Non-SUSY, Exotic の今後

阿部智広 名古屋大学高等研究院 KMI

新学術領域研究 (研究領域提案型) ヒッグス粒子発見後の素粒子物理学の新展開 ~LHCによる真空と時空構造の解明~

キックオフ会合

2016.8.31

世話人からの要望

- 今後5年くらいを俯瞰してnon-susyのレビューをしてほしい
- diphoton についても触れてほしい (ICHEP の結果が出る前の依頼)

750 GeV

- more than 400 papers!!!!
- 飢えた理論屋と統計の罠

(local ~4 σ , global ~2 σ)

- global が重要ってヒッグスの発見の前に 強調されたいたのに…
- ・ 色々アイデアが出たのは良かった

ICHEP2016でのrappoccio氏のスライドより

ZV Limits: 2015 data

- #650isthenew750?
- Deja vu all over again?
- ATLAS talk up next!
- Remember Look-Elsewhere Effect accounts only for other masses in THIS plot
- Does not account for the >1000 other LHC searches ;)
- Stay tuned for 2016 data on the way

2.7 fb⁻ (13 Te\ CMS Observed limit Limit 95% C.L. on $\sigma G_{Bulk} \rightarrow ZZ_{I}$ [fb] Preliminary Expected 95% C.L. upper limit Expected $\pm 1\sigma$ Expected $\pm 2\sigma$ $G_{Bulk} \rightarrow ZZ, k/M_{pl} = 0.5$ 0^{2} 3.9 sigma local, 3.5 sigma global (global = other masses in this plot) 800 1000 1200 1400 1600 1800 2000 2200 2400 600 G_{Bulk} mass [GeV]

Why BSM?

SMで説明できないもの

- 暗黒物質 (?)
- バリオン数生成
- ニュートリノの質量の起源
- • •

Why BSM @ TeV scale?

階層性問題 (electroweak scale << Planck scale)

- TeV scale SUSY
- Warped extra dimension
- Little Higgs
- Gauge Higgs unification
- composite Higgs
- technicolor
- ···

昨今、どれも厳しい雰囲気が漂う。微調整などが必要。

TeVスケールに新物理があるというロジックが他に何かあるとうれしい

Fermi theory

WW scat

hVV coupling がもしずれていたら

ヒッグス粒子の精密測定は今後重要!

Fermi theory

教訓

- 現象をとにかく式で書き下す
- カットオフ(A)が出てくる
- ∧以下に新物理があるはず!
- アノマリーがあったら同じことをやってみよう!!

やってみよう

アノマリー

- ミュオン g-2
- フレーバー (B \rightarrow D^(*) $\tau \nu$ 、 Br(B \rightarrow K $\mu \mu$)/Br(B \rightarrow K e e))

• • • • •

ミューオン g-2: 3o以上のずれ

 $a_{\mu}^{\exp} - a_{\mu}^{SM} = (28.7 \pm 8.0) \times 10^{-10},$ Davier et.al. (2011) $a_{\mu}^{\exp} - a_{\mu}^{SM} = (26.1 \pm 8.0) \times 10^{-10},$ Hagiwara et.al. (2011)

これが BSM 由来なら、そのスケールはどこ?

ミュオン g-2

SM 次元6演算子

$$+\frac{c'}{(4\pi)^2}\frac{g'}{\Lambda^2}\left(\bar{\ell}_L\sigma^{\mu\nu}He_RB_{\mu\nu}\right) - \frac{c}{(4\pi)^2}\frac{g}{\Lambda^2}\left(\bar{\ell}_L\sigma^{\mu\nu}W_{\mu\nu}He_R\right) + (h.c.)$$

$$\operatorname{Amp} \sim \bar{u}i\sigma^{\mu\nu}q_{\nu}\epsilon_{\mu}\frac{\delta a_{\mu}}{2m_{\mu}}u \quad \delta a_{\mu} = 2m_{\mu}\frac{v}{\sqrt{2}}\frac{1}{(4\pi)^2}\left(2\frac{c'}{\Lambda'^2} + \frac{c}{\Lambda^2}\right)$$

例) c = 0 のとき

C'	1	0.1	0.01	0.001
Λ'[TeV]	13	4.2	1.3	0.42

TeV スケールが強く期待できる!

http://agenda.linearcollider.org/event/6772/contributions/33275/attachments/27394/41633/muon_g-2EDM_MS.pdf

今まさにやるべき。

模型あれこれ

spin-0 の寄与

1-loop

- $\delta a_{\mu} > 0$ for CP-even
- $\delta a_{\mu} < 0$ for CP-odd, charged.

2-loop (1-loop と逆転)

- $\delta a_{\mu} < 0$ for CP-even
- $\delta a_{\mu} > 0$ for CP-odd, charged.

単純に荷電スカラーを入れるだけだと、より実験との乖離が大きくなる

$$\bar{\ell_L^c}\ell_L\phi^+ \quad \overline{\mu_R^c}\mu_R\phi^{++}$$

spin-0 でうまくいく例

[TA, Sato, Yagyu (2015)]

lepton specific two-Higgs doublet model

- SM + one more Higgs doublet
- two Higgs : H_1 and H_2
 - ***** SM-like Higgs (h)
 - * new scalars (H^0, A^0, H^{\pm})
- important parameter: tan β (1 < tan β < 100)
- the lepton Yukawa interactions are enhanced by $tan\beta$

lepton physics

new particles affect to all the physics with leptons

- On the other hand, constraints on the lepton couplings are important
 - ★ lepton coupling universality

$$\tau \to \mu \nu_{\tau} \bar{\nu}_{\mu}, \ \tau \to e \nu_{\tau} \bar{\nu}_{e}$$

★ LHC signature

Result: g-2 with constraints

$m_{H^0} = m_{H^+} = 250 \text{ GeV}$

parameters for the muon g-2

- * 10 GeV < m_A < 30 GeV
- * 250 GeV < $m_{H\pm}$ < 350 GeV
- \star m_{H0} = m_{H±}
- * $30 < \tan\beta < 40$

もっと広いパラメータでもできるという議論もある (aligned 2HDM) [Han, Kang, Sayre (2016)]

- **g-2 within 1σ region (dark blue)** is completely excluded!
- g-2 within 2σ region (light blue) is survive!
- constraint from **lepton universality** is strong.

h(125) couplings (1)

• $h \tau \tau$: *more than 10% deviation* from the SM prediction

h(125) couplings (2)

• hyy : more than 10% deviation from the SM prediction

H^0 , A^0 , H^{\pm} at the LHC

many tau leptons are produced at the LHC 14TeV

Table 2: Cross sections of the electroweak production processes expressed in Eq. (05), and those of the multi-tau processes expressed in Eqs. (67)-(70) at $\sqrt{s} = 14$ TeV in the unit of fb. We take $m_A = 20$ GeV, $m_H = m_{H^{\pm}}$, $\sin(\beta - \alpha) = 1$ and $\tan \beta = 35$.

(断面積以外にも議論している論文としては [Chun, Kang, Takeuchi, Tsai (2016)])

spin-I/2の例

extra heavy lepton

[Kannike, Raidal, Straub, Strumia (2012)]

Name	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$SU(3)_c$	$Q = T_3 + Y$	Lepton number	couplings
L'	$-\frac{1}{2}$	2	1	0, -1	+1	$EL'H^*$
$L_{3/2}$	$-\frac{\bar{3}}{2}$	$\overline{2}$	1	-1, -2	+1	$E(L_{3/2}\epsilon H)$
E'	1	1	1	1	-1	$E'LH^*$
E^a	1	3	1	0, 1, 2	-1	$E^a(H^*\tau^a L)$
N^a	0	3	1	-1, 0, +1	-1	$N^a(H\epsilon\tau^a L)$
N'	0	1	1	0	-1	N'LH

カイラリティー を muon Yukawa ではなく新しいパラメタでフリップできる なので one-loop で説明可能。計算が楽。

spin-I/2の例

extra heavy lepton

spin-I の例

	flavor blind	flavor dependent
U(1)	hidden photon	Lμ-Lτ non-diagonal
non-abelian	•••	•••

- non-abelian はフレーバ物理など矛盾する [Biggio, Bordone, Luzio, Ridolfi (1607.07621)]
- hidden photon もダメ。

hidden photon 2015

遠藤基さんの益川塾でのトークスライドより

http://www.cc.kyoto-su.ac.jp/project/MISC/slide/seminar-s/2015/150521-Endo.pdf

遠藤基さんの益川塾でのトークスライドより

http://www.cc.kyoto-su.ac.jp/project/MISC/slide/seminar-s/2015/150521-Endo.pdf

L_{μ} - L_{τ} Gauge Symmetry

- (broken) U(1) symmetry: anomaly-free
- interact only with 2nd & 3rd generation leptons

$$\mathcal{L} = -\frac{1}{4} Z'_{\alpha\beta} Z'^{\alpha\beta} + \frac{1}{2} m_{Z'}^2 Z'_{\alpha} Z'^{\alpha} + g' Z'_{\alpha} \left(\bar{\ell}_2 \gamma^{\alpha} \ell_2 - \bar{\ell}_3 \gamma^{\alpha} \ell_3 + \bar{\mu}_R \gamma^{\alpha} \mu_R - \bar{\tau}_R \gamma^{\alpha} \tau_R \right)$$

遠藤基さんの益川塾でのトークスライドより

http://www.cc.kyoto-su.ac.jp/project/MISC/slide/seminar-s/2015/150521-Endo.pdf

Viable in low-mass region

[Altmannshofer,Gori,Pospelov,Yavin]

non-diagonal model

[Altmannshofer, Chen, Dev, Soni (1607.06832)]

$$\mathcal{L}_{Z'} = g'_L (\bar{\mu}\gamma^{\alpha} P_L \tau + \bar{\nu}_{\mu}\gamma^{\alpha} P_L \nu_{\tau}) Z'_{\alpha} + g'_R (\bar{\mu}\gamma^{\alpha} P_R \tau) Z'_{\alpha} + \text{H.c.},$$

 $m_{Z'} = 100 \, {
m GeV}$

Summary

- テラスケールの物理を期待する根拠の1つ、ミュオンg-2
- spin-0, two-Higgs doublet model

★hττ κγγ 10%以上ずれる

★ tau rich なシグナル

- spin-1/2, O(100)GeV の新しいレプトン
- spin-1, flavor dependent なやつ

★ L_{μ} - L_{τ} : O(100) MeV ★ non-diagonal (µ- τ -Z' coupling) : ~ O(100)GeV