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Introduction: Higgs Coupling

Interested in joining CMS+ATLAS Run 1 Higgs production and decay modes

The probability distribution function of the product of the cross-sections and
branching fractions (oi- BY) can be constructed based on experimental observables

These observables are divided by the SM expectations, and are the parameters of a
likelihood function -
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Note pi'= 1 if data aligns perfectly with standard model, pi'=0 if there is no signal

Can also parametrize in terms of the ratio of ps



Likelihood Fits & Motivation

A likelihood function is directly related

10¢
to the probability distribution of p c
AN
An example would be ,
L(u) = P(N | u*S +B) .
You can maximize this L(u) to find Q, j
the most likely value \
The negative-log-likelihood is often
used, -2-In[L(u)/L(0)] = -2-In A ‘

This is useful because -2:In A =1
occurs at +10, -2:In A=4 at +20, etc.
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Likelihood Fits & Motivation

- In publishing this Run 1 data, the
best fit value and 1-o values are

given

- However, usually the distributions

are usually non-Gaussian

- Assuming they are Gaussian with
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the reported data gives strong bias
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PUrpose

- Create the tools necessary that parties interested in this data can build
approximations/models of these likelihood curves

- This facilitates understanding and evaluation of how the data fits the standard
model

- Create toy signals (Poisson distributions) that are “off-Gaussian” and develop
ways to model non-Gaussian effects

- We eventually want to evaluate signal parameters that are correlated to each
other, so we need to accurately evaluate correlated signals in multi-variate
Gaussians (MVG)



2Alog L

How: p-Models
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Each plot is a log-likelihood distribution for a single Poisson, P(N | u*S+B),
with different N, S and B

Black is true likelihood, red fits -2:In A = (u - (1)?/0? with a constant o

Blue accounts for ° = sigma_B? + p*sigma_S?+ p?*sigma_S_sys?



Correlation

- Previously the correlation constant (p) between two signals (u;, yj) at the
minimum was found using a function in RooFit, and used as a constant

- We want to find p analytically to see if we can confirm or improve the 2-D MVG
approximations
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- This function diverges at j: so first tried parametrizing this as a parabola (later
returned to re-parametrize as third-degree polynomial)

- Note flj(ui) Is the value minimum value of pjfor a given value of i



1-D Correlations
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Now we recognize that these are slices of the 2-D correlation between u; and y;

We are interested in this pjj, especially to have it only depend on u;, and u; for
the independent variables



) Correlations
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Also: noted need to re-parametrize the

1-

D function for p to the third order

Adjust the original function for
creating the MVG to accept the
2D pi;, rather than the constant

passed by RooFit
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Simplify: 2x2 or “2-uy” Model

-2 AlogL
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Backtrack: move from model
with five correlated signals to
two

Using only two signals, make an
MVG with this new 2-D pij;

Evaluate the fit using pjo=p1 =

Shows excellent improvement
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2x2 or “2-u” Model

Simplify

The real test: build in two dimensions

-D distribution

- Compare our MVG with true 2

Gaussian Approximation

True Curve
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Simplify: 2x2 or “2 u” Model

The real test: build in two dimensions

Compare our MVG with true 2-D distribution

Difference

Strained at corners: likely
due to the equation that

transforms 1-D ps to 2-D
p, which assumed /(1)
was linear ....
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Simplify: 2x2 or “2 u” Model

- The real test: build in two dimensions

- Compare our MVG with true 2-D distribution

- Strained at corners: likely muhathat_3

due to the equation that shef
transforms 1-D ps to 2-D g -
A 1.5
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Un-Simplify: Check 5-py Model

5-u model passing parametrization/slice tests that deal with ratios quite well,
but not the troublesome “overall-p” (which is the diagonal slice of the 2-D

graph)
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Un-Simplify: Check 5-py Model

- 5-y model passing parametrization/slice tests that deal with ratios quite well,
but not the troublesome “overall-p” (which is the diagonal slice of the 2-D

graph)

- ....And the 2-D MVG does not do the job
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—xamine: 4-p Model

Could be due to multiple signals
correlated with each other, so a 4-p
model with two pairs of signals
correlated to within the pair (but not

in between) was examined.

-+ The pairs correlated to each other had good MVG approximations (except for
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—xamine: 4-p Model

And the difference between signals from different pairs yielded an MVG with
a correlation of 0, according to expectations

This suggests that multiple signals correlated to each other might contribute
to the problem

difference
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Next

Difference

Find a more accurate way of extending
1-D pto2-D p

If we assume [1j(1j) is not linear,
we must invert this transcendental

function to solve for a 2-D rho

There Is a class that does this that

we are looking into using to
hopefully solve the “corner problem’
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Then return to 5-p model to see if
further steps are necessary
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Jumping dimensions

- To build a 2-D p, the 1-D ps and /fz curves

are used (these shift uniformly as £ is
Increased

. We have /i(u;) & #i(u:) for our arbitrary (Ui uj)

- We “travel” along these curves to solve for

Wi’y yy’)

- First find points by by assuming i(s;) & ()
are roughly linear to avoid inverting this
complicated function

L ,Ui C Ui

- Once we have (u/’, uj’), we can approximate Apop = Apij+ Api,i
. Thus p2p = pij () + pii ) - p( di, ;)
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Jumping dimensions
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