

CILEX Apollon laser facility

P. Audebert¹

D. N. Papadopoulos ¹, G. Chériaux ¹, C. Le Blanc ¹, P. Georges ³, J.P Zou ¹, F. Druon ³, L. Martin¹, A. Fréneaux ¹, A. Beluze¹, N. Lebas¹, J.M. Boudenne ¹, F. El Hai¹, J. Prudent¹, A. Cauchois⁵, M. Bougeard⁴ J.L. Paillard ¹, J.L. Veray ¹, M. Pina ¹, L. Huret¹, C. Evrard¹, J. Albrecht, ¹ J. Fuhs¹, F. Quere⁴, C. Thaury², B. Cros⁶, A. Specka⁵, P. Monot ⁴, P. Martin ⁴, B. Le Garrec¹, F. Mathieu¹ and F. Amiranoff¹

¹LULI, CNRS, Ecole Polytechnique, CEA, Univ. Pierre et Marie Curie, Palaiseau, France,
 ²LOA, ENSTA ParisTech, CNRS, Palaiseau, France,
 ³LCF, Institut d'Optique, CNRS, Univ Paris Sud, Palaiseau, France,
 ⁴ LIDYL CEA, CNRS, Iramis, , Saclay, France
 ⁵LLR, CNRS, Ecole Polytechnique, Palaiseau, France,
 ⁶LPGP, Univ Paris Sud, Orsay, France

A project by "laser and plasma labs" on Plateau de Saclay

Funding as been allocated to develop new instruments and an interdisciplinary centre CILEX

dedicated to address physics at unexplored power densities hosting APOLLON facility

a multi-PW lasers with 2 radioprotected experimental rooms and smaller scale facilities

for pluridisciplinary programs training of scientists and engineer

Operated as a user-facility

29/11/2016

Apollon : a variety of scientific applications

X-ray , as sources, γ -rays High-field physics

pollon

Cile)

Apollon laser facility Requirements

- High laser intensity
 - $I > 10^{22}$ W/cm² (a₀ = (0.85 ($I_{18}\lambda^2$)^{^0.5}) > 100
- Multi beams
 - to perform pump probe experiment and multi stage laser acceleration
- Repetition rate (1shot/min)
 - To adjust laser and experiment parameters
 - To have enough statistics
- High contrast
 - To be able to interact with the solid without pre-formed plasma
- Reliability and stability
- Good characterization of the beams
- Flexibility to make new experiments

laser beams

- To address the experiments that we wants to perform, the laser facility has been design with
 - 4 independent beams
 - main beam F1
 15fs-few ps / 150J possible
 - secondary beam F2
 - ns beam F3
 - probe beam F4

15 fs-few ps / 15J max uncompressed up to 200J <20fs / 0.2J)

– 2 independent radio protected experiment areas

The Apollon laser

- Apollon key features:
 - ➤ Hybrid architecture: OPCPA + Ti:Sapphire → Contrast + Bandwidth
 - Unique Material: Φ10-175mm Ti:Sapphire crystals, Meter size gold gratings, state-of-the-art optics
 - High energy pump sources: up to 700 Joules/min
 - Adaptive control: spatial (Deformable mirrors) and spectral phase (Dazzler)
 - > 175 nm Spectral window for the whole system

Cilex Apollon The Apollon Facility: Laser Hall Beam Pump Source Area **Separation** 10 PW **Compressor Amplification Section** Front End C **1 PW** Compressor 🗸 Switchyard / 35m **Diagnostics**

Apollon laser: construction progress

2013: beginning of reconstruction work... 03/2015 reception of the building

pollon

CileXA

7

29/11/2016

The Front end: OPCPA performance

□ Initial demonstration 2014 IOGS

oollon

CileX

- □ **Highly reliable operation**: 2% rms stability, <10µrad pointing
- Optimized **compression** with a **Wizzler/Dazzler**:

9.5 fs (8.1 fs FTL) at 1 mJ

□ Contrast ratio measurement with a 3rd order autocorrelator:

CR>10¹³ (estimated)

*L. P. Ramirez, et al J. Opt. Soc. Am. B 30, 2607-2614 (**2013**) **D. N. Papadopoulos, et al in Advanced Solid State Lasers, OSA (**2015**)

The Front end: Final amplification stage

- ✓ High beam quality: $\lambda/3$ PtV over full beam (< $\lambda/7$ PtV for the injected central part)
- ✓ Highly repetitable operation: Reliable Pump + Diagnostics → <45min startup time</p>
- ✓ Bandwidth >100nm FWHM & ~165nm FW(1%) / 14 fs FTL.
- ✓ Output energy stability ~5.5% rms, **34%** PtV (25 min) for ~4% at the input (OPCPA)

The power amplification section (PAS)

- **5x "low" gain multipass amplifiers**: Φ6-Φ140 => 0.3-300 Joules
- Bandwidth preserving design: Spectral filtering
- Due to budget constraint the projec has several phases
 - First step

We will have only 300 J of pump -> 75J on F1 We keep the compatibility to 10PW for the laser and experimental room (beam diameter 400mm)

PAS: Amp30 implementation

- Simple and compact 4-pass configuration at Φ55 (Φ60 for the pump) employing a Φ80 Ti:Sapphire crystal
- Design operation point: 35 joules for 90 joules of pump
- Pump source Atlas100 (100Joule at 527nm) installed on a mezzanine floor with ~11 m of distance to the crystal: pump beam delivery issue

PAS: ATLAS100 beam delivery

ollon

SILIOS Technologies

Cile)

Typical stability curve of a single chanel of Atlas100

- Very stable and robust operation: 100
 Joule/min, at 527 nm, ~1% rms,
 <15µrad rms pointing
- Use of Diffractive Optic Elements DOE to homogenise the beam on the crystal: >90% transmission → Flat-top beam, stable pumping conditions, no relay imaging required
- ~87 Joules delivered on the crystal

PAS: Amp30 performance

- ✓ Uniform flat-top like beam at 32 Joules
- ✓ Stable operation over 1 hour: <3% PtV energy fluctuation
- ...Injection of the final Front End -> Energy + Broad spectrum (>65 nm) ->
 >1PW level operation capacity (end of 2016)

Apollon CNE400 pump source reception (factory)

Pumping... to the multi PW level

Output Energy at 527nm, 4 hour run. 200 150 ur ~5% PtV 100 g21 at ğ 50 Enel Output 0,00E+00 5,00E+01 1.00E+02 1.50E+02 2,00E+02 2,50E+02 Run Time, minutes

- Compact system: 3 optical tables + power supply on ~20m²
- ✓ 200 Joules/min at 527 nm / Uniform beam
- ✓ Reliable / turn-key operation

...Pumping of Amp100 (begin of 2017) → Broadband amplification at 110
 Joules (summer 2017) → multi-PW capacity demonstration (begin 2018)

Cile)

Versatile area and chamber adapted to various experiments

f/2.5 focussing \rightarrow intensity > 10²²W/cm²

1 PW beam at ≈ any angle from 10 PW beam

-> extreme (high energy, high dose, ultrashort, directional) beams of ions, X-rays and γ -rays -> exploit the unique properties of the ion beam as a probe and for a variety of applications

37 m long radio-protected area with two chambers allowing 1 PW and 10 PW experiments and 2-stage schemes

FOR

Exploratory electrons experiments using a single beam PW and Mult-PW

Develop a two stage Laser Plasma Accelerator (Injector/accelerator)

- Facility will be opened to national and international scientists
 - The experimental programs on APOLLON will be decided, on an annual basis, taking into account suggestions from an independent Program Committee.
- Beam time allocation per year
 - The goal is 20 experimental campaigns (10 in each area)
 - Maintenance and configuration changes 60 days
 - Laser development 50 days
- Experiments
 - Each experimental area will perform one after the other
 - Experimental campaigns will be defined on 4 weeks basis
 - The laser will deliver pulse sequences on demand for users 5 hours per day.
 - At the beginning, 2 days will be used for changing configuration between experimental areas
- The experiment should use as much as possible every laser shots

Ciles Apollon Campaign model on 4 weeks basis

- Each block corresponds to 1 day
- Experimental assembly without laser (7 days)
- Holidays and contingency 2 days
- Switch of laser configuration (2 days)
- Experiences (6 days : 1 800 shots)
- Laser Maintenance (1 day every 2 weeks)

Experimental dismantling (2 days)

Conclusions

- □ Apollon is based on state-of-the-art laser systems, material and technology and will provide unique laser performances
- High Contrast/Large bandwidth Front End in the final commission phase
- □ High energy amplification: demonstration of **32 Joules**
- Critical material reception and integration

…Demonstration of PW level capacity (2016) → PW level experiments (2017), multi-PW operation (2018)

Remerciements

22