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Original problem
IT-DB was backuping some data to Wigner CC. High transfer rate was 
required in order to avoid service degradation. 

But the transfer rate was:
◦ Initial: ~1G

◦ After some tweaking: ~4G

The problem lies within TCP internals!

Meyrin Wigner

4G out of... 10G
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TCP algorithms (1)
The default TCP algorithm (reno) behaves poorly.

Other congestion control algorithms have been developed such as:

◦ BIC 

◦ CUBIC

◦ Scalable

◦ Compund TCP

Each of them behaves differently and we want to see how they perform in our 
case...
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Testbed
Two servers connected back-to-back.

How the congestion control algorithm performance changes with 
packet loss and delay ?

Tested with iperf3.

Packet loss and delay emulated using NetEm in Linux:
◦ tc qdisc add dev eth2 root netem loss 0.1 delay 12.5ms
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0 ms delay, default settings
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25ms delay, default settings

PROBLEM: only 1G`

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 7 / 37



Growing the window (1)
We need...

𝑾𝟐𝟓 = 𝑩 ∗ 𝑹𝑻𝑻 = 𝟏𝟎𝑮𝒃𝒑𝒔 ∗ 𝟐𝟓𝒎𝒔 ≈ 𝟑𝟏. 𝟐 𝑴𝑩

Default settings:
◦ net.core.rmem_max = 124K

◦ net.core.wmem_max = 124K

◦ net.ipv4.tcp_rmem =  4K  87K  4M

◦ net.ipv4.tcp_wmem = 4K  16K  4M

◦ net.core.netdev_max_backlog = 1K

𝑩𝒎𝒂𝒙 =
𝑾𝒎𝒂𝒙

𝑹𝑻𝑻
=
𝟒𝑴𝑩

𝟐𝟓𝒎𝒔
≈ 𝟏. 𝟐𝟖 𝑮𝒃𝒑𝒔

WARNING: The real OS numbers are in pure bytes count so less readable.

Window can’t grow bigger 
than maximum TCP send 
and receive buffers! 
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Growing the window (2)
We tune TCP settings on both server and client.

Tuned settings:

◦ net.core.rmem_max = 67M

◦ net.core.wmem_max = 67M

◦ net.ipv4.tcp_rmem = 4K 87K 67M

◦ net.ipv4.tcp_wmem = 4K 65K 67M

◦ net.core.netdev_max_backlog = 30K

WARNING: TCP buffer size doesn’t translate directly to window size because TCP uses 
some portion of its buffers to allocate operational data structures. So the effective 
window size will be smaller than maximum buffer size set.

Helpful link: https://fasterdata.es.net/host-tuning/linux/

Now it’s fine
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25 ms delay, tuned settings
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DEFAULT CUBIC 
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Bandwith fairness
Goal: Each TCP flow should get a fair share of available bandwidth
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Bandwith competition
How do congestion control algorithms 
compete?

Tests were done for:
◦ Reno, BIC, CUBIC, Scalable

◦ 0ms and 25ms delay

Two cases:
◦ 2 flows starting at the same time

◦ 1 flow delayed by 30s

10G 10G

10G

congestion
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cubic vs cubic + offset
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cubic vs bic
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cubic vs scalable
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TCP (reno) friendliness
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cubic vs reno
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Why default cubic? (1) 
◦ BIC was the default Linux TCP congestion algorithm until kernel version 

2.6.19

◦ It was changed to CUBIC in kernel 2.6.19 with commit message:
◦ ”Change default congestion control used from BIC to the newer CUBIC which it the successor to 

BIC but has better properties over long delay links.”

◦ Why?
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Why default cubic? (2)
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◦ It is more friendly to other congestion algorithms

◦ to Reno...
◦ to CTCP\ (Windows default)...



Why default cubic? (3)
It has better RTT fairness properties
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Wigner

Meyrin

0 ms RTT

25 ms RTT



Why default cubic? (4)
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0 ms RTT
0 ms RTT

25 ms RTT
25 ms RTT

RTT fairness test:



Setting TCP algorithms (1)
OS-wide setting (sysctl ...):

◦ net.ipv4.tcp_congestion_control = reno

◦ net.ipv4.tcp_available_congestion_control = cubic reno  

Local setting:
◦ setsockopt(), TCP_CONGESTION optname

◦ net.ipv4.tcp_allowed_congestion_control = cubic reno

bic

Add new:

# modprobe tcp_bic
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Setting TCP algorithms (2)
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OS-wide settings:

C:\> netsh interface tcp show global

◦ Add-On Congestion Control Provider: ctcp

Enabled by default in Windows Server 2008 and newer. 

Needs to be enabled manually on client systems:

◦ Windows 7:  C:\>netsh interface tcp set global congestionprovider=ctcp

◦ Windows 8/8.1 [Powershell]:  Set-NetTCPSetting –CongestionProvider ctcp
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