Modeling Multi-Variate Gaussian Distributions for Higgs Coupling Analysis

Olivia A. Krohn

Introduction: Higgs Coupling

- Interested in joining CMS+ATLAS Run 1 Higgs production and decay modes
- The probability distribution function of the product of the cross-sections and branching fractions ($\sigma_{i} \cdot B^{f}$) can be constructed based on experimental observables
- These observables are divided by the SM expectations, and are the parameters of a likelihood function

$$
\mu_{i}=\frac{\sigma_{i}}{\left(\sigma_{i}\right)_{\mathrm{SM}}} \quad \text { and } \quad \mu^{f}=\frac{\mathrm{B}^{f}}{\left(\mathrm{~B}^{f}\right)_{\mathrm{SM}}} . \quad \quad \mu_{i}^{f}=\frac{\sigma_{i} \cdot \mathrm{~B}^{f}}{\left(\sigma_{i}\right)_{\mathrm{SM}} \cdot\left(\mathrm{~B}^{f}\right)_{\mathrm{SM}}}=\mu_{i} \cdot \mu^{f}
$$

- Note $\mu_{i}^{f}=1$ if data aligns perfectly with standard model, $\mu_{i}^{f}=0$ if there is no signal
- Can also parametrize in terms of the ratio of $\mu \mathrm{s}$

Likelihood Fits \& Motivation

- A likelihood function is directly related to the probability distribution of μ
- An example would be $L(\mu)=P\left(N \mid \mu^{*} S+B\right)$
- You can maximize this $L(\mu)$ to find \hat{u}, the most likely value
- The negative-log-likelihood is often used, $-2 \cdot \ln [L(\mu) / L(\hat{u})]=-2 \cdot \ln \boldsymbol{\Lambda}$
- This is useful because $-2 \cdot \ln \boldsymbol{\Lambda}=1$
 occurs at $\pm 1 \sigma,-2 \cdot \ln \Lambda=4$ at $\pm 2 \sigma$, etc.

Likelihood Fits \& Motivation

- In publishing this Run 1 data, the best fit value and $1-\sigma$ values are given
- However, usually the distributions are usually non-Gaussian
- Assuming they are Gaussian with the reported data gives strong bias to results

Purpose

- Create the tools necessary that parties interested in this data can build approximations/models of these likelihood curves
- This facilitates understanding and evaluation of how the data fits the standard model
- Create toy signals (Poisson distributions) that are "off-Gaussian" and develop ways to model non-Gaussian effects
- We eventually want to evaluate signal parameters that are correlated to each other, so we need to accurately evaluate correlated signals in multi-variate Gaussians (MVG)

How: μ-Models

- We can already correct for effects in 1-D

$$
\mu_{i}=\frac{\sigma_{i}}{\left(\sigma_{i}\right)_{\mathrm{SM}}} \quad \text { and } \quad \mu^{f}=\frac{\mathrm{B}^{f}}{\left(\mathrm{~B}^{f}\right)_{\mathrm{SM}}} .
$$

- Each plot is a log-likelihood distribution for a single Poisson, $\mathrm{P}\left(\mathrm{N} \mid \mu^{*} \mathrm{~S}+\mathrm{B}\right)$, with different N, S and B
- Black is true likelihood, red fits $-2 \cdot \ln \boldsymbol{\Lambda}=(\mu-\hat{u})^{2} / \sigma^{2}$ with a constant σ
- Blue accounts for $\sigma^{2}=$ sigma_B ${ }^{2}+\mu^{*}$ sigma_S ${ }^{2}+\mu^{2 *}$ sigma_S_sys ${ }^{2}$

Correlation

- Previously the correlation constant (ρ) between two signals $\left(\mu_{i}, \mu_{j}\right)$ at the minimum was found using a function in RooFit, and used as a constant
- We want to find ρ analytically to see if we can confirm or improve the 2-D MVG approximations

$$
\rho_{\mu_{i}, \mu_{j}}\left(\mu_{i}, \mu_{j}\right)=\frac{\hat{\hat{\mu}}_{j}\left(\mu_{i}\right)-\hat{\mu}_{j}}{\mu_{i}-\hat{\mu}_{i}} \cdot \frac{\sigma_{\mu_{i}}\left(\mu_{i}\right)}{\sigma_{\mu_{j}}\left(\hat{\hat{\mu}}_{j}\left(\mu_{i}\right)\right)}=\frac{q_{\mu_{j}}\left(\hat{\hat{\mu}}_{j}\left(\mu_{i}\right)\right)}{q_{\mu_{i}}\left(\mu_{i}\right)}
$$

- This function diverges at $\hat{\mu}_{i}$ so first tried parametrizing this as a parabola (later returned to re-parametrize as third-degree polynomial)
- Note $\hat{\mu}_{j}\left(\mu_{i}\right)$ is the value minimum value of μ_{j} for a given value of μ_{i}

1-D Correlations

- Now we recognize that these are slices of the 2-D correlation between μ_{i} and μ_{j}
- We are interested in this ρ_{ij}, especially to have it only depend on μ_{i}, and μ_{j} for the independent variables

2-D Correlations

- Also: noted need to re-parametrize the 1-D function for ρ to the third order
- Adjust the original function for creating the MVG to accept the $2 \mathrm{D} \rho_{\mathrm{i}, \mathrm{j}}$, rather than the constant passed by RooFit

Simplify: 2×2 or " $2-\mu$ " Model

- Backtrack: move from model with five correlated signals to two
- Using only two signals, make an MVG with this new 2-D ρ_{ij}
- Evaluate the fit using $\mu_{0}=\mu_{1}=\mu$
- Shows excellent improvement

Simplify: 2×2 or " $2-\mu$ " Model

- The real test: build in two dimensions
- Compare our MVG with true 2-D distribution

Gaussian Approximation

Simplify: 2x2 or "2 μ " Model

- The real test: build in two dimensions
- Compare our MVG with true 2-D distribution
- Strained at corners: likely

Simplify: 2×2 or " 2μ " Model

- The real test: build in two dimensions
- Compare our MVG with true 2-D distribution
- Strained at corners: likely due to the equation that transforms 1-D ρ s to 2-D ρ, which assumed $\hat{\hat{\mu}}_{j}\left(\mu_{i}\right)$ was linear
...but it's not
muhathat_3

Un-Simplify: Check $5-\mu$ Model

- $5-\mu$ model passing parametrization/slice tests that deal with ratios quite well, but not the troublesome "overall- μ " (which is the diagonal slice of the 2-D graph)

Un-Simplify: Check $5-\mu$ Model

- $5-\mu$ model passing parametrization/slice tests that deal with ratios quite well, but not the troublesome "overall- μ " (which is the diagonal slice of the 2-D graph)
-And the 2-D MVG does not do the job
difference

difference

Examine: $4-\mu$ Model

- Could be due to multiple signals correlated with each other, so a $4-\mu$ model with two pairs of signals correlated to within the pair (but not in between) was examined.

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{0}$	$\mathbf{1}$	-0.38102	$\mathbf{0}$	0
$\mathbf{1}$	-0.379109	$\mathbf{1}$	$\mathbf{0}$	0
$\mathbf{2}$	0	0	$\mathbf{1}$	-0.45778
$\mathbf{3}$	0	0	-0.45667	$\mathbf{1}$

- The pairs correlated to each other had good MVG approximations (except for the "corner problem")

Examine: $4-\mu$ Model

- And the difference between signals from different pairs yielded an MVG with a correlation of 0 , according to expectations
- This suggests that multiple signals correlated to each other might contribute to the problem

Next

- Find a more accurate way of extending 1-D ρ to 2-D ρ
- If we assume $\hat{\hat{\mu}}_{j}\left(\mu_{i}\right)$ is not linear, we must invert this transcendental function to solve for a 2-D rho
- There is a class that does this that we are looking into using to hopefully solve the "corner problem"
- Then return to $5-\mu$ model to see if further steps are necessary

Backup

Jumping dimensions

- To build a 2-D ρ, the 1-D ρ s and $\hat{\hat{\mu}}_{i}$ curves are used (these shift uniformly as $\hat{\mu}_{i}$ is increased
- We have $\hat{\hat{\mu}_{i}}\left(\mu_{j}\right) \& \hat{\hat{\mu_{j}}}\left(\mu_{i}\right)$ for our arbitrary $\left(\mu_{i}, \mu_{j}\right)$
- We "travel" along these curves to solve for ($\mu_{i}{ }^{\prime}, \mu_{j}{ }^{\prime}$)
- First find points by by assuming $\hat{\hat{\mu}}_{i}\left(\mu_{j}\right) \& \hat{\hat{\mu}_{j}}\left(\mu_{i}\right)$ are roughly linear to avoid inverting this complicated function
- Once we have ($\mu_{i}^{\prime}, \mu_{j}^{\prime}$), we can approximate $\Delta \rho_{2 \mathrm{D}} \approx \Delta \rho_{\mathrm{i}, \mathrm{j}}+\Delta \rho_{\mathrm{j}, \mathrm{i}}$
- Thus $\rho_{2 \mathrm{D}}=\rho_{\mathrm{i}, \mathrm{j}}\left(\mu_{i}{ }^{\prime}\right)+\rho_{\mathrm{j}, \mathrm{i}}\left(\mu_{i}{ }^{\prime}\right)-\rho\left(\hat{\mu_{i}}, \hat{\mu_{j}}\right)$

Jumping dimensions

- To build a 2-D ρ, the 1-D ρ s and $\hat{\hat{\mu}}_{i}$ curves are used (these shift uniformly as $\hat{\mu}_{i}$ is increased
- We have $\hat{\hat{\mu}_{i}}\left(\mu_{j}\right) \& \hat{\hat{\mu_{j}}}\left(\mu_{i}\right)$ for our arbitrary $\left(\mu_{i}, \mu_{j}\right)$
- We "travel" along these curves to solve for ($\mu_{i}{ }^{\prime}, \mu_{j}{ }^{\prime}$)
- First find points by by assuming $\hat{\hat{\mu}}_{i}\left(\mu_{j}\right) \& \hat{\hat{\mu}_{j}}\left(\mu_{i}\right)$ are roughly linear to avoid inverting this complicated function
- Once we have ($\mu_{i}^{\prime}, \mu_{j}{ }^{\prime}$), we can approximate $\Delta \rho_{2 \mathrm{D}} \approx \Delta \rho_{\mathrm{i}, \mathrm{j}}+\Delta \rho_{\mathrm{j}, \mathrm{i}}$
- Thus $\rho_{2 \mathrm{D}}=\rho_{\mathrm{i}, \mathrm{j}}\left(\mu_{i}{ }^{\prime}\right)+\rho_{\mathrm{j}, \mathrm{i}}\left(\mu_{i}{ }^{\prime}\right)-\rho\left(\hat{\mu_{i}}, \hat{\mu_{j}}\right)$

Jumping dimensions

- To build a 2-D ρ, the 1-D ρ s and $\hat{\hat{\mu}}_{i}$ curves are used (these shift uniformly as $\hat{\mu}_{i}$ is increased
- We have $\hat{\hat{\mu}_{i}}\left(\mu_{j}\right) \& \hat{\hat{\mu_{j}}}\left(\mu_{i}\right)$ for our arbitrary $\left(\mu_{i}, \mu_{j}\right)$
- We "travel" along these curves to solve for ($\mu_{i}{ }^{\prime}, \mu_{j}{ }^{\prime}$)
- First find points by by assuming $\hat{\hat{\mu}}_{i}\left(\mu_{j}\right) \& \hat{\hat{\mu}_{j}}\left(\mu_{i}\right)$ are roughly linear to avoid inverting this complicated function
- Once we have ($\mu_{i}^{\prime}, \mu_{j}^{\prime}$), we can approximate $\Delta \rho_{2 \mathrm{D}} \approx \Delta \rho_{\mathrm{i}, \mathrm{j}}+\Delta \rho_{\mathrm{j}, \mathrm{i}}$
- Thus $\rho_{2 \mathrm{D}}=\rho_{\mathrm{i}, \mathrm{j}}\left(\mu_{i}{ }^{\prime}\right)+\rho_{\mathrm{j}, \mathrm{i}}\left(\mu_{i}{ }^{\prime}\right)-\rho\left(\hat{\mu_{i}}, \hat{\mu_{j}}\right)$

