generate a few other WCs in (4)
as well. We then discuss briefly talk about possible UV-
completion of our setup in Sec. IV. Sec. V is devoted to
conclusions and discussions.

II. THE MODEL

The range of the WC CV

RL
and CV

LR
that can explain

RD and RD⇤ upto 1� of the current global average is
depicted in Fig. 1. We can observe that both CV

RL
and

CV

LR
can explain the RD(⇤) anomalies on their own. It

should also be noted that as indicated in [18], the new
WCs CV

RL
and CV

LR
leave a di↵erent footprint on various

asymmetry observables in the B ! D(⇤)⌧⌫ decay and
can be distinguished from other operators.

Furthermore, in (PA: cite the other work) we
showed that in order to simultaneously explain all the
anomalies associated with LFUV in the charged currents,
i.e. RJ/ , F

L

D⇤ , and RD(⇤) , the NP ought to give rise to
non-zero CV

RL
with a CP-violating phase. Despite these

nice properties, the contribution of these WCs has been
mostly neglected in the literature.

The two operators OV

RL
and OV

LR
are not SM gauge

invariant and two Higgs vev insertions are needed to re-
spect the SU(2)L ⇥ U(1)Y symmetry of the SM. This
implies the operator is essentially dimension 8 and thus,
its contribution to the anomalies should be further sup-
pressed by v2/⇤2

NP, with v being the Higgs vev. This

FIG. 1: The contribution of CV
RL (left) and CV

LR (right) to RD

and RD⇤ . We assume NP only gives rise to one of these oper-
ators in these figures. The orange and the blue bands denote
the 1� range from Eq. (2) for RD⇤ and RD, respectively.

is the underlying reason against NP involving either of
these operators. However, if we allow for the scale of NP
to be low enough, we can generate substantial contribu-
tion to the anomalies using CV

RL
or CV

LR
.

The two Higgs insertions required can be on either
the external fermions or the mediator. In the former
case, given the bounds on the colored fermions from the
LHC and the bounds from the Electroweak precision tests
(EWPT), we can not lower the scale of NP enough to gen-
erate a large WC. In particular, the same mixing angle
needed to generate CV

RL
and CV

LR
a↵ects the coupling of

the SM fermions to gauge bosons, which in turn is tightly
constrained by EWPT [27].
Thus, in this letter we focus on the latter option,

namely mixing of two heavy mediators after the EWSB.
Our setup is the first model relying on CV

RL
or CV

LR
to

explain the RD(⇤) anomalies. We will show in the sub-
sequent section that this setup can evade various exper-
imental bounds.
We consider the symmetry group G ⌘ SU(3)C ⇥

SU(2)L ⇥ SU(2)R ⇥ U(1)X and assume the SM U(1)Y
emerges from the SU(2)R ⇥ U(1)X ! U(1)Y breaking.
The extended symmetry SU(2)R ⇥U(1)X does not need
to be a gauge symmetry and can be an emergent global
symmetry at low energies as in composite Higgs models.
The group G respects the custodial symmetry, which en-
ables us to avoid stringent bounds from EWP, see Sec. III.

We introduce a scalar LQ, R ⌘ (R̃2, R2) which trans-
forms as (3, 2, 2)2/3 under the group G. Here, two compo-

nents of SU(2)R, R2 and R̃2, are doublets of SU(2)L. We
use the notation of [28] for these LQs. After the SU(2)R⇥
U(1)X ! U(1)Y breaking the charge assignment of the
new particles under the SM SU(3) ⇥ SU(2)L ⇥ U(1)Y
gauge group is R2 = (3, 2, 7/6) and R̃2 = (3, 2, 1/6),

R2 =

 
R2

5/3

R2
2/3

!
, R̃2 =

 
R̃2/3

2

R̃�1/3
2

!
, (7)

where the superscripts indicate the electric charges of
di↵erent scalars in each SU(2)L doublet. The SM Higgs

3

field can be written as H ⌘ (H̃,H) where H̃ ⌘ i�2H⇤

and transforms as (1, 2, 2)0 under the group G. Then,
the SU(2)L ⇥ SU(2)R transformations for R and H are
expressed as

H ! UL HU†
R
, R ! UL RU†

R
, (8)

where UL,R are SU(2)L,R rotations respectively.
The relevant terms in the Lagrangian of the model are

L � LR + LHR + LFR, (9)

where

LR = |@R2|2 + |@R̃2|2 �M2
R2

|R2|2 �M2
R̃2

|R̃2|2,

LHR = �RTr
�
R†H

�
Tr
�
H†R

�

= �R

n
|R†

2H|2 + |R̃†
2H̃|2 + (R̃†

2H̃H†R2 + h.c.)
o
,

LFR = gij1 ūi

R
R2✏L

j + g̃ij1 L̄j✏R̃†
2d

i

R
+ h.c.,

(10)

(PA: factors of 2 are correct in LHR? )where ✏ is
the anti-symmetric tensor with two SU(2)L indices and
i and j are quark and lepton flavor indices, respectively.
The first line of Eqs. (10) contain the mass terms MR2 ,
M

R̃2
for the LQs R2 and R̃2. In our model the mass of

the LQs of electric charge 5/3 and �1/3 are equal to MR2

and M
R̃2

, respectively. Although the custodial symme-
try requires MR2 = M

R̃2
, we assume they are di↵erent in

general as a di↵erence can be given rise to by any source
of custodial symmetry breaking. The quartic term in
the second line respects the custodial symmetry. We can
also write down single trace terms, Tr

�
HR†RH†� and

Tr
�
HH†RR†�, but it is only relevant for us that these

terms shift four leptoquark masses universally. This ef-
fect can be absorbed by the mass terms in the first line,
so we ignore them in the following discussions. The last
line contain the LQ couplings to the SM fermions and
explicitly breaks the custodial symmetry. (PA: should

mention that some of these will break the custo-

dial symmetry in the �s too.)

A similar model without the extended symmetry had
been used in the past [29] to explain two anomalies in the
HERA experiment [30, 31]. It should be noted that each
of these LQs have individually been proposed as solutions
to RD(⇤) in the past, see e.g. [32, 33], but our setup is the
first model using their mixing to produce CV

RL
or CV

LR
.

After the EWSB, R2
2/3 and R̃2/3

2 mix via the third

term in LHR. The mass matrix of the R2
2/3 and R̃2/3

2 is
given by

M2
2/3 =

 
M2

R2
� �Rv2 �Rv2

�Rv2 M2
R̃2

� �Rv2

!
, (11)

where v is the Higgs vev v ⇡ 246GeV. We can diagonalize
this matrix by the rotation, (PA: bad notation : R2

bR
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x
R̃2 R2

⌫L
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g̃331

g231
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FIG. 2: The diagrams generating CV
RL (1st row), CV

LR (2nd
row), CS

LL = xCT
LL (3rd row), and CS

RR = xCT
RR (bottom row)

WCs in our model. After integrating the mediators out and
Fierz transformation, the WCs in Eqs. (13), (15), and (16)
are generated. The operators OV

RL and O
V
LR are proportional

to the mixing between the LQs. At the LQ scale x = 4, while
in the IR x ⇡ 8 [21, 34, 35]. The relevant couplings g from
Eqs. (10) and (14) are shown for each diagram.

doubly used.)

 
R1

R2

!
=

 
cos' � sin'

sin' cos'

! 
R2

2/3

R̃2/3
2

!
. (12)

Both mass eigenstates R1 and R2 inherit a coupling to
both RH and LH fermions of the SM after this rotation.
After rewriting LFR in terms of these mass eigenstates
and integrating them out at tree-level, we can generate
the operator O0

SR
⌘ (⌧̄PRb) (c̄PL⌫). After Fierz trans-

formation this operator morphs into OV

RL
with its WC

given by

CV

RL
= � v2

4Vcb

g231 g̃331 cos' sin'

✓
1

M2
2

� 1

M2
1

◆
, (13)

where M1 and M2 > M1 are the mass eigenvalues cor-
responding to the eigenstates R1 and R2 in Eq. (12),
respectively. The process of integrating out these medi-
ators to generate CV

RL
is depicted in Fig. 2.

The two LQs above can further give rise to the follow-
ing interactions

L � gij2 ēj
R
Qi

L
R2

† + g̃i2R̃2Q̄
i

L
⌫R + h.c., (14)

where again i and j are quark and lepton flavor indices,
respectively, and ⌫R is a new SM singlet RH neutrino.
Similar to the earlier discussion on CV

RL
, it can be shown

that these couplings can give rise to

CV

LR
= � v2

4Vcb

g332 g̃22 cos' sin'

✓
1

M2
2

� 1

M2
1

◆
. (15)

CV
RL ⇠ �Rv4

M4
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Asadi, Nakai & DS 
1905.xxxxx



5

FIG. 3: (PA: caption to be revised : brown : DY irreducible bound for ctau, blue : DY reducible bound on btau,
gray : EWP bounds, red : reducible bounds (with this small coupling dominantly from the SUSY searches).
for the reducible bounds we assume the coupling into the new channels in 4⇡.) Contours of mass eigenstates of
charge 2/3 LQs (green), �3 (black curves). We keep the CV

RL WC and the relevant g couplings fixed on each plot.

LQ

j

�

j

j

 
�

FIG. 4: An example of a new decay channel for the LQ. This
new channel allows the LQ to evade the reducible bounds. The
new particles  and � should be chosen almost degenerate in
mass such that the missing particle � is very soft and is not
treated as MET in the searches. The final signature is three
jets per LQ, a signature being looked for in the context of
RPV SUSY [56]. This signature emulates the idea of stealth
SUSY to hide signatures of the superpartners [57–59].

The most constraining searches for our model are in
Tab. I. The criteria for choosing the SUSY searches is just
their availability in our previous work [64] (and that they
give us a bound), while for the other searches (PP, SP,
Monojet) I am including the ones that have the strongest

bound on each final state.

The prototype new channel has been looked for in the
context of RPV SUSY [56]; yet, the current bounds on
the production cross-section are a factor of a few higher
than the production cross-section of these LQs so not
included in our table. We expect the next update of the
aforementioned searches to probe parts of the currently
available parameter space.

In studying the constraints from these searches we fo-
cus on one light LQ and decouple the other three. We
show the reducible bounds on our model in Fig. 5. As
these searches study di↵erent final states, depending on
the branching ratios of the LQ under study, the bounds
from di↵erent searches can be more constraining.

In this figure, we show the region of the branching ra-
tio into b⌧ or c⌫ that is allowed for di↵erent LQ masses;
other than these two channels, we assume the LQ only
decays to the new channel depicted in Fig. 4. As we
go to larger branching ratios into b⌧ or c⌫ channels, the
LQ search targeting that final state become more con-
straining. The SUSY searches we recast can also con-
strain these branching ratios. As these SUSY searches
target final states with missing transverse energy (MET),

stringent bounds from          , direct leptoquark searches, SUSY searches         ⌧+⌧�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

but some viable parameter space still remains!



Conclusions
The central measured values of FLD* and R(J/psi) are both higher than their SM 
predictions.  They are also higher than the predictions from any known NP 
model. 

We developed a semi-analytical method to maximize FLD* and R(J/psi) in the full 
space of dimension 6 WCs, subject to RD/RD* constraints. 

• Using our method, we showed that FLD* is achievable in the space of WCs but R(J/psi) is not. 

• Requires large CVRL WC — “no go theorem” can be evaded with a novel leptoquark model

• Our method is generalizable and can be applied to essentially any b → cτν observable.

Experimental error bars are still large — very likely a fluctuation.

Upcoming measurements by LHCb and Belle II could prove to be interesting. 
Meanwhile we have new ideas for model building to explore.

Stay tuned!



Thanks for your 
attention!
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FIG. 3. Projections of the fit results and data points with statistical uncertainties for the high M2
miss region. Top left: D+`�;

top right: D⇤+`�; bottom left: D0`�; bottom right: D⇤0`�.

RESULTS AND DISCUSSION

The best-fit results, including systematic uncertainties,
are

R(D) = 0.375± 0.064± 0.026 (12)

R(D⇤) = 0.293± 0.038± 0.015 . (13)

Figure 6 shows the exclusion level in the R(D)–R(D⇤)
plane, based on the likelihood distribution that is con-
voluted with a correlated two-dimensional normal distri-
bution according to the systematic uncertainties. The
exclusions of the central values of the BaBar mea-

surement [11] and the SM prediction as determined in
Ref. [11] are comparably low at 1.4� and 1.8�, respec-
tively. While our measurement does not favor one over
the other, both measurements deviate in the same direc-
tion from the SM expectation.

We also use our fit procedure to test the compatibility
of the data samples with the two-Higgs-doublet model of
type II. For this purpose, we perform the analysis with
the 2HDM MC sample with tan�/mH+ = 0.5 c2/GeV
to extract probability density distributions. The best-fit
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RESULTS AND DISCUSSION

The best-fit results, including systematic uncertainties,
are

R(D) = 0.375± 0.064± 0.026 (12)

R(D⇤) = 0.293± 0.038± 0.015 . (13)

Figure 6 shows the exclusion level in the R(D)–R(D⇤)
plane, based on the likelihood distribution that is con-
voluted with a correlated two-dimensional normal distri-
bution according to the systematic uncertainties. The
exclusions of the central values of the BaBar mea-

surement [11] and the SM prediction as determined in
Ref. [11] are comparably low at 1.4� and 1.8�, respec-
tively. While our measurement does not favor one over
the other, both measurements deviate in the same direc-
tion from the SM expectation.

We also use our fit procedure to test the compatibility
of the data samples with the two-Higgs-doublet model of
type II. For this purpose, we perform the analysis with
the 2HDM MC sample with tan�/mH+ = 0.5 c2/GeV
to extract probability density distributions. The best-fit
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systematic uncertainty for “M2

miss
shape” in Table IV.

For the o0
NB

alternate model, we replace the bifurcated
Gaussians by kernel-estimator functions with adaptive
bandwidth. Again, the deviation from the nominal fit
value is taken as the symmetric systematic uncertainty
for “o0

NB
shape” in Table IV. It is among the dominant

systematic uncertainties.

The identification e�ciencies for primary and sec-
ondary leptons are slightly di↵erent between simulated
and real data. This di↵erence a↵ects the measurement
by modifying the e�ciency ratios. It has been calibrated
for di↵erent lepton kinematics and run conditions using

J/ ! `+`� decays, leading to a 0.5% relative uncer-
tainty in R(D) and R(D⇤).

The correlations of R(D) and R(D⇤) for each item-
ized systematic-uncertainty contribution are given in the
last column of Table IV. These are calculated using 500
pseudoexperiments, with two exceptions: the shape un-
certainties are assumed to be uncorrelated while the lep-
ton ID e�ciencies are assumed to be 100% correlated
between R(D) and R(D⇤). The total correlation of the
systematic uncertainties is �0.32.

Belle 1507.03233

ARE WE SURE THAT THESE ARE SM NEUTRINOS?
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surement [11] and the SM prediction as determined in
Ref. [11] are comparably low at 1.4� and 1.8�, respec-
tively. While our measurement does not favor one over
the other, both measurements deviate in the same direc-
tion from the SM expectation.

We also use our fit procedure to test the compatibility
of the data samples with the two-Higgs-doublet model of
type II. For this purpose, we perform the analysis with
the 2HDM MC sample with tan�/mH+ = 0.5 c2/GeV
to extract probability density distributions. The best-fit
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systematic uncertainty for “M2

miss
shape” in Table IV.

For the o0
NB

alternate model, we replace the bifurcated
Gaussians by kernel-estimator functions with adaptive
bandwidth. Again, the deviation from the nominal fit
value is taken as the symmetric systematic uncertainty
for “o0

NB
shape” in Table IV. It is among the dominant

systematic uncertainties.

The identification e�ciencies for primary and sec-
ondary leptons are slightly di↵erent between simulated
and real data. This di↵erence a↵ects the measurement
by modifying the e�ciency ratios. It has been calibrated
for di↵erent lepton kinematics and run conditions using

J/ ! `+`� decays, leading to a 0.5% relative uncer-
tainty in R(D) and R(D⇤).

The correlations of R(D) and R(D⇤) for each item-
ized systematic-uncertainty contribution are given in the
last column of Table IV. These are calculated using 500
pseudoexperiments, with two exceptions: the shape un-
certainties are assumed to be uncorrelated while the lep-
ton ID e�ciencies are assumed to be 100% correlated
between R(D) and R(D⇤). The total correlation of the
systematic uncertainties is �0.32.
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➡ Could be a light, weakly-interacting BSM particle instead?

ARE WE SURE THAT THESE ARE SM NEUTRINOS?
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Description Experiment+Luminosity reducible vs. irreducible Reference Diagrams

Direct LQ search for b⌧ final state CMS-35.9 fb�1
reducible [48]

p

p

⌧
b

⌧

b

LQ

LQ

Direct LQ search for c⌫ final state ATLAS-36.1 fb�1
reducible [45]

p

p

⌫

c

⌫

c

LQ

LQ

generic SUSY search with MET CMS-35.9 fb�1
reducible [51–54]

p

p

⌧
b

⌧

b

LQ

LQ

p

p

⌧
b

⌫

c

LQ

LQ

p

p

⌧
b

j
j

j
�

LQ

LQ

p

p

⌫

c

⌫

c

LQ

LQ

p

p

⌫

c

j
j

j
�

LQ

LQ

p

p

j
j
j
�
�
j
j
j

LQ

LQ

Interference with the SM DY ATLAS-36.1 fb�1
irreducible [46] (based on [63])

b ⌧

b ⌧

g̃331 sin'

g̃331 sin'

R1

c ⌧

c ⌧

g231

g231

R5/3

TABLE I: (PA: diagrams to be inserted). The reducible and the irreducible bounds that we show in the paper come from
these searches. The reducible bounds are depicted in Fig. 5, while the irreducible ones are more constraining and are shown in
Fig. 3.

FIG. 5: (PA: figure should be updated)The bounds from
direct LQ searches [45, 48] and SUSY searches [51–54] : for
two LQ masses 750 and 850.

when the branching ratio into the new three jet channel
from Fig. 4 increases, i.e. the bottom-left of the figure,
the bounds from these SUSY searches are loosened and
lighter LQ masses will be available.

In our study we recast four of the CMS SUSY searches
[51–54] and find their limits on our model. In doing so,
we use the code-base developed in [64]. Note should be
taken that some of these searches have recently been up-
dated with the new LHC data, e.g. [55]; we leave a recast
of these new searches and their e↵ects on our model for
future works. We observe that the bounds from the re-
casted SUSY searches can strongly constrain a LQ below
1TeV in our model, similar to the direct searches men-
tioned earlier. (PA: should we cite pythia, mad-

graph and delphes?)

Figure 5 shows that with a branching ratio of ⇠ 50%

or higher into the new three jet channel we can have
LQs as light as ⇠ 850GeV, which we will show is light
enough to generate a large CV

RL
. The figure also indicates

that most of the remaining ⇠ 50% branching ratio should
be attributed to the b⌧ channel in order to evade these
bounds. As a prototype of these branching ratios, we
focus on BR (R1 ! b⌧) /BR (R1 ! c⌫) = 3 for the rest
of this section. This ratio can be obtained by fixing the
ratio of the relevant g couplings from Eq. (10).
So far we found that with the new channel, we can

evade the reducible collider bounds on our model. Fig. 3
shows the irreducible constraints from DY processes. In
that figure we fix the WC CV

RL
and the couplings g̃331

and g231 . As already mentioned, in our model we have
MR2 = M5/3 and M

R̃2
= M�1/3. The value of �R in

Fig. 3 is determined using the values of MR2 , MR̃2
, CV

RL
,

and the g couplings.
Once �R is known too, we can find the masses of

charge 2/3 LQs as well (green and red contours). As
the relevant diagrams in Tab. I indicate, the bounds on
g231 (g̃331 ) from the DY interference, shown as a purple
(orange) region in this plot, depend on the mass of the
LQ with electric charge 5/3 (on the mass of the light-
est LQ with electric charge 2/3 as well as the mixing
between the two LQs of the same charge). Other col-
lider bounds can still be avoided by introducing a new
hidden decay channel, like Fig. 4, and with the lightest
LQ around 700GeV or higher. We should remember that
BR (R1 ! b⌧) /BR (R1 ! c⌫) = (tan'g̃331 /g231 )2.
With MR2 6= M

R̃2
, the custodial symmetry of our

model is explicitly broken and the bounds on the oblique
parameter T become relevant. We show the bounds form
T and S parameters in Fig. 3 as well. As we diverge from



Moriond 2019 update from Belle [paper is out: 1904.08794]

Giacomo Caria University of Melbourne22/03/2019

• Most precise measurement of 
R(D) and R(D*) to date 

• First R(D) measurement 
performed with a semileptonic 
tag

• Results compatible with SM 
expectation within 1.2σ 

• R(D) - R(D*) Belle average is 
now within 2σ of the SM 
prediction 

• R(D) - R(D*) exp. world average 
tension with SM expectation 
decreases from 3.8σ to 3.1σ 
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Chapter 81559

Conclusion1560

This thesis presents the measurement of the branching ratio of B̄ ! D
(⇤)

⌧
�
⌫̄⌧ relative to1561

B̄ ! D
(⇤)

`
�
⌫̄` decays – where ` is either e or µ – using semileptonic tagging channels and1562

leptonic ⌧ decays exclusively. It is performed on the full dataset on the ⌥(4S ) resonance of1563

the Belle experiment.1564

In the past these measurements have been carried out using hadronic tags, and this work1565

is the first analysis that uses a semileptonic tag for a combined measurement of R(D) and1566

R(D⇤) . Furthermore, with respect to the previous semileptonic measurement of R(D⇤+) by1567

Belle [44], this analysis uses a larger number of Btag channels, which directly translates to a1568

larger analysis dataset.1569

Our results are

R(D) = 0.307 ± 0.037 ± 0.016 (8.1)

R(D⇤) = 0.283 ± 0.018 ± 0.014, (8.2)

where the first uncertainty is statistical and provided by the fit, and the second error is1570

systematic. This is the single most precise measurement of R(D) and R(D⇤) ever performed.1571

The results are in agreement with the previous Belle measurement of R(D⇤) performed with1572

a semileptonic tag, which is now superseded.1573

The goal was to test the compatibility of this experimental data with the SM, whose
expectation values are

R(D) SM = 0.299 ± 0.003 (8.3)

R(D⇤) SM = 0.258 ± 0.005. (8.4)

Our results for R(D) and R(D⇤) are in agreement with the SM predictions within 0.2� and1574

1.1� respectively. The combination of our R(D) and R(D⇤) results is compatible with the1575

SM within 1.3�. Before these results, the experimental R(D) and R(D⇤) world average1576

showed a discrepancy of approximately 4� with the SM expectations. However, given the1577

compatibility of our results with the SM and their high precision, this discrepancy is reduced1578

to 3� when including these latest results.1579

151

SM prediction

Chapter 71522

Results and Discussion1523

7.1 Results1524

After performing the fit and evaluating the systematic uncertainty, we extract the results:

R(D) = 0.307 ± 0.037 ± 0.016 (7.1)

R(D⇤) = 0.283 ± 0.018 ± 0.014, (7.2)

where the first uncertainty is statistical and provided by the fit, and the second error is1525

systematic. A break-down of electron and muon channel results is given in Table 7.1. We1526

exploited the isospin symmetry between B
0 and B

+ to impose the relationship R(D(⇤)) =1527

R(D(⇤)+) = R(D(⇤)0) in the fit. The fit projection on the EECL axis and on the classifier axis,1528

for both the whole 2D fit region and for the signal region defined by class > 0.9, are shown1529

in Figures 7.2 to 7.8. The correlation matrix for all floating parameters of the fit is shown in1530

Figure 7.9. As expected, we find a statistical correlation factor of �0.53 between R(D⇤) and1531

R(D) .

Table 7.1: Fit results for the electron, muon and sum of electron and muon channels.

R(D, `) 0.307 ± 0.037 ± 0.016

R(D, e) 0.281 ± 0.042 ± 0.017

R(D, µ) 0.373 ± 0.068 ± 0.030

R(D⇤
, `) 0.283 ± 0.018 ± 0.014

R(D⇤
, e) 0.304 ± 0.022 ± 0.016

R(D⇤
, µ) 0.245 ± 0.035 ± 0.020

1532

The 2D combination of the R(D⇤) and R(D) results, together with their correlation and1533

the SM expectation is shown in Figure 7.10.1534

137

This result

These latest results not included in today’s talk…



BR currently not measured. LHCb prospects are not good…

Rules out charged Higgs explanations of RD/RD* anomaly!

Problems with charged Higgs

b

c ⌧

⌫

Br(Bc ! ⌧⌫) . 30%
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Upper bound from SM predictions for 
other final states decay widths, 
compared to measured total width  
(Alonso, Grinstein & Camalich 1611.06676.)

Upper bound based on LEP search 
for Bu→τν  
(Akeroyd & Chen 1708.04072)
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Problems with W’
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dominance

Faroughy et al 1609.07138,   Crivellin et al 1703.09226

Strong constraints from Z’→ττ resonance searches rule out these models!
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Leptoquarks

Strong LHC constraints from pair production, DY, and mono-tau, but much 
parameter space remains
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Figure 13: Current (solid) and projected (dashed) LHC constraints on the vector leptoquark
U1 mass and its coupling to the third generation quark and lepton doublets, �33. The pair
production and DY bounds are recast from [24] and [103], respectively. The star marks the
benchmark point (mU1 = 2 TeV and �33 = 1.12) from the 4321 model that explains the RD(⇤)

and RK(⇤) anomalies [121]. See text for more details.

obtain our projected 95% CL lower limit on mU1 of 1920 GeV.13 Performing the projection
procedure for pp ! U1Ū1 ! (b⌧)(b̄⌧) search based on [59], we project a 95% CL lower limit
on mU1 of 1760 GeV for HL-LHC (13 TeV, 3 ab�1). In Fig. 13 we show the stronger reach
from the (t⌫)(t̄⌫) search.

In order to project the DY-production limit, we assume that both the statistical and the
systematical uncertainties can be reduced as the integrated luminosity increases. To be more
specific, we take the number of observed and expected background events from the highest bin
of the m

tot
T distribution from [103] and scale both of them by a factor of 3000/36. Meanwhile,

we optimistically (and perhaps unrealistically) assume that the systematical uncertainties are
negligible. We then apply the cut and count analysis described in App. A and obtain a
projected 95% CL limit in the mU1 � �33 parameter space.

Note that our projected sensitivities for both the pair-production and DY searches at
HL-LHC are tantalizingly close to excluding the benchmark point or discovering the U1 in the
4321 model.

13To cross check the validity of our scaling treatment, we used the same method to project Run 2 LHC
bounds on stop (t̃) masses with 300 fb�1 and 3 ab�1. We obtained bounds on mt̃ of 1.2 TeV and 1.5 TeV
respectively, which is in good agreement with [122].

– 23 –

Schmaltz & Zhong 1810.10017

3

FIG. 3. Bounds on representative explicit models that address the RD(⇤) anomalies. Left: The U1 vector leptoquark. Right: A
potentially broad W 0 gauge boson. See main text for details.

TABLE II. 2� upper bounds for the absolute value of the
WCs of semi-tauonic cb transitions at µ = mb.

Data set Vector Scalar Tensor
ATLAS (36.1 fb�1) 0.55 0.93 0.26
CMS (35.9 fb�1) 0.25 0.45 0.12
LHC combined 0.32 0.57 0.16
LHC (150 fb�1) 0.21 0.37 0.10

HL-LHC 0.10 0.17 0.05

the one of CMS is systematically consistent with the SM.
The most remarkable result shown in this table is that,
combining the analysis of the two sets of data, we arrive
at a sensitivity to NP which is, indeed, competitive to the
one achieved in B decays. In fact, the collider data poses
already a challenge to some of the possible explanations
to the RD(⇤) anomaly. To make this discussion clearer,
we compare in Fig. 2 the results from the fits to RD(⇤)

shown in Tab. I with the ones obtained from the collider
analysis. The tensor and right-handed solutions are ex-
cluded at more than 2� with the current data, while the
HL-LHC will probe the two remaining scenarios in Tab. I.

A caveat in this analysis concerns the range of conver-
gence of the expansion in powers of (s/⇤2) implied by
the EFT. This manifests, for instance, in the pathologi-
cal behaviour of the cross section, Eq. (2), for

p
s � ⇤,

leading to the upper bound ⇤ . 9 TeV by means of uni-
tarity arguments [12]. In the upper horizontal axis of
Fig. 2 we show the bounds in terms of the NP scale de-
fined as ⇤ = v/

p
|Vcb||✏�|, which result to be within the

range of mT reported by the experiments. The bins most
sensitive to NP turn out to be those in 0.7 TeV . mT .
1.5 TeV; removing the tail of the distribution above that
region has a minimal impact, of . 10%, on the bounds.
Therefore, the EFT analysis should retain its validity for
mediators above this scale.

For scenarios with lighter NP, the EFT study is invalid
and one needs to do the analysis in terms of the partic-
ular UV completions of the operators. The possibilities

in terms of mediators are also quite limited, reducing
to the tree-level exchange of either new colorless vector
(W 0) [28, 60–65] and scalar (H±) [66–70] particles in the
s-channel, or leptoquarks in the t-channel [27, 47, 49, 71–
91]. We will not consider extra Higsses because they are
in conflict with bounds from the decay Bc ! ⌧⌫ [14, 16].

The Leptoquark completion: Leptoquarks (LQ)
carrying di↵erent quantum numbers (or combinations
thereof) can produce all the operators in Eq. (1) [27, 47,
49, 71–91] (we will use same notation as in refs. [92, 93]).
Our analysis involve (i) the scalar LQ S1 = (3̄, 1, 1/3)
producing vector-current (left-handed or right-handed)
solutions; (ii) the S1 producing the scalar-tensor solution;
(iii) the S1 combined with the scalar LQ R2 = (3, 2, 7/6)
to achieve a tensor solution by adjusting the masses
MS1 = MR2 ; (iv) the vector LQ U1 = (3, 1, 2/3) lead-
ing also to the vector-current scenarios. All in all, we
study four di↵erent LQ models, accounting for a total of
six di↵erent NP solutions to the RD(⇤) anomalies.

We simulate the signals scanning the LQ masses in the
range 0.75 TeV to 5 TeV and, for a given mass, we derive
upper bounds on the product of LQ couplings to c- and
b-quarks. In contrast to the EFT analysis, we simulate
without jets at parton level in the final state keeping only
the t-channel contributions, which are those connected
to RD(⇤) . Single- and pair-LQ production topologies ap-
pear with extra jets. These introduce model dependence
in terms of e.g. branching fractions to other possible de-
cay channels, and are the target of direct searches (see
e.g. [94, 95]).

In all the models we find that the bounds on the
coupling-mass plane of the LQ are approximately equal
to those derived from the EFT solutions they incarnate
for masses & 2� 3 TeV. Solutions with lower masses are,
nevertheless, being cornered by the aforementioned direct
searches. Therefore, the conclusions for the LQ are very
similar to the EFT analysis: The two LQ S1-R2 scenario
is excluded by more than 2� in all the mass range. Right-
handed solutions [49, 91] with S1 and U1 are also ex-
cluded by & 2� except for masses below 2 TeV. This mass
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