
Modeling Multi-Variate Gaussian 
Distributions for Higgs Coupling Analysis

Olivia A. Krohn

1



Introduction: Higgs Coupling
• Interested in joining CMS+ATLAS Run 1 Higgs production and decay modes

• The probability distribution function of the product of the cross-sections and 

branching fractions (σi · Bf) can be constructed based on experimental observables 

• These observables are divided by the SM expectations, and are the parameters of a 

likelihood function


• Note µif= 1 if data aligns perfectly with standard model, µif=0 if there is no signal

• Can also parametrize in terms of the ratio of µs
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Likelihood Fits & Motivation

• A likelihood function is directly related 
to the probability distribution of µ


• An example would be                         
L(µ) = P(N | µ*S +B)


• You can maximize this L(µ) to find û, 
the most likely value


• The negative-log-likelihood is often 
used, -2·ln[L(µ)/L(û)] = -2·ln 𝚲


• This is useful because -2·ln 𝚲 =1 
occurs at ±1σ, -2·ln 𝚲=4 at ±2σ, etc.
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Likelihood Fits & Motivation
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• In publishing this Run 1 data, the 
best fit value and 1-σ values are 
given


• However, usually the distributions 
are usually non-Gaussian


• Assuming they are Gaussian with 
the reported data gives strong bias 
to results



Purpose

• Create the tools necessary that parties interested in this data can build 
approximations/models of these likelihood curves


• This facilitates understanding and evaluation of how the data fits the standard 
model 


• Create toy signals (Poisson distributions) that are “off-Gaussian” and develop 
ways to model non-Gaussian effects 


• We eventually want to evaluate signal parameters that are correlated to each 
other, so we need to accurately evaluate correlated signals in multi-variate 
Gaussians (MVG)
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• We can already correct for effects in 1-D

How: µ-Models

• Each plot is a log-likelihood distribution for a single Poisson, P(N | µ*S+B), 
with different N, S and B


• Black is true likelihood, red fits -2·ln 𝚲 = (µ - û)2/σ2 with a constant σ


• Blue accounts for σ2 = sigma_B2 + µ*sigma_S2+ µ2*sigma_S_sys2
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Correlation

• Previously the correlation constant (𝜌) between two signals (µi, µj) at the 
minimum was found using a function in RooFit, and used as a constant


• We want to find 𝜌 analytically to see if we can confirm or improve the 2-D MVG 
approximations

• This function diverges at ûi so first tried parametrizing this as a parabola (later 
returned to re-parametrize as third-degree polynomial)


• Note            is the value minimum value of µj for a given value of µi
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1-D Correlations

• Now we recognize that these are slices of the 2-D correlation between µi and µj


• We are interested in this 𝝆ij , especially to have it only depend on µi, and µj  for 
the independent variables
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2-D Correlations

• Adjust the original function for 
creating the MVG to accept the 
2D 𝝆i,j , rather than the constant 
passed by RooFit

• Also:  noted need to re-parametrize the 
1-D function for 𝝆 to the third order
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Simplify: 2x2 or “2-µ” Model
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• Backtrack: move from model 
with five correlated signals to 
two


• Using only two signals, make an 
MVG with this new 2-D 𝝆ij


• Evaluate the fit using µ0 = µ1 = µ


• Shows excellent improvement
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Simplify: 2x2 or “2-µ” Model

• The real test: build in two dimensions


• Compare our MVG with true 2-D distribution
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Simplify: 2x2 or “2 µ” Model

• The real test: build in two dimensions


• Compare our MVG with true 2-D distribution

• Strained at corners: likely 
due to the equation that 
transforms 1-D 𝝆s to 2-D 
𝝆, which assumed            
was linear ….
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Simplify: 2x2 or “2 µ” Model

• The real test: build in two dimensions


• Compare our MVG with true 2-D distribution

• Strained at corners: likely 
due to the equation that 
transforms 1-D 𝝆s to 2-D 
𝝆, which assumed            
was linear ….


…but it’s not
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Un-Simplify: Check 5-µ Model

• 5-µ model passing parametrization/slice tests that deal with ratios quite well, 
but not the troublesome “overall-µ” (which is the diagonal slice of the 2-D 
graph)
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Un-Simplify: Check 5-µ Model

• 5-µ model passing parametrization/slice tests that deal with ratios quite well, 
but not the troublesome “overall-µ” (which is the diagonal slice of the 2-D 
graph)


• ….And the 2-D MVG does not do the job

15

0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1 1.2
2

2.5

3

3.5

4
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

difference



Examine: 4-µ Model

• The pairs correlated to each other had good MVG approximations (except for 
the “corner problem”)
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• Could be due to multiple signals 
correlated with each other, so a 4-µ 
model with two pairs of signals 
correlated to within the pair (but not 
in between) was examined.




Examine: 4-µ Model

• And the difference between signals from different pairs yielded an MVG with 
a correlation of 0, according to expectations


• This suggests that multiple signals correlated to each other might contribute 
to the problem
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Next

• Find a more accurate way of extending 
1-D 𝝆 to 2-D 𝝆 

• If we assume               is not linear, 
we must invert this transcendental 
function to solve for a 2-D rho


• There is a class that does this that 
we are looking into using to 
hopefully solve the “corner problem”


• Then return to 5-µ model to see if 
further steps are necessary
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Backup



Jumping dimensions 

• To build a 2-D 𝝆, the 1-D 𝝆s and       curves 
are used (these shift uniformly as        is 
increased 


• We have           &            for our arbitrary (µi, µj)


• We “travel” along these curves to solve for 
(µi’, µj’)                                             


• First find points by by assuming           &           
are roughly linear to avoid inverting this 
complicated function
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