Modeling Multi-Variate Gaussian
Distributions for Higgs Coupling Analysis

Olivia A. Krohn

Introduction: Higgs Coupling

Interested in joining CMS+ATLAS Run 1 Higgs production and decay modes

The probability distribution function of the product of the cross-sections and
branching fractions (oi- BY) can be constructed based on experimental observables

These observables are divided by the SM expectations, and are the parameters of a
likelihood function -

. f o*,--Bf
ol and ¢ = B /I,{— = ;- 1.

(T)sm (Bf)SM. i ()sm * (Bf)sM

Note pi'= 1 if data aligns perfectly with standard model, pi'=0 if there is no signal

Can also parametrize in terms of the ratio of ps

Likelihood Fits & Motivation

A likelihood function is directly related

10¢
to the probability distribution of p c
AN
An example would be ,
L(u) = P(N | u*S +B) .
You can maximize this L(u) to find Q, j
the most likely value \
The negative-log-likelihood is often
used, -2-In[L(u)/L(0)] = -2-In A ‘

This is useful because -2:In A =1
occurs at +10, -2:In A=4 at +20, etc.

@ O

— Observed
----- SM expected

1 —r——r _
ATLAS and CMS 9% 0.0/0, 000 0 s 0219
- LHC Run 1 Internal 878 8%/8% 8"/8% 8™/ 887]

T Y T T T

B”°/B% norm. to SM prediction

Likelihood Fits & Motivation

- In publishing this Run 1 data, the
best fit value and 1-o values are

given

- However, usually the distributions

are usually non-Gaussian

- Assuming they are Gaussian with

: ATLAS and CMS [0Z,, 0ya /01 OO Oy O Oy 10
LHC Run 1 Internal & /8”8 /8%, 8 /B“ 8" /88“1 E

—— Observed
SM expected

T T Lam—

*
o®

the reported data gives strong bias

to results

< 10
£ of
o
8}
s
6f
5
4
3F
2f
1
of
Input: CMS
+0.19
ATLAS and CMS WMz = 0,171 219
LHC Run 1 Internal 1
W2 =01717

— Qbs0rved '
s Cow Masstrix

05 .
uw,“zz

-2 Aln A(u™)

S
B"°/B% norm. to SM prediction

Input: CMS
14| ATLAS and CMS ut® =0.808 ' 242
_ , 0.425
LHC Run 1 nternal
o ut = 0,285
| = Observed
s Cow Matri
10}
of
6f
af
2
I 1 2
0 1 1.5 2 25
oo

PUrpose

- Create the tools necessary that parties interested in this data can build
approximations/models of these likelihood curves

- This facilitates understanding and evaluation of how the data fits the standard
model

- Create toy signals (Poisson distributions) that are “off-Gaussian” and develop
ways to model non-Gaussian effects

- We eventually want to evaluate signal parameters that are correlated to each
other, so we need to accurately evaluate correlated signals in multi-variate
Gaussians (MVG)

2Alog L

How: p-Models

. g; ’uf B‘f
We can already correct for effects in 1-D M=o~ — and = —
Ti)sm (B”)sm

True likelihood :é“ a ‘ True likelihood é 4 True likelihood

[[< \ ‘ a %
—— Gaussian approx /’ o - \. Gaussian approx f / o \ 5 Gaussian approx

—— Parametrized L /‘ s \\‘ ~— Parametrized L J — Parametrized L
25 2 s
2
15 1 5
1} ‘
05 0‘7

04 06 08 1 1271416 18 05 1 15 2 25 3;; ' Y Y ST Y "1‘6'@3

Each plot is a log-likelihood distribution for a single Poisson, P(N | u*S+B),
with different N, S and B

Black is true likelihood, red fits -2:In A = (u - (1)?/0? with a constant o

Blue accounts for ° = sigma_B? + p*sigma_S?+ p?*sigma_S_sys?

Correlation

- Previously the correlation constant (p) between two signals (u;, yj) at the
minimum was found using a function in RooFit, and used as a constant

- We want to find p analytically to see if we can confirm or improve the 2-D MVG
approximations

N\
A\

Ai(wi) =By o (i) D)
pi— B oo, () G (i)

P (His 1) =

- This function diverges at j: so first tried parametrizing this as a parabola (later
returned to re-parametrize as third-degree polynomial)

- Note flj(ui) Is the value minimum value of pjfor a given value of i

1-D Correlations

p_02 p_12
N N
o -—
0e1 02— a

0.004—
0.1
\~.
\ 0.002
0.098 N\ | /
’ |

|
0.096 ' 0 }
0.094 | Ny -0.002 | |

Ny p
0.092 N
0.004}—
0.09}— | | | |
! P P B I I \ A B !
08 1 12 14 16 18 2 22 24 1.5 2 25 3 35 4
mu0 mu1l

Now we recognize that these are slices of the 2-D correlation between u; and y;

We are interested in this pjj, especially to have it only depend on u;, and u; for
the independent variables

) Correlations

0079
-0.089

~0.09-| S

RE |

3 4
e
R g
-0.114
. ~
R

0129
0134

rho 2D 10

Also: noted need to re-parametrize the

1-

D function for p to the third order

Adjust the original function for
creating the MVG to accept the
2D pi;, rather than the constant

passed by RooFit

p_43

0.0598| /
0.0596(/
0.0594]— '
0.0592 —

0.059}- |

0.0588/—

mud

Simplify: 2x2 or “2-uy” Model

-2 AlogL
N

3.5

True likelihood
—K Constant p and constant o
Constant p and parameterized o

Parameterized p and parameterized o

1 1.2 1.4 1.6 1.8 2 2.2 2.4

mu

Backtrack: move from model
with five correlated signals to
two

Using only two signals, make an
MVG with this new 2-D pij;

Evaluate the fit using pjo=p1 =

Shows excellent improvement

10

2x2 or “2-u” Model

Simplify

The real test: build in two dimensions

-D distribution

- Compare our MVG with true 2

Gaussian Approximation

True Curve

11

Simplify: 2x2 or “2 u” Model

The real test: build in two dimensions

Compare our MVG with true 2-D distribution

Difference

Strained at corners: likely
due to the equation that

transforms 1-D ps to 2-D
p, which assumed /(1)
was linear

12

Simplify: 2x2 or “2 u” Model

- The real test: build in two dimensions

- Compare our MVG with true 2-D distribution

- Strained at corners: likely muhathat_3

due to the equation that shef
transforms 1-D ps to 2-D g -
A 1.5
p, which assumed ,LL,'(/L,') -
: 14—
was linear -
1.3F
...but it’s not s oF
11
1
0.9

3 I llLlllL'll'l llllll'lll'

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

mu0

Un-Simplify: Check 5-py Model

5-u model passing parametrization/slice tests that deal with ratios quite well,
but not the troublesome “overall-p” (which is the diagonal slice of the 2-D

graph)

" -
8’ B :8 4 E—#‘ nd * //
-] - = 1 f’
o~ (\.l |- orstart p and parametenired o /
' 3.5} /
| \Paamelenzed p and parametenred o {
3F /
i /
25} /
[/
/.‘
2F /
. ¥
1 5 f /
: /
C /
1'_ '
- \\ /
0 5 \ ,/
05 F > K-
0 —_— T
] : | | LJ A | | | | i | I | A 4l .
1 08 08 09 0985 1 105 11 115 12 125
3 mu

14

Un-Simplify: Check 5-py Model

- 5-y model passing parametrization/slice tests that deal with ratios quite well,
but not the troublesome “overall-p” (which is the diagonal slice of the 2-D

graph)

-And the 2-D MVG does not do the job

0.8

0.6

0.44

difference

0 oy

2.5

N

2.2

1.8
1.6
1.4
1.2

difference

15

—xamine: 4-p Model

Could be due to multiple signals
correlated with each other, so a 4-p
model with two pairs of signals
correlated to within the pair (but not

in between) was examined.

-+ The pairs correlated to each other had good MVG approximations (except for

difference

1.4

r———
1.2

the “corner problem”)

18
16
1.4
1.2

0.14
0.05-

-0.054
~0.14
~0.154
-0.24
~0.254

o A5

0 1 2 3

1 -0.38102 0 0

-0.379109 1 0 0

0 0 1 -0.45778

0 0 -0.45667 1
difference

16

—xamine: 4-p Model

And the difference between signals from different pairs yielded an MVG with
a correlation of 0, according to expectations

This suggests that multiple signals correlated to each other might contribute
to the problem

difference

17

Next

Difference

Find a more accurate way of extending
1-D pto2-D p

If we assume [1j(1j) is not linear,
we must invert this transcendental

function to solve for a 2-D rho

There Is a class that does this that

we are looking into using to
hopefully solve the “corner problem’

T T HH
L1111
11717

Then return to 5-p model to see if
further steps are necessary

Sackup

Jumping dimensions

- To build a 2-D p, the 1-D ps and /fz curves

are used (these shift uniformly as £ is
Increased

. We have /i(u;) & #i(u:) for our arbitrary (Ui uj)

- We “travel” along these curves to solve for

Wi’y yy’)

- First find points by by assuming i(s;) & ()
are roughly linear to avoid inverting this
complicated function

L ,Ui C Ui

- Once we have (u/’, uj’), we can approximate Apop = Apij+ Api,i
. Thus p2p = pij () + pii) - p(di, ;)

20

Jumping dimensions

- To build a 2-D p, the 1-D ps and /fz curves

are used (these shift uniformly as £ is
Increased

. We have /i(u;) & #i(u:) for our arbitrary (Ui uj)

- We “travel” along these curves to solve for

Wi’y yy’)

- First find points by by assuming i(s;) & ()
are roughly linear to avoid inverting this
complicated function

L ,Ui C Ui

- Once we have (u/’, uj’), we can approximate Apop = Apij+ Api,i
. Thus p2p = pij () + pii) - p(di, ;)

21

Jumping dimensions

- To build a 2-D p, the 1-D ps and /fz curves

are used (these shift uniformly as £ is
Increased

. We have /i(u;) & #i(u:) for our arbitrary (Ui uj)

- We “travel” along these curves to solve for

Wi’y yy’)

- First find points by by assuming i(s;) & ()
are roughly linear to avoid inverting this
complicated function

fi; pi' i

- Once we have (u/’, uj’), we can approximate Apop = Apij+ Api,i
. Thus p2p = pij () + pii) - p(di, ;)

22

