
TCP loss
sensitivity analysis
ADAM KRAJEWSKI, IT -CS-CE, CERN

The original presentation has been
modified for the 2nd ATCF 2016

EDOARDO MARTELI, CERN

Original problem
IT-DB was backuping some data to Wigner CC. High transfer rate was
required in order to avoid service degradation.

But the transfer rate was:
◦ Initial: ~1G

◦ After some tweaking: ~4G

The problem lies within TCP internals!

Meyrin Wigner

4G out of... 10G

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 3 / 37

TCP algorithms (1)
The default TCP algorithm (reno) behaves poorly.

Other congestion control algorithms have been developed such as:

◦ BIC

◦ CUBIC

◦ Scalable

◦ Compund TCP

Each of them behaves differently and we want to see how they perform in our
case...

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 4 / 37

Testbed
Two servers connected back-to-back.

How the congestion control algorithm performance changes with
packet loss and delay ?

Tested with iperf3.

Packet loss and delay emulated using NetEm in Linux:
◦ tc qdisc add dev eth2 root netem loss 0.1 delay 12.5ms

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 5 / 37

0 ms delay, default settings

0

1

2

3

4

5

6

7

8

9

10

0.0001 0.001 0.01 0.1 1 10

B
a

n
d

w
id

th
 [
G

b
p

s
]

Packet loss rate [%]

cubic

reno

bic

scalable

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 6 / 37

0

0.2

0.4

0.6

0.8

1

1.2

0.0001 0.001 0.01 0.1 1 10

B
a

n
d

w
id

th
 [
G

b
p

s
]

Packet loss rate [%]

cubic

reno

bic

scalable

25ms delay, default settings

PROBLEM: only 1G`

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 7 / 37

Growing the window (1)
We need...

𝑾𝟐𝟓 = 𝑩 ∗ 𝑹𝑻𝑻 = 𝟏𝟎𝑮𝒃𝒑𝒔 ∗ 𝟐𝟓𝒎𝒔 ≈ 𝟑𝟏. 𝟐 𝑴𝑩

Default settings:
◦ net.core.rmem_max = 124K

◦ net.core.wmem_max = 124K

◦ net.ipv4.tcp_rmem = 4K 87K 4M

◦ net.ipv4.tcp_wmem = 4K 16K 4M

◦ net.core.netdev_max_backlog = 1K

𝑩𝒎𝒂𝒙 =
𝑾𝒎𝒂𝒙

𝑹𝑻𝑻
=
𝟒𝑴𝑩

𝟐𝟓𝒎𝒔
≈ 𝟏. 𝟐𝟖 𝑮𝒃𝒑𝒔

WARNING: The real OS numbers are in pure bytes count so less readable.

Window can’t grow bigger
than maximum TCP send
and receive buffers!

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 8 / 37

Growing the window (2)
We tune TCP settings on both server and client.

Tuned settings:

◦ net.core.rmem_max = 67M

◦ net.core.wmem_max = 67M

◦ net.ipv4.tcp_rmem = 4K 87K 67M

◦ net.ipv4.tcp_wmem = 4K 65K 67M

◦ net.core.netdev_max_backlog = 30K

WARNING: TCP buffer size doesn’t translate directly to window size because TCP uses
some portion of its buffers to allocate operational data structures. So the effective
window size will be smaller than maximum buffer size set.

Helpful link: https://fasterdata.es.net/host-tuning/linux/

Now it’s fine

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 9 / 37

25 ms delay, tuned settings

0

1

2

3

4

5

6

7

8

9

10

0.0001 0.001 0.01 0.1 1 10

B
a

n
d

w
id

th
 [
G

b
p

s
]

Packet loss rate [%]

cubic

reno

scalable

bic

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 10 / 37

0

1

2

3

4

5

6

7

8

9

10

0.0001 0.001 0.01 0.1 1 10

B
a

n
d

w
id

th
 [
G

b
p

s
]

Packet loss rate [%]

cubic

scalable

reno

bic

0 ms delay, tuned settings

DEFAULT CUBIC

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 11 / 37

Bandwith fairness
Goal: Each TCP flow should get a fair share of available bandwidth

10G 10G

5G 5G

B

t

10G

5G

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 12 / 37

Bandwith competition
How do congestion control algorithms
compete?

Tests were done for:
◦ Reno, BIC, CUBIC, Scalable

◦ 0ms and 25ms delay

Two cases:
◦ 2 flows starting at the same time

◦ 1 flow delayed by 30s

10G 10G

10G

congestion

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 13 / 37

cubic vs cubic + offset

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 15 / 37

cubic vs bic

0

1

2

3

4

5

6

7

8

9

10

0.0001 0.001 0.01 0.1 1 10

B
a

n
d

w
id

th
 [
G

b
p

s
]

Packet loss rate [%]

Congestion control
0ms

cubic

bic

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 16 / 37

cubic vs scalable

0

1

2

3

4

5

6

7

8

9

10

0.0001 0.001 0.01 0.1 1 10

B
a

n
d

w
id

th
 [
G

b
p

s
]

Packet loss rate [%]

Congestion control
0ms

cubic

scalable

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 17 / 37

TCP (reno) friendliness

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 18 / 37

cubic vs reno

0

1

2

3

4

5

6

7

8

9

10

0.0001 0.001 0.01 0.1 1 10

B
a

n
d

w
id

th
 [
G

b
p

s
]

Packet loss rate [%]

Congestion control
25ms delay

cubic

reno

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 19 / 37

Why default cubic? (1)
◦ BIC was the default Linux TCP congestion algorithm until kernel version

2.6.19

◦ It was changed to CUBIC in kernel 2.6.19 with commit message:
◦ ”Change default congestion control used from BIC to the newer CUBIC which it the successor to

BIC but has better properties over long delay links.”

◦ Why?

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 20 / 37

Why default cubic? (2)

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 21 / 37

◦ It is more friendly to other congestion algorithms

◦ to Reno...
◦ to CTCP\ (Windows default)...

Why default cubic? (3)
It has better RTT fairness properties

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 22 / 37

Wigner

Meyrin

0 ms RTT

25 ms RTT

Why default cubic? (4)

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 23 / 37

0 ms RTT
0 ms RTT

25 ms RTT
25 ms RTT

RTT fairness test:

Setting TCP algorithms (1)
OS-wide setting (sysctl ...):

◦ net.ipv4.tcp_congestion_control = reno

◦ net.ipv4.tcp_available_congestion_control = cubic reno

Local setting:
◦ setsockopt(), TCP_CONGESTION optname

◦ net.ipv4.tcp_allowed_congestion_control = cubic reno

bic

Add new:

modprobe tcp_bic

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 24 / 37

Setting TCP algorithms (2)

ADAM KRAJEWSKI - TCP CONGESTION CONTROL 25 / 37

OS-wide settings:

C:\> netsh interface tcp show global

◦ Add-On Congestion Control Provider: ctcp

Enabled by default in Windows Server 2008 and newer.

Needs to be enabled manually on client systems:

◦ Windows 7: C:\>netsh interface tcp set global congestionprovider=ctcp

◦ Windows 8/8.1 [Powershell]: Set-NetTCPSetting –CongestionProvider ctcp

TCP loss
sensitivity analysis
ADAM KRAJEWSKI, IT -CS-CE

