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High-peak-power laser beams with a top-hat transverse
intensity profile are shown to offer unique options for the
spectral and temporal nonlinear-optical transformations of
high-intensity laser fields, promising a new technology of
spatially uniform pulse compression at the subpetawatt
level of peak powers.
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Identifying the physical scenarios that would enable efficient spectral transformation of extreme-power laser | o
pulses in nonlinear media is a challenging problem, which involves several fundamental issues of extreme-light—
matter interactions. In particular, along with self-focusing of a beam as a whole, high-power laser light can
exhibit small-scale self-focusing due to the spatial modulation instability of the beam [1] relative to small
intensity variations across the laser beam and small spatial inhomogeneities in the optical properties of nonlinear
media. The spatiotemporal dynamics of ultrahigh-power laser beams gives rise to multifilamentary structure of
the field, which has been verified by numerous laser experiments in gases, liquids, and solids [2, 3].
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In this work, we address these issues through experimental studies and supercomputer simulations, EE_ 3-2
analyzing the spatiotemporal dynamics of high-power laser pulses in a nonlinear, fast-ionizing solid-state I= i
medium. High-peak-power laser beams with a top-hat transverse intensity profile are shown to offer unique : ;
options for the spectral and temporal nonlinear-optical transformations of high-intensity laser fields. A flattened . <
transverse intensity distribution is shown to translate into a spatially uniform spectral broadening, enabling an “ - EEEEEE

extraordinarily uniform pulse compression within the entire laser beam. With a super-Gaussian laser beam used
as a model, we examine, by means of (3 + 1)-dimensional supercomputer simulations [4], the key tendencies of
this unusual scenario of nonlinear-optical field transformation in the regime of high laser intensities (Figs. 1 —
3). Spatial modulation instabilities, which tend to build up across a high-power laser beam, giving rise to beam
breakup into multiple filaments, are identified as a universal physical factor limiting the beam quality, as well as
the spatial uniformity of pulse compression [5, 6]. A new technology of spatially uniform pulse compression at
the subpetawatt level of peak powers is envisaged. Experiments with a top-hat beam delivered as an output of an
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Results of (3 + 1)-dimensional supercomputer simulations of nonlinear-optical evolution
of a high-intensity fifth-order super-Gaussian beam:

- Gauss (a) the maximum field intensity (blue line) and electron density (red line) acrossthe laser beam,
2 3 Supergauss (b) the temporal envelope
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> 5 (c) the spectrum of the compressed (solid blue line) and input (dashed green line) laser pulse.
- _C} b
Time (fs) Tlme fs S
g J\L
‘W
3 S0
E—r = -0.1 0.0 0.1 References
xf(m (mm'1) B
0.7 08 09100 5 07 0809109 5

[1] V.l. Bespalov and V.l. Talanov, "Filamentary Structure of Light Beams in Nonlinear
Liquids,” JETP Lett. 3, 307 — 310 (1966).
[2] L. Bergég, S. Skupin, R. Nuter, J. Kasparian and J.-P. Wolf, ”"Ultrashort filaments of
light in weakly ionized, opticallytransparentmedia,” Rep. Prog. Phys. 70, 1633 — 1713
(2007).
[3] A. Couaironand A. Mysyrowicz, ” Femtosecond filamentation intransparent
media,” Phys. Reports 441, 47 — 189 (2007).
[4] A.A. Voronin, V.Ya. Panchenko, and A.M. Zheltikov, “Supercomputationsand big-
data analysisin strong-field ultrafast optical physics: filamentation of high-peak-power
ultrashort laser pulses,” Laser Phys. Lett. 13, 065403 (2016).
[5] P. A. Zhokhov, V. Ya. Panchenko, and A. M. Zheltikov, ,Filamentation-assisted self-
compression of subpetawattlaser pulses to relativistic-intensity subcycle field
i waveforms,“Phys. Rev. A 86, 013835 (2012).

z, [6] A. V. Mitrofanoy, A. A. Voronin, D. A. Sidorov-Biryukov, S. . Mitryukovsky, A. B.
, t L Ruc A M Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Alisauskas, A.

% Pusssian Duarturm Center IQ Pugzlys, V. Ya. Panchenko, A. Baltuska, and A. M. Zheltikov, "Subterawatt few-cycle

midinfrared pulses from a single filament," Optica 3, 299-302 (2016).

Wavelength (um) B-integral Wavelength (um) B-integral

Results of (3 + 1)-dimensional supercomputer simulations showing hot-spot generation
and beam breakup into multiple filaments
for a Gaussian (a, b) and a fifth-order super-Gaussian (c, d) beam.
The blowup of the central part of the beam is shown in panels (b) and (d).

Temporal (a, b) and spectral (c, d) evolution in a fifth-order super-Gaussian (a, c)
and a Gaussian (b, d) beam. The B integral across the beam is shown as a marginal
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