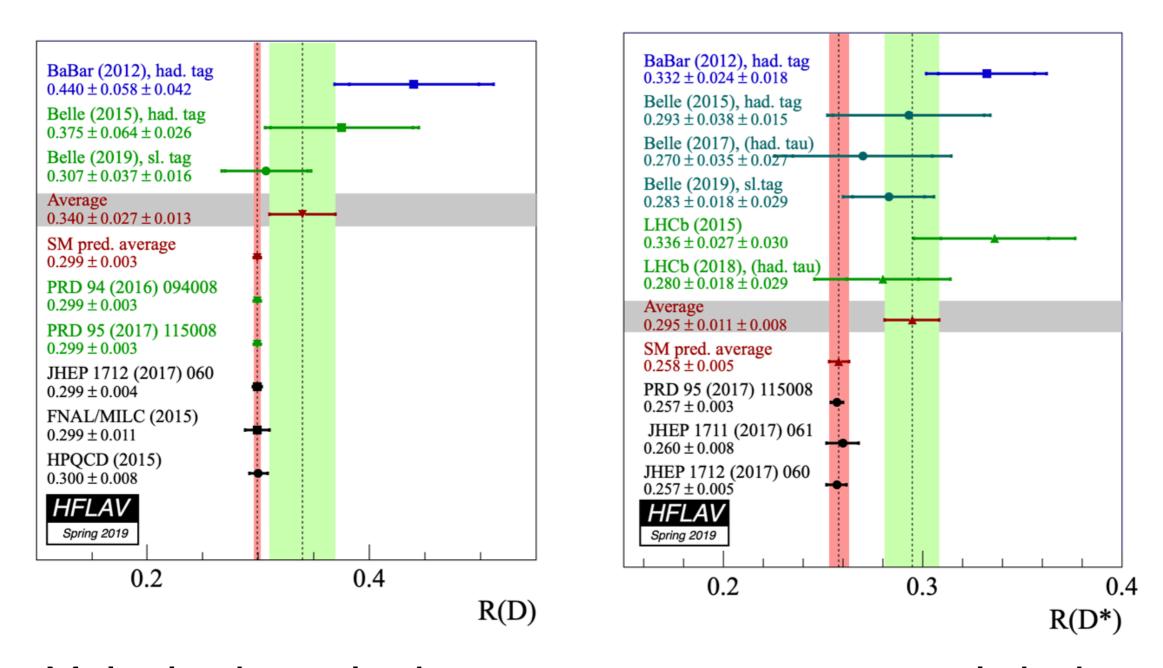

Maximizing the impact of New Physics in the $b \rightarrow cTV$ anomalies

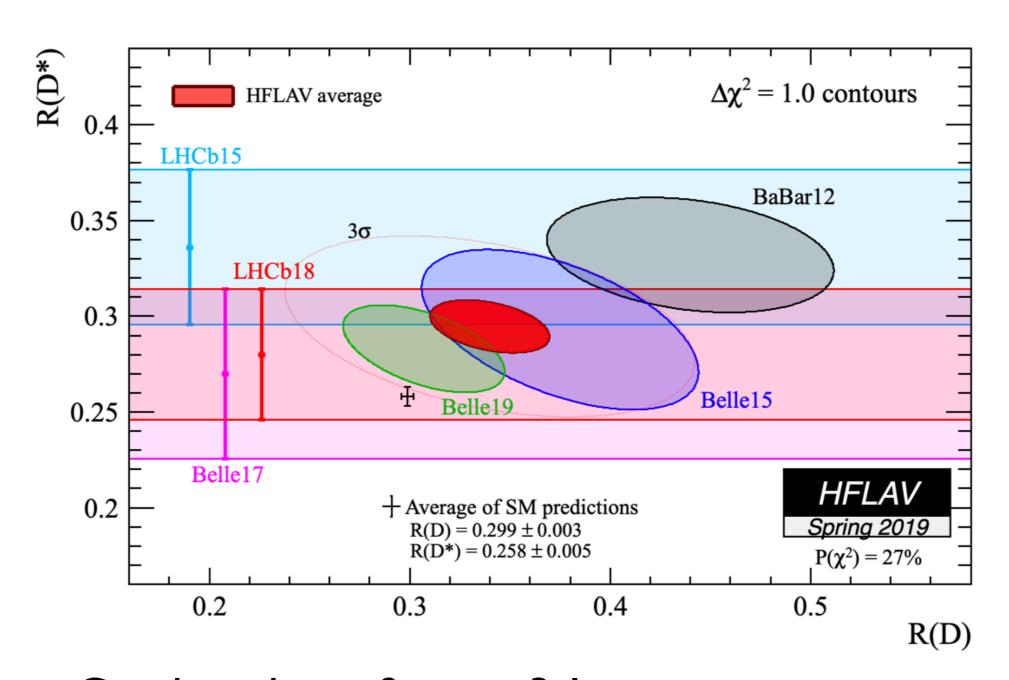
David Shih NHETC, Rutgers University

4th NPKI Workshop, Seoul May 16, 2019

Asadi & DS 1905.03311 Asadi, Nakai & DS 1905.xxxxx


The RD/RD* anomalies

$$R(D^{(*)}) = \frac{\Gamma(B \to D^{(*)}\tau\bar{\nu})}{\Gamma(B \to D^{(*)}l\bar{\nu})} \qquad (l = e, \mu)$$


Ratio is theoretically clean, probe of lepton flavor universality

The RD/RD* anomalies

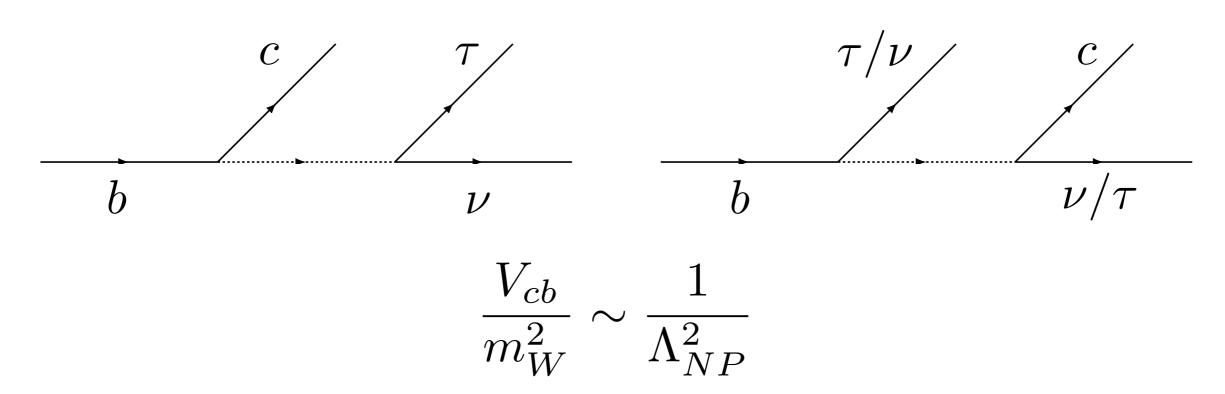
Multiple channels, three experiments: consistently high

The RD/RD* anomalies

Combined significance: 3.10 (was 3.80 before Moriond '19)

Dim 6 effective Hamiltonian for $b \rightarrow cTV$ transitions:

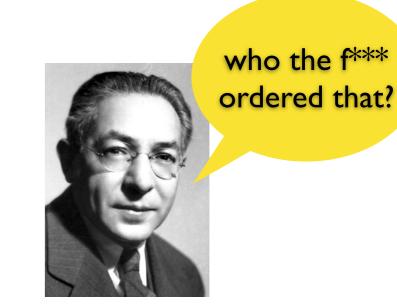
$$\mathcal{H}_{\text{eff}} = \frac{4G_F V_{cb}}{\sqrt{2}} \left(\mathcal{O}_{LL}^V + \sum_{\substack{X=S,V,T\\M,N=L,R}} C_{MN}^X \mathcal{O}_{MN}^X \right)$$


$$\mathcal{O}_{MN}^{S} \equiv (\bar{c}P_{M}b)(\bar{\tau}P_{N}\nu)$$

$$\mathcal{O}_{MN}^{V} \equiv (\bar{c}\gamma^{\mu}P_{M}b)(\bar{\tau}\gamma_{\mu}P_{N}\nu)$$

$$\mathcal{O}_{MN}^{T} \equiv (\bar{c}\sigma^{\mu\nu}P_{M}b)(\bar{\tau}\sigma_{\mu\nu}P_{N}\nu)$$

5 SM Wilson operators: \mathcal{O}_{LL}^V , \mathcal{O}_{RL}^V , \mathcal{O}_{LL}^S , \mathcal{O}_{RL}^S , \mathcal{O}_{RL}^S , \mathcal{O}_{LL}^T


- Only LH neutrinos
- $\mathcal{O}_{RL}^T = 0$

Need:

- ullet Light mediator $\Lambda_{NP}\lesssim 1~{
 m TeV}$
- Large couplings
- Tree-level

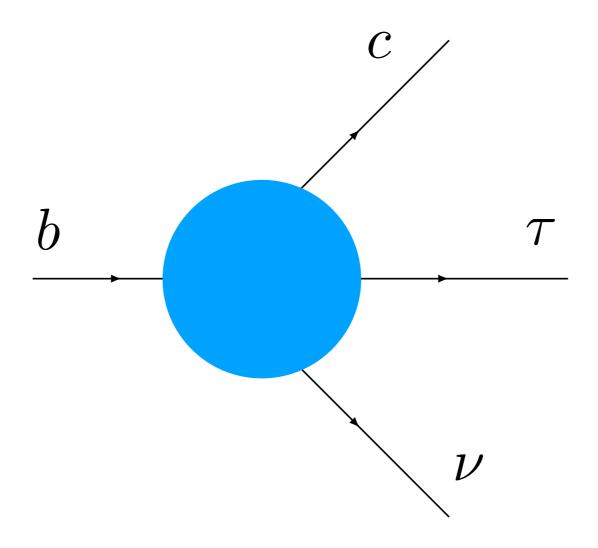
Possibilities: charged Higgs, W' or leptoquark

• Charged Higgs: contributes to $B_c \to \tau V$. Indirect bounds from total width $(Br(B_c \to \tau V) \lesssim 30\%)$ and LEP search for $B_u \to \tau V$ $(Br(B_c \to \tau V) \lesssim 10\%)$ rule out these explanations of the anomaly. (Alonso, Grinstein & Camalich 1611.06676; Akeroyd & Chen 1708.04072)

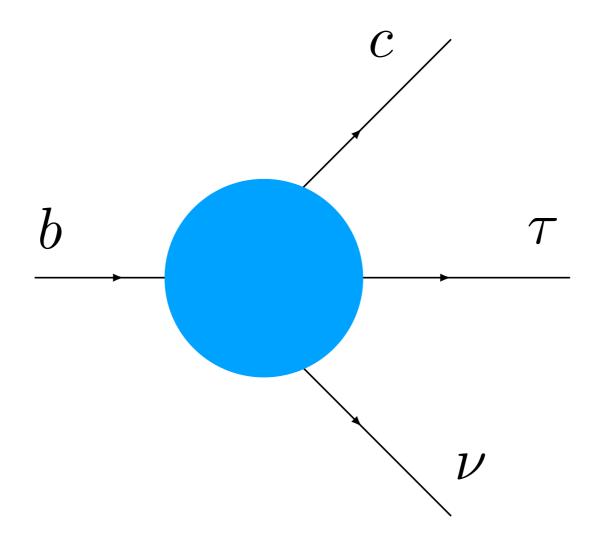
• Charged Higgs: contributes to $B_c \to \tau V$. Indirect bounds from total width $(Br(B_c \to \tau V) \leq 30\%)$ and LEP search for $B_u \to \tau V$ $(Br(B_c \to \tau V) \leq 10\%)$ rule out these explanations of the anomaly. (Alonso, Grinstein & Camalich 1611.06676; Akeroyd & Chen 1708.04072)

 W primes: Strong constraints from Z'→TT searches rule out these models (Faroughy et al 1609.07138, Crivellin et al 1703.09226)

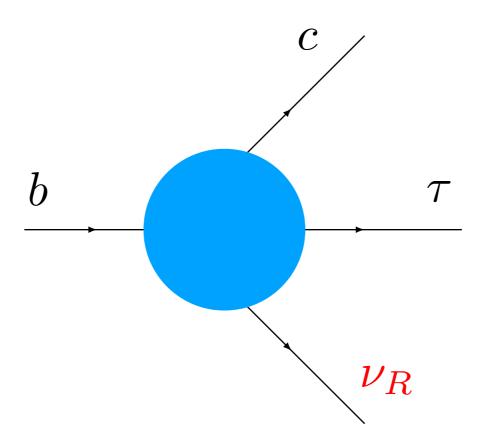
• Charged Higgs: contributes to $B_c \to TV$. Indirect bounds from total width $(Br(B_c \to TV) \leq 30\%)$ and LEP search for $B_u \to TV$ $(Br(B_c \to TV) \leq 10\%)$ rule out these explanations of the anomaly. (Alonso, Grinstein & Camalich 1611.06676; Akeroyd & Chen 1708.04072)



 W primes: Strong constraints from Z'→TT searches rule out these models (Faroughy et al 1609.07138, Crivellin et al 1703.09226)



 Leptoquarks: Strong LHC constraints from pair production, DY, and mono-tau, but much parameter space remains (many people....see e.g. Schmaltz & Zhong 1810.10017; Greljo et al 1811.07920)



ARE WE SURE THAT THESE ARE SM NEUTRINOS?

ARE WE SURE THAT THESE ARE SM NEUTRINOS?

→ Could be a light, weakly-interacting BSM particle instead?

Allowing for RH neutrinos opens up new avenues for model building and phenomenology (Asadi, Buckley & DS 1804.04135, 1810.06597)

He & Valencia 1211.0348
Dutta et al 1307.6653
Cline 1512.02210
Becirevic et al 1608.08501
Bardhan et al 1610.03038
Dutta & Bhol 1611.00231

Iguro & Omura 1802.01732 Greljo et al 1804.04642 Abdullah et al 1805.01869 Robinson et al 1807.04753 Azatov et al 1807.10745 Heeck et al 1808.07492 Carena et al 1809.01107 Iguro et al 1810.05843

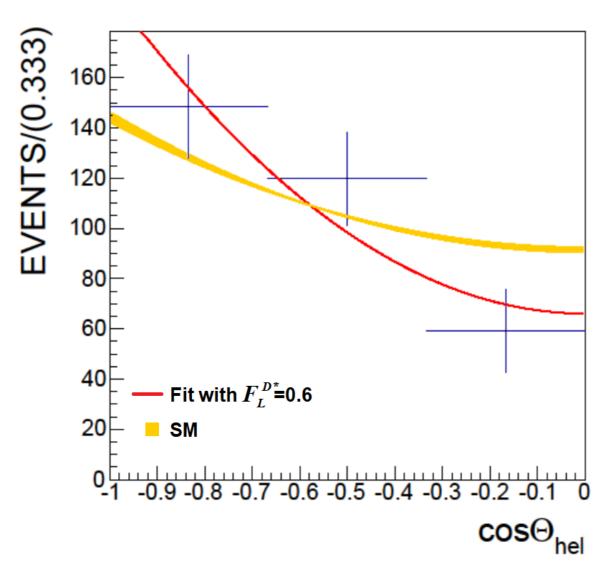
Summary of models

Mediator	Operator Combination	Viability
Colorless Scalars	\mathcal{O}_{XL}^{S}	$(Br(B_c \to \tau \nu))$
W'^{μ} (LH fermions)	\mathcal{O}_{LL}^{V}	(collider bounds)
S_1 LQ $(\bar{3}, 1, 1/3)$ (LH fermions)	$\mathcal{O}_{LL}^S - x \mathcal{O}_{LL}^T, \ \mathcal{O}_{LL}^V$	✓
U_1^{μ} LQ $(3,1,2/3)$ (LH fermions)	$\mathcal{O}_{RL}^{S},~\mathcal{O}_{LL}^{V}$	✓
$R_2 \text{ LQ } (3, 2, 7/6)$	$\mathcal{O}_{LL}^S + x\mathcal{O}_{LL}^T$	✓
$S_3 \text{ LQ } (\bar{3}, 3, 1/3)$	\mathcal{O}_{LL}^{V}	$(b \rightarrow s \nu \nu)$
$U_3^{\mu} \text{ LQ } (3, 3, 2/3)$	\mathcal{O}_{LL}^{V}	$(b \rightarrow s \nu \nu)$
$V_2^{\mu} \text{ LQ } (\bar{3}, 2, 5/6)$	\mathcal{O}_{RL}^{S}	$(R_{D^{(*)}} \text{ value})$
Colorless Scalars	\mathcal{O}_{XR}^{S}	$(Br(B_c \to \tau \nu))$
W'^{μ} (RH fermions)	\mathcal{O}_{RR}^{V}	✓
$\tilde{R}_2 \text{ LQ } (3, 2, 1/6)$	$\mathcal{O}_{RR}^S + x\mathcal{O}_{RR}^T$	$(b \rightarrow s \nu \nu)$
S_1 LQ $(\bar{3}, 1, 1/3)$ (RH fermions)	$\mathcal{O}_{RR}^V, \ \mathcal{O}_{RR}^S - x\mathcal{O}_{RR}^T$	✓
U_1^{μ} LQ $(3,1,2/3)$ (RH fermions)	$\mathcal{O}_{LR}^S,~\mathcal{O}_{RR}^V$	✓

(from Asadi, Buckley & DS 1810.06597)

Beyond RD/RD*

Several more observables that are sensitive to NP in b \rightarrow cTV transitions have been measured recently.

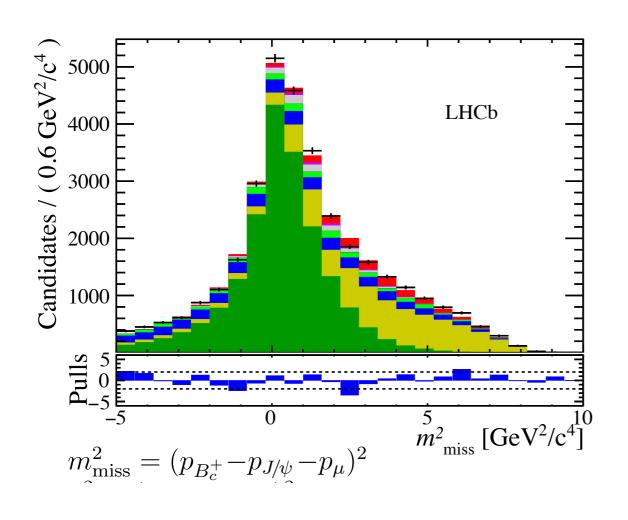

These have the potential to help distinguish between different models and motivate new model-building directions.

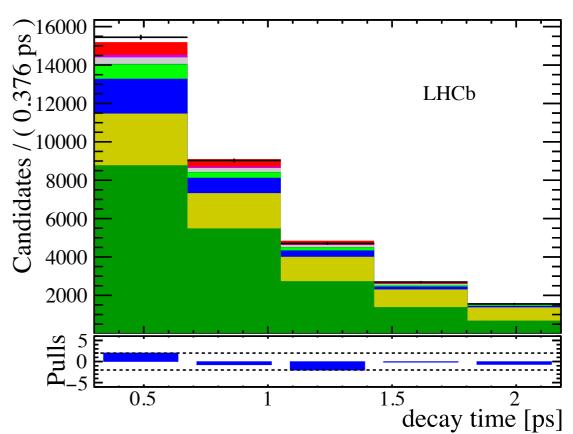
Today's talk:

Recent measurements of FLD* and R(J/psi)

Belle measurement of FLD*

(1903.03102)


$$F_{D^*}^L = \frac{\Gamma(\bar{B} \to D_L^* \tau \nu)}{\Gamma(\bar{B} \to D_L^* \tau \nu) + \Gamma(\bar{B} \to D_T^* \tau \nu)}.$$


$$F_L^{D^*} = 0.60 \pm 0.08 \text{(stat)} \pm 0.04 \text{(syst)}$$

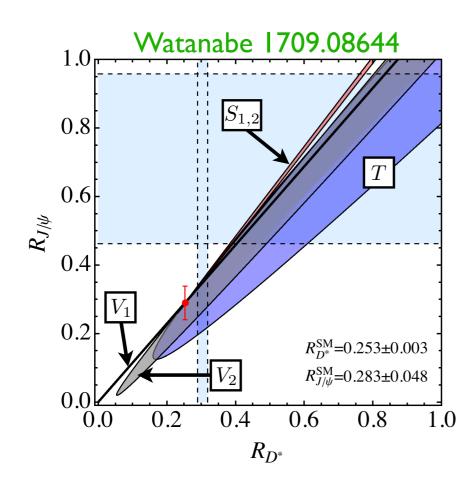
 $(F_L^{D^*})_{\text{SM}} = 0.457 \pm 0.010$

We report the first measurement of the D^* polarization in semitauonic decay $B^0 \to D^{*-}\tau^+\nu_{\tau}$. The result is based on a data sample of 772×10^6 $B\bar{B}$ pairs collected with the Belle detector. The fraction of D^{*-} longitudinal polarization, measured assuming SM dynamics, is found to be $F_L^{D^*} = 0.60 \pm 0.08 ({\rm stat}) \pm 0.04 ({\rm syst})$, and agrees within 1.6 (1.8) standard deviations with the SM predicted values $(F_L^{D^*})_{\rm SM} = 0.457 \pm 0.010$ [21] (0.441±0.006 [20]).

LHCb measurement of R(J/psi)

(1711.05623)

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)} = 0.71 \pm 0.17 \,(\text{stat}) \,\pm 0.18 \,(\text{syst}).$$


$$R_{J/\psi}^{SM} \in (0.2, 0.39)$$

Status of models

Leljak et al 1901.08368

	SM	V_L	S_L	S_R	$S_L = 4T_L$	$(V_L, S_L = -4T_L)$	(S_R, S_L)	(V_L, S_R)	$Re, Im[S_L = 4T_L]$
R_{η_c}	0.32	$0.39_{0.36}^{0.42}$	$0.44_{0.33}^{0.55}$	$0.49_{0.40}^{0.59}$	$0.26^{0.34}_{0.20}$	0.42	0.45	0.44	0.43
$R_{J/\psi}$	0.23	$0.29_{0.26}^{0.31}$	$0.24_{0.23}^{0.24}$	$0.23_{0.23}^{0.22}$	$0.25_{0.23}^{0.26}$	0.29	0.22	0.27	0.26

Table 4: The values of R_{η_c} and $R_{J/\psi}$ in the presence of different NP scenarios. The subscript and the superscript are the values for the 2σ range of the NP couplings.

Iguro et al 1811.08899

	$F_L^{D^*}$
$R_2 LQ$	[0.43, 0.44]
$S_1 LQ$	[0.42, 0.48]
$U_1 LQ$	[0.43, 0.47]
SM	0.46(4)
data	0.60(9)
Belle II	0.04

Maximizing FLD* and R(J/psi)

The measured values of FLD* and R(J/psi) are too high even for NP models!

So far just single mediators, single and pairs of Wilson coefficients studied...

Question: fix R_D , R_{D^*} and $Br(B_c \rightarrow TV)$.

How large can we make FLD* and R(J/psi)?

(Asadi & DS, 1905.03311)

Numerical formulas for the observables

$$\begin{split} R_{D^*} F_{D^*}^L &= 0.116 \left(|C_{-L}^V|^2 + 0.08 |C_{-L}^S|^2 + 7.02 |C_{LL}^T|^2 + \text{Re} \left[(C_{-L}^V)(0.24 (C_{-L}^S)^* - 4.37 (C_{LL}^T)^*) \right] \right), \\ R_{J/\psi} &= 0.289 \left(0.98 |C_{-L}^V|^2 + 0.02 |C_{+L}^V|^2 + 0.05 |C_{-L}^S|^2 + 10.67 |C_{LL}^T|^2 \right. \\ &+ \text{Re} \left[C_{-L}^V (0.14 (C_{-L}^S)^* - 5.15 (C_{LL}^T)^*) \right] + 0.24 \text{Re} \left[C_{+L}^V (C_{LL}^T)^* \right] \right), \\ R_D &= 0.299 \left(|C_{+L}^V|^2 + 1.02 |C_{+L}^S|^2 + 0.9 |C_{LL}^T|^2 + \text{Re} \left[(C_{+L}^V)(1.49 (C_{+L}^S)^* + 1.14 (C_{LL}^T)^*) \right] \right), \\ R_{D^*} &= 0.257 \left(0.95 |C_{-L}^V|^2 + 0.05 |C_{+L}^V|^2 + 0.04 |C_{-L}^S|^2 + 16.07 |C_{LL}^T|^2 \right. \\ &+ \text{Re} \left[C_{-L}^V (+0.11 (C_{-L}^S)^* - 5.89 (C_{LL}^T)^*) \right] + 0.77 \text{Re} \left[C_{+L}^V (C_{LL}^T)^* \right] \right), \\ Br(B_c \to \tau \nu) &= 0.023 \left(|C_{-L}^V + 4.33 C_{-L}^S|^2 \right), \end{split}$$

A nontrivial optimization problem. 10 real dimensional space.

 $C_{+L}^{S} \equiv C_{RL}^{S} \pm C_{LL}^{S}$ $C_{+L}^{V} \equiv C_{LL}^{V} \pm C_{RL}^{V}$

A maximum exists

All the observables are real, symmetric, positive-semidefinite quadratic forms

$$\mathcal{O} = z_5^{\dagger} M_{\mathcal{O}} z_5 = x_5^T M_{\mathcal{O}} x_5 + y_5^T M_{\mathcal{O}} y_5$$

$$z_5 = x_5 + iy_5 = (C_{-L}^V, C_{+L}^V, C_{-L}^S, C_{+L}^S, C_{LL}^T)$$

A global maximum exists: null vectors for RD and RD* are orthogonal

$$C_{-L}^{S}, C_{-L}^{V} \qquad C_{+L}^{S}$$

After imposing RD, RD* constraints, left with compact space. Any function on a compact space must have a maximum somewhere.

$$\tilde{\mathcal{O}} = \mathcal{O} - \lambda_1 (R_D - R_D^{(0)}) - \lambda_2 (R_{D^*} - R_{D^*}^{(0)}) - \lambda_3 (\text{Br}(B_c \to \tau \nu) - \text{Br}(B_c \to \tau \nu)^{(0)})$$

$$\tilde{\mathcal{O}} = \mathcal{O} - \lambda_1 (R_D - R_D^{(0)}) - \lambda_2 (R_{D^*} - R_{D^*}^{(0)}) - \lambda_3 (\text{Br}(B_c \to \tau \nu) - \text{Br}(B_c \to \tau \nu)^{(0)})$$

$$\partial_{x_5}\tilde{\mathcal{O}} = \partial_{y_5}\tilde{\mathcal{O}} = 0$$

$$\tilde{\mathcal{O}} = \mathcal{O} - \lambda_1 (R_D - R_D^{(0)}) - \lambda_2 (R_{D^*} - R_{D^*}^{(0)}) - \lambda_3 (\text{Br}(B_c \to \tau \nu) - \text{Br}(B_c \to \tau \nu)^{(0)})$$

$$\partial_{x_5}\tilde{\mathcal{O}} = \partial_{y_5}\tilde{\mathcal{O}} = 0$$

$$(M_{\mathcal{O}} - \lambda_1 M_D - \lambda_2 M_{D^*} - \lambda_3 M_{B_c}) x_5 = (M_{\mathcal{O}} - \lambda_1 M_D - \lambda_2 M_{D^*} - \lambda_3 M_{B_c}) y_5 = 0$$

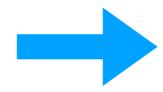
Idea: use method of Lagrange multipliers

$$\tilde{\mathcal{O}} = \mathcal{O} - \lambda_1 (R_D - R_D^{(0)}) - \lambda_2 (R_{D^*} - R_{D^*}^{(0)}) - \lambda_3 (\text{Br}(B_c \to \tau \nu) - \text{Br}(B_c \to \tau \nu)^{(0)})$$

$$\partial_{x_5}\tilde{\mathcal{O}} = \partial_{y_5}\tilde{\mathcal{O}} = 0$$

$$(M_{\mathcal{O}} - \lambda_1 M_D - \lambda_2 M_{D^*} - \lambda_3 M_{B_c}) x_5 = (M_{\mathcal{O}} - \lambda_1 M_D - \lambda_2 M_{D^*} - \lambda_3 M_{B_c}) y_5 = 0$$

 $(M_{\mathcal{O}} - \lambda_1 M_D - \lambda_2 M_{D^*} - \lambda_3 M_{B_c})$ must have a null eigenvector!


Idea: use method of Lagrange multipliers

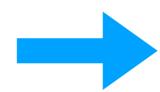
$$\tilde{\mathcal{O}} = \mathcal{O} - \lambda_1 (R_D - R_D^{(0)}) - \lambda_2 (R_{D^*} - R_{D^*}^{(0)}) - \lambda_3 (\text{Br}(B_c \to \tau \nu) - \text{Br}(B_c \to \tau \nu)^{(0)})$$

$$\partial_{x_5}\tilde{\mathcal{O}} = \partial_{y_5}\tilde{\mathcal{O}} = 0$$

$$(M_{\mathcal{O}} - \lambda_1 M_D - \lambda_2 M_{D^*} - \lambda_3 M_{B_c}) x_5 = (M_{\mathcal{O}} - \lambda_1 M_D - \lambda_2 M_{D^*} - \lambda_3 M_{B_c}) y_5 = 0$$

 $(M_{\mathcal{O}}-\lambda_1 M_D-\lambda_2 M_{D^*}-\lambda_3 M_{B_c})$ must have a null eigenvector!

one constraint on $\,\lambda_{1,2,3}\,$


Idea: use method of Lagrange multipliers

$$\tilde{\mathcal{O}} = \mathcal{O} - \lambda_1 (R_D - R_D^{(0)}) - \lambda_2 (R_{D^*} - R_{D^*}^{(0)}) - \lambda_3 (\text{Br}(B_c \to \tau \nu) - \text{Br}(B_c \to \tau \nu)^{(0)})$$

$$\partial_{x_5}\tilde{\mathcal{O}} = \partial_{y_5}\tilde{\mathcal{O}} = 0$$

$$(M_{\mathcal{O}} - \lambda_1 M_D - \lambda_2 M_{D^*} - \lambda_3 M_{B_c}) x_5 = (M_{\mathcal{O}} - \lambda_1 M_D - \lambda_2 M_{D^*} - \lambda_3 M_{B_c}) y_5 = 0$$

 $(M_{\mathcal{O}} - \lambda_1 M_D - \lambda_2 M_{D^*} - \lambda_3 M_{B_c})$ must have a null eigenvector!

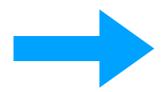
one constraint on $\lambda_{1,2,3}$

cannot tune to get more than one null eigenvector

Idea: use method of Lagrange multipliers

$$\tilde{\mathcal{O}} = \mathcal{O} - \lambda_1 (R_D - R_D^{(0)}) - \lambda_2 (R_{D^*} - R_{D^*}^{(0)}) - \lambda_3 (\text{Br}(B_c \to \tau \nu) - \text{Br}(B_c \to \tau \nu)^{(0)})$$

$$\partial_{x_5}\tilde{\mathcal{O}} = \partial_{y_5}\tilde{\mathcal{O}} = 0$$

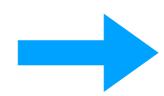

$$(M_{\mathcal{O}} - \lambda_1 M_D - \lambda_2 M_{D^*} - \lambda_3 M_{B_c}) x_5 = (M_{\mathcal{O}} - \lambda_1 M_D - \lambda_2 M_{D^*} - \lambda_3 M_{B_c}) y_5 = 0$$

 $(M_{\mathcal{O}}-\lambda_1 M_D-\lambda_2 M_{D^*}-\lambda_3 M_{B_c})$ must have a null eigenvector!

one constraint on $\lambda_{1,2,3}$

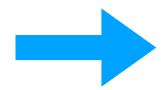
cannot tune to get more than one null eigenvector

 x_5, y_5 must be parallel


Idea: use method of Lagrange multipliers

$$\tilde{\mathcal{O}} = \mathcal{O} - \lambda_1 (R_D - R_D^{(0)}) - \lambda_2 (R_{D^*} - R_{D^*}^{(0)}) - \lambda_3 (\text{Br}(B_c \to \tau \nu) - \text{Br}(B_c \to \tau \nu)^{(0)})$$

$$\partial_{x_5}\tilde{\mathcal{O}} = \partial_{y_5}\tilde{\mathcal{O}} = 0$$

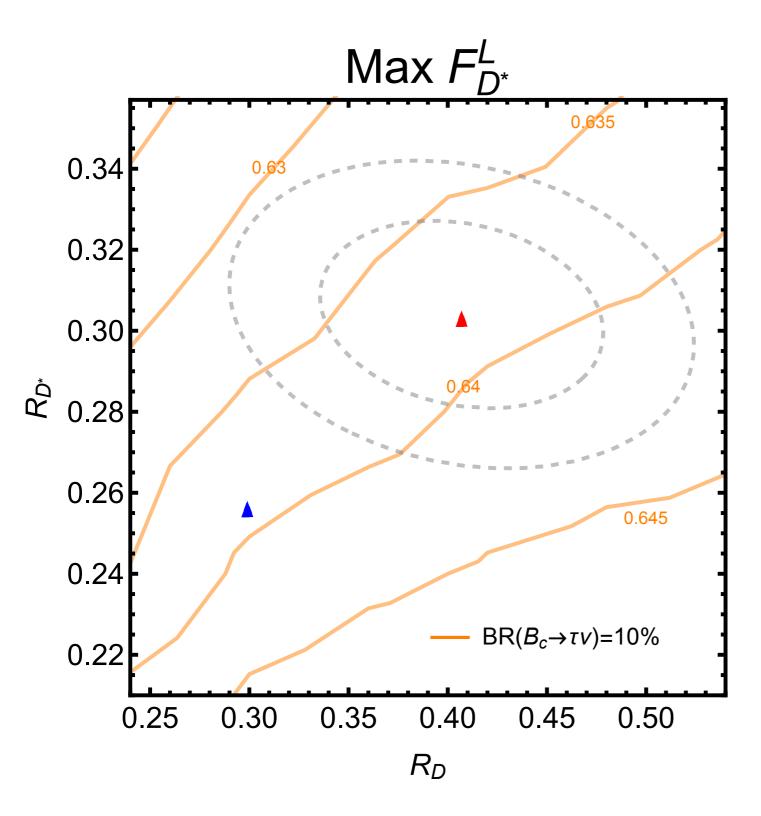

$$(M_{\mathcal{O}} - \lambda_1 M_D - \lambda_2 M_{D^*} - \lambda_3 M_{B_c}) x_5 = (M_{\mathcal{O}} - \lambda_1 M_D - \lambda_2 M_{D^*} - \lambda_3 M_{B_c}) y_5 = 0$$

 $(M_{\mathcal{O}}-\lambda_1 M_D-\lambda_2 M_{D^*}-\lambda_3 M_{B_c})$ must have a null eigenvector!

one constraint on $\lambda_{1,2,3}$

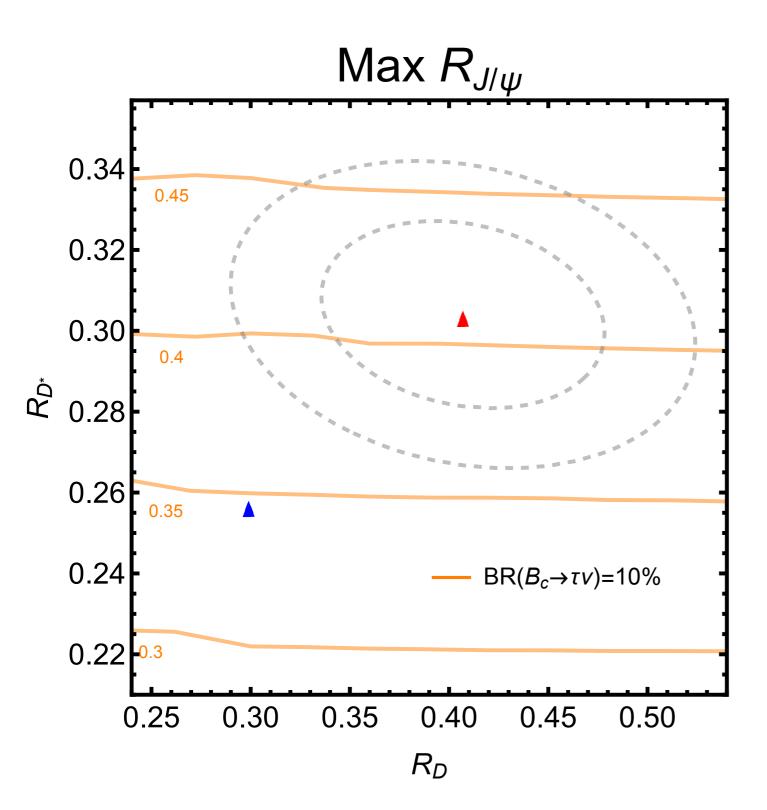
cannot tune to get more than one null eigenvector

 x_5, y_5 must be parallel


can set $y_5 = 0$ with overall rephasing

Maximizing FLD* and R(J/psi)

Can extend this argument to show that including RH neutrinos doesn't affect the global maximum.


Reduce parameter space from 10 or 20 -> 5. Solve three constraints: 5->2.

Can numerically maximize and explicitly verify with a plot.

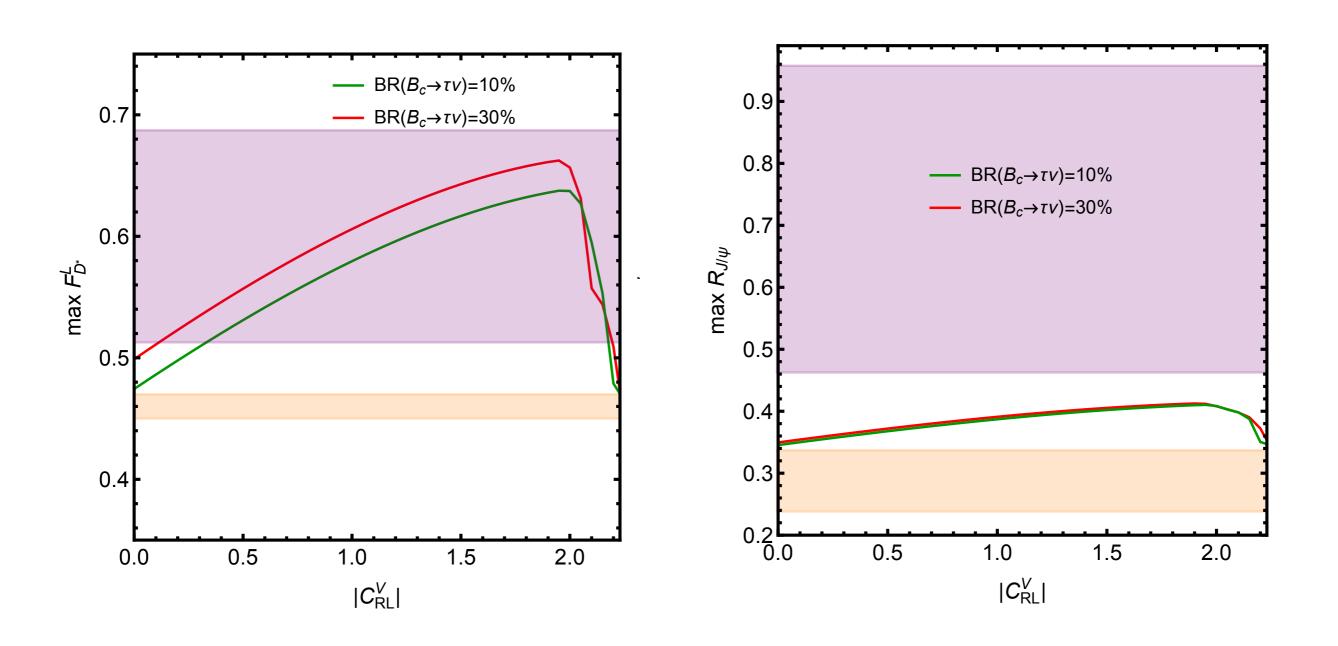
$$F_{D^*}^L = 0.60 \pm 0.08 \pm 0.035$$

Central value of FLD* measurement can be attained.

$$R_{J/\psi} = 0.71 \pm 0.17 \pm 0.18.$$

However, central value of R(J/psi) measurement cannot be attained

max FLD*


C_{RL}^{S}	C_{LL}^S	C_{LL}^{V}	C_{RL}^{V}	C_{LL}^{T}	R_D	R_{D^*}	$F_{D^*}^L$	$R_{J/\psi}$	$Br(B_c \to au u)$
-0.669	-0.884	0.097	2.029	-0.329	0.407	0.304	0.620	0.406	0.023
-0.791	-0.739	0.118	1.977	-0.302	0.407	0.304	0.638	0.410	0.1
-0.972	-0.555	0.142	1.948	-0.298	0.407	0.304	0.662	0.412	0.3

max R(J/psi)

C_{RL}^{S}	C_{LL}^S	C_{LL}^{V}	C^{V}_{RL}	C_{LL}^T	R_D	R_{D^*}	$F_{D^*}^L$	$R_{J/\psi}$	$Br(B_c \to au u)$
-0.659	-0.857	0.109	1.967	-0.286	0.407	0.304	0.620	0.409	0.023
-0.787	-0.726	0.124	1.948	-0.282	0.407	0.304	0.637	0.410	0.1
-0.967	-0.542	0.147	1.919	-0.277	0.407	0.304	0.660	0.413	0.3

Points are uncannily similar...needs to be further understood...

Both require large CVRL!

Maximum with fixed CVRL

Arguments against \mathcal{O}_{RL}^{V}

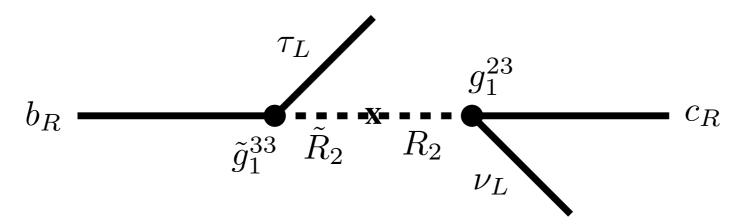
$$\mathcal{O}_{RL}^{V} = (\bar{c}\gamma^{\mu}P_{R}b)(\bar{\tau}\gamma_{\mu}P_{L}\nu)$$

forbidden by both $SU(2)_L$ and $U(1)_Y$

$$(\bar{c}_R \gamma^\mu b_R)(\bar{L}_3 \gamma_\mu \tau^a L_i) H^A \tau^a H^B \epsilon_{AB}$$

dimension 8 operator

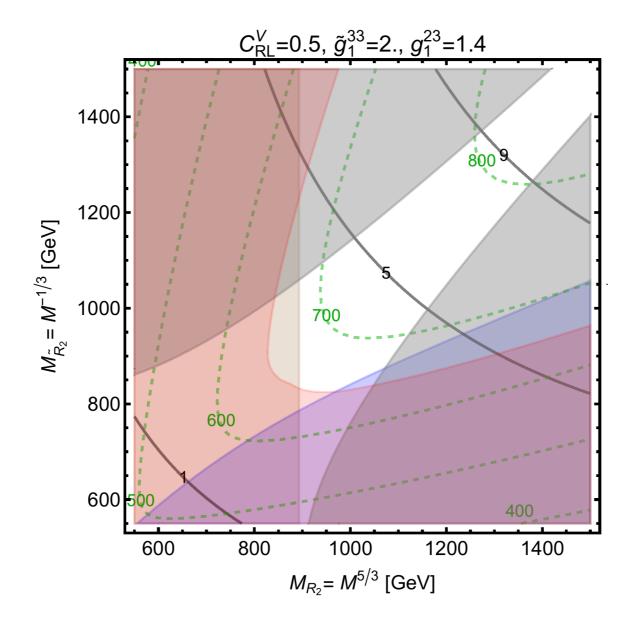
$$(\bar{c}_R \gamma^\mu b_R) H^A D_\mu H^B \epsilon_{AB}$$


dimension 6 operator but flavor universal

"No go theorem"

A loophole?

Key idea: use two leptoquarks that mix through Higgs vev


Asadi, Nakai & DS 1905.xxxxx

$$R_2 = \begin{pmatrix} {R_2}^{5/3} \\ {R_2}^{2/3} \end{pmatrix}, \qquad \tilde{R}_2 = \begin{pmatrix} \tilde{R}_2^{2/3} \\ \tilde{R}_2^{-1/3} \end{pmatrix} \qquad M_{2/3}^2 = \begin{pmatrix} M_{R_2}^2 - \lambda_R v^2 & \lambda_R v^2 \\ \lambda_R v^2 & M_{\tilde{R}_2}^2 - \lambda_R v^2 \end{pmatrix}$$

$$C_{RL}^V \sim \frac{\lambda_R v^4}{M^4}$$

Can try to overcome dim 8 suppression with light leptoquarks and large quartic coupling

stringent bounds from $\tau^+\tau^-$, direct leptoquark searches, SUSY searches

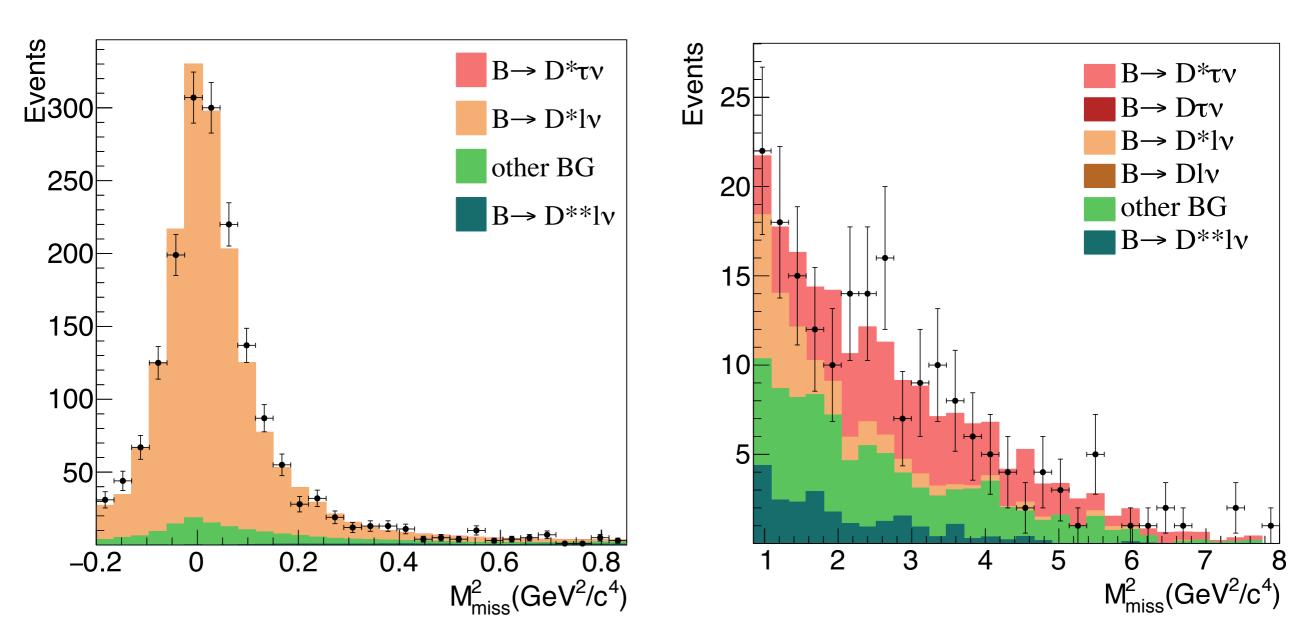
but some viable parameter space still remains!

Conclusions

The central measured values of FLD* and R(J/psi) are both higher than their SM predictions. They are also higher than the predictions from any known NP model.

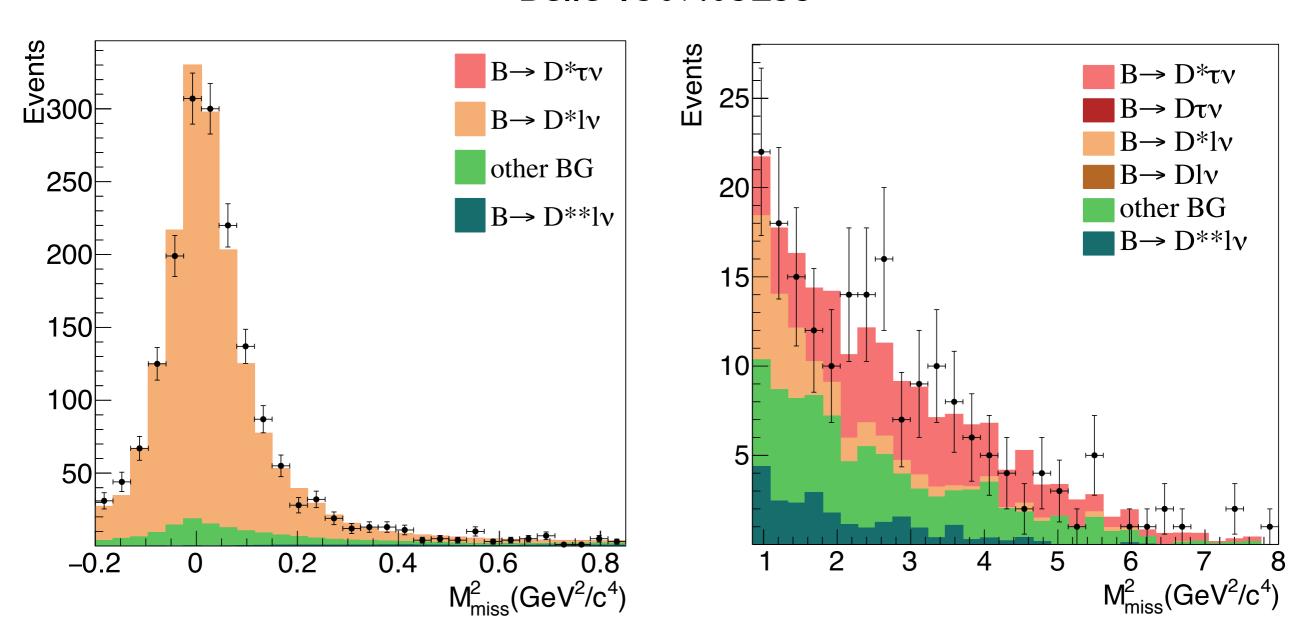
We developed a semi-analytical method to maximize FLD* and R(J/psi) in the full space of dimension 6 WCs, subject to RD/RD* constraints.

- Using our method, we showed that FLD* is achievable in the space of WCs but R(J/psi) is not.
- Requires large CVRLWC "no go theorem" can be evaded with a novel leptoquark model
- Our method is generalizable and can be applied to essentially any $b \rightarrow cTV$ observable.


Experimental error bars are still large — very likely a fluctuation.

Upcoming measurements by LHCb and Belle II could prove to be interesting. Meanwhile we have new ideas for model building to explore.

Stay tuned!

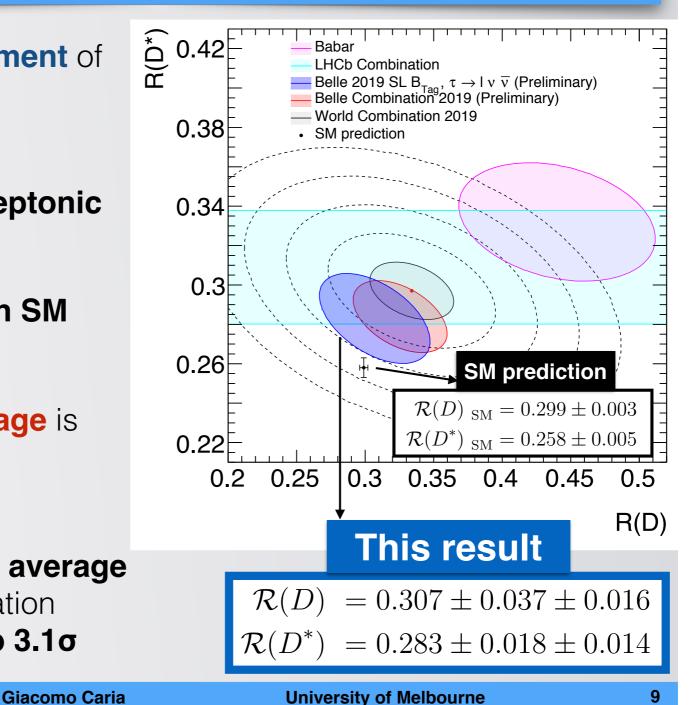

Thanks for your attention!

Belle 1507.03233

ARE WE SURE THAT THESE ARE SM NEUTRINOS?

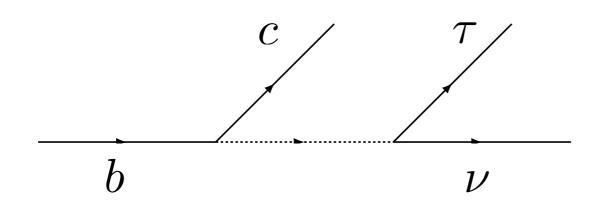
Belle 1507.03233

ARE WE SURE THAT THESE ARE SM NEUTRINOS?


→ Could be a light, weakly-interacting BSM particle instead?

Description	Experiment+Luminosity	reducible vs. irreducible	Reference	Diagrams
Direct LQ search for $b\tau$ final state	CMS-35.9 ${\rm fb}^{-1}$	reducible	[48]	$ \begin{array}{c} & \downarrow \\ $
Direct LQ search for $c\nu$ final state	$ATLAS-36.1 \text{ fb}^{-1}$	reducible	[45]	$ \begin{array}{c} $
generic SUSY search with MET	CMS-35.9 ${\rm fb}^{-1}$	reducible	[51–54]	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Interference with the SM DY	$ATLAS-36.1 \text{ fb}^{-1}$	irreducible	[46] (based on [63])	$b = \begin{array}{c c} \tilde{g}_1^{33} \sin \varphi & & g_1^{23} & \\ \hline & R_1 & & \\ \hline & \tilde{g}_1^{33} \sin \varphi & & \tau & \\ \hline & & & &$

Moriond 2019 update from Belle [paper is out: 1904.08794]


Conclusion / Preliminary R(D(*) averages

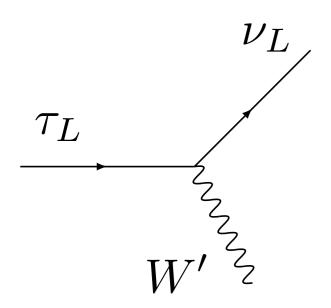
- Most precise measurement of R(D) and R(D*) to date
- First R(D) measurement performed with a semileptonic tag
- Results compatible with SM expectation within 1.2σ
- R(D) R(D*) Belle average is now within 2σ of the SM prediction
- R(D) R(D*) exp. world average tension with SM expectation decreases from 3.8σ to 3.1σ

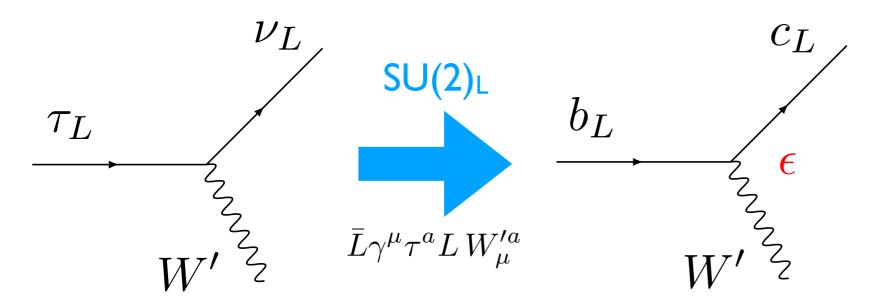
22/03/2019 Giacomo Caria University of Melbourne 9

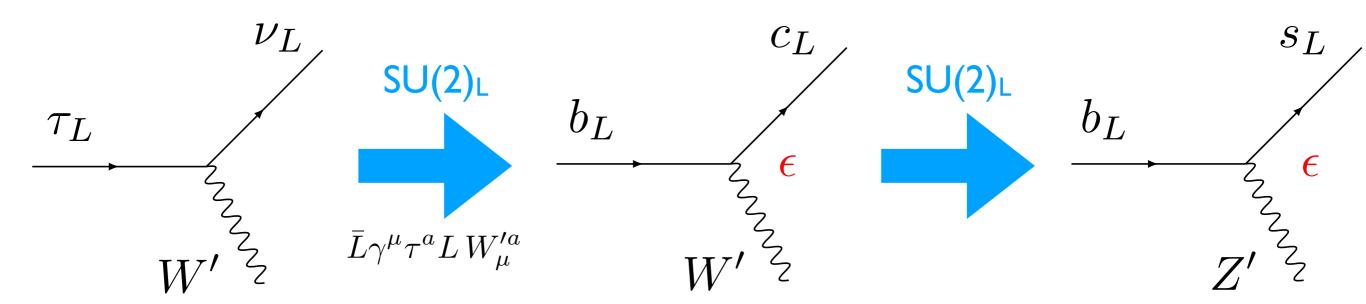
Problems with charged Higgs

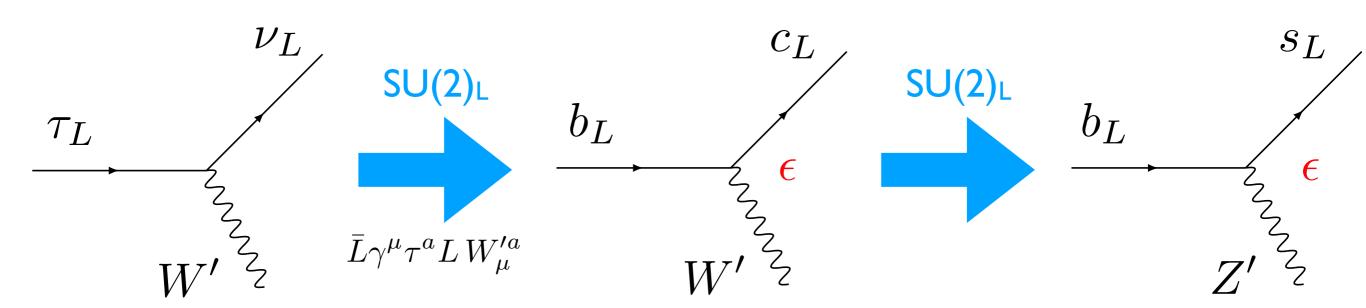
Contributes to $B_c \to \tau \nu$

BR currently not measured. LHCb prospects are not good...

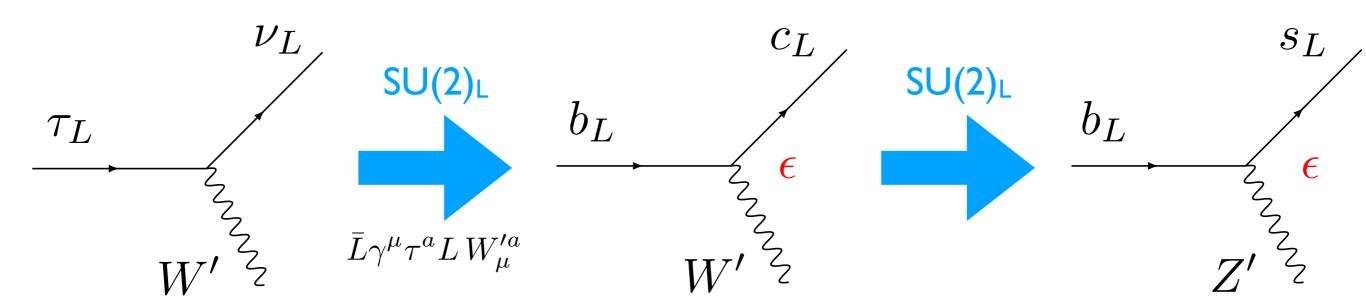

Upper bound from SM predictions for other final states decay widths, compared to measured total width (Alonso, Grinstein & Camalich 1611.06676.)

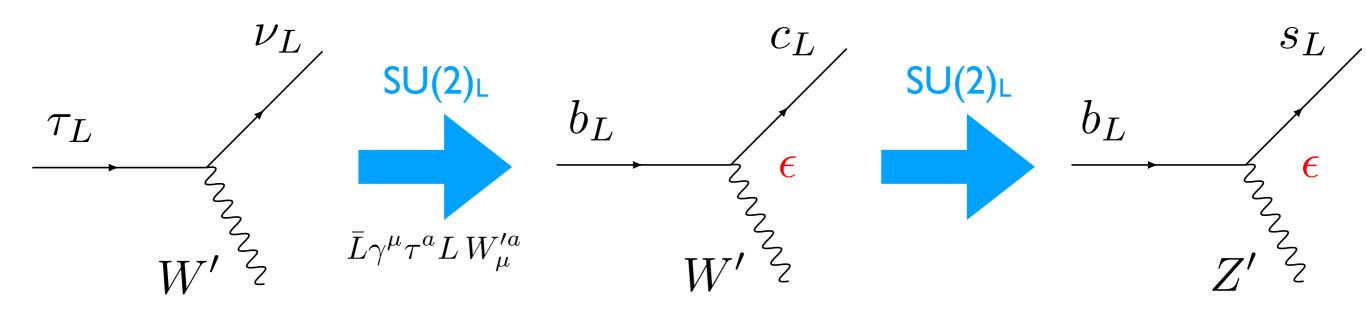

$$Br(B_c \to \tau \nu) \lesssim 30\%$$

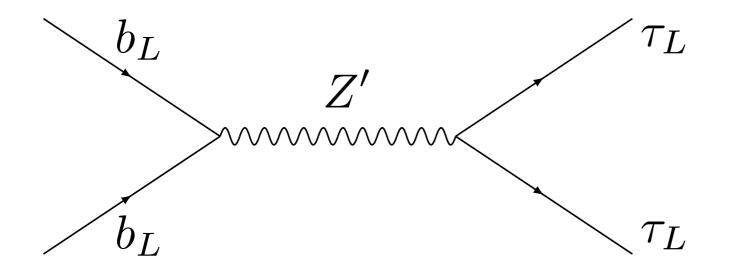

Upper bound based on LEP search for $B_u \rightarrow \tau \nu$ (Akeroyd & Chen 1708.04072)


$$Br(B_c \to \tau \nu) \lesssim 10\%$$

Rules out charged Higgs explanations of RD/RD* anomaly!



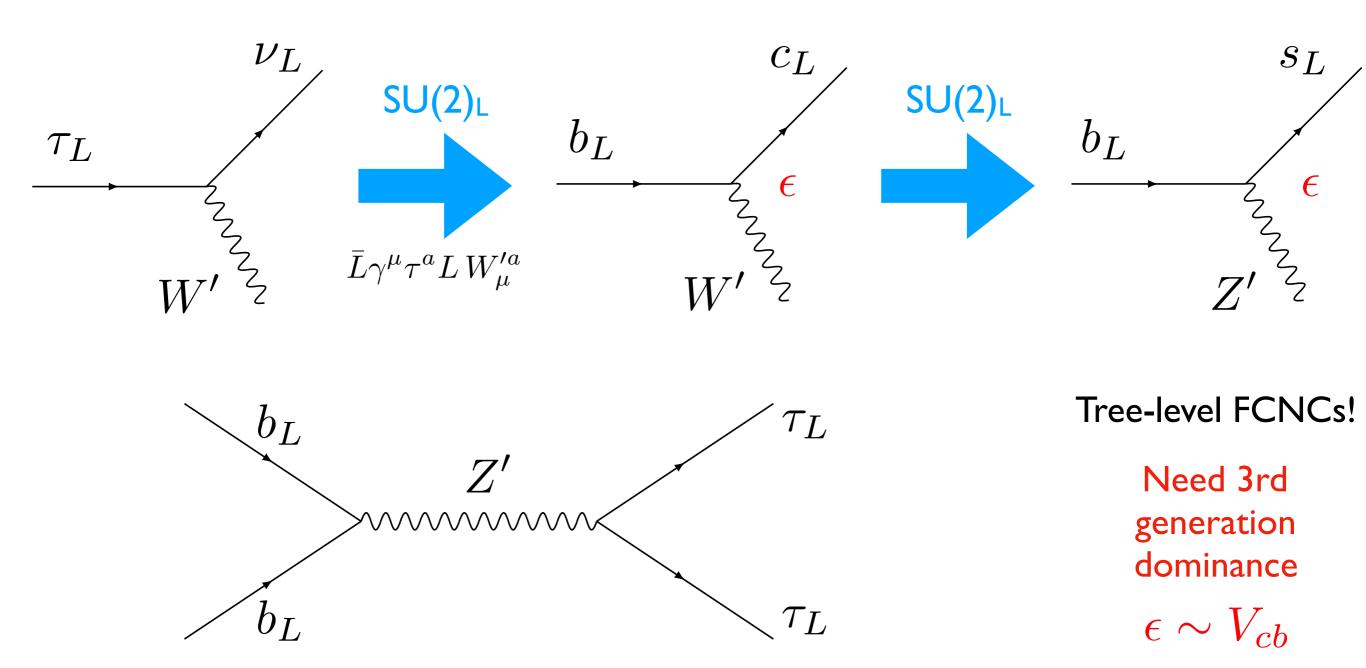

Tree-level FCNCs!



Tree-level FCNCs!

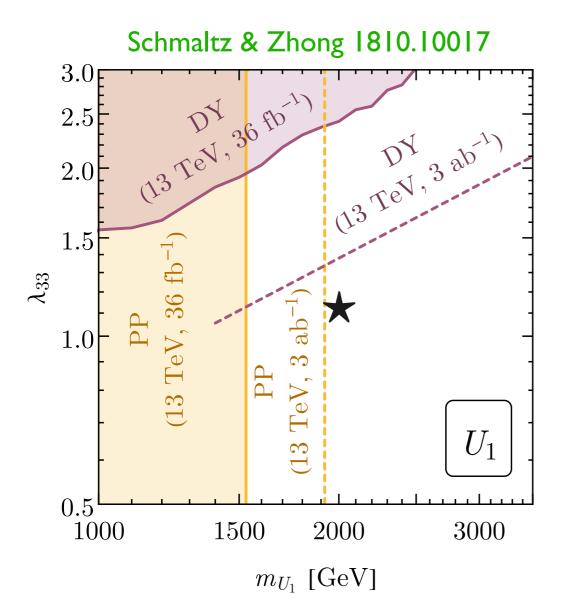
Need 3rd generation dominance

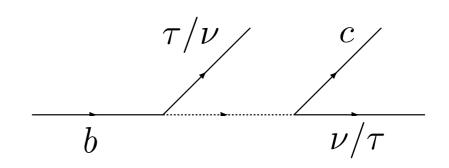
$$\epsilon \sim V_{cb}$$

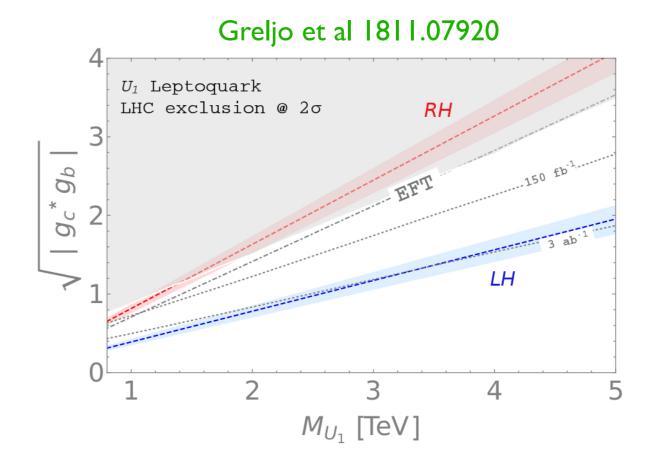


Tree-level FCNCs!

Need 3rd generation dominance


$$\epsilon \sim V_{cb}$$




Strong constraints from $Z' \rightarrow \tau\tau$ resonance searches rule out these models!

Leptoquarks

Strong LHC constraints from pair production, DY, and mono-tau, but much parameter space remains