
Development of e-Science Application
Portal on GAP

WeiLong Ueng
Academia Sinica Grid Computing
wlueng@twgrid.org

Outline

• Introduction
• Grid Application Platform
• e-Science Application Portal
• Architecture and Components• Architecture and Components
• Conclusion

Introduction

• Computational scientists often develop large models and codes
intended to be used by larger user communities or for
repetitive tasks such as parametric studies. Lowering the
barrier of entry for access to these codes is often a technical
and sociological challenge.

• Portals help bridge the gap because they are well known• Portals help bridge the gap because they are well known
interfaces enabling access to a large variety of resources,
services, applications, and tools for private, public, and
commercial entities, while hiding the complexities of the
underlying software systems to the end-user.

• Computational science portals are emerging as useful and
necessary interfaces for performing operations on the GRID.

Motivation and Purpose

• It is developed based on Grid Application platform (GAP), and
provides a customizable interface allowing researchers to use a
variety of GRID services including job submission, job
monitoring, data management…etc.

• Through the grid-enabled computing portal, the end-users can
easily take the advantage of GRID computing resources foreasily take the advantage of GRID computing resources for
large-scale scientific computing. Furthermore, they can even
execute their own scientific computing, and obtain the
computing result with this portal. In this way, the end-user can
use the Grid environment more easily and securely.

The Grid Application Platform (GAP in the hereafter) is a middleware that can reduce lots of effort to implement their grid application. GAP is developed by Academia Sinica Grid Computing (ASGC).

Difficulties for end users

• Using a application on the grid, end users have
to:
– Login to a remote Linux/Unix server which have the gLite

UI component installed.
• That UI component only provides command line interface

instead of graphical user interface.instead of graphical user interface.
– users have to familiar with commands of grid middleware

due to lack of friendly user interfaces.

• The whole application is tightly coupled with
that UI component.

• UI is still a remote component, and it is not easy
to be integrated with an existing application.

5

In our way: Portable & light-weight Client for
end users

Services

• Thin Client
• Without installing

any Grid component, such as a UI
• Portable
• Cross-platform
• Graphical user interface

Interface

Thin client
Interface

Thin client
Interface

Thin client

6

• Graphical user interface

In our way: Intuitive Friendly User Interfaces
for end users
• Submitting jobs in an application

oriented view is very easy.

7

Grid Application PlatformGrid Application Platform
• Grid Application Platform (GAP) is a grid application
framework developed by ASGC. It provides a vertical
integration for developers and end-users

– In our aspects, GAP should be

• Easy to use for both end-users and developers.

• Easy to extend for adopting new IT technologies, the adoption
should be transparent to developers and users.

• Light-weight in terms of the deployment effort and the system

overhead.

Grid Application Platform (GAP) is an environment for developing scientific grid applications. GAP clearly defined a layered architecture that recommended application developers to follow the Model-View-Controller design pattern to create user-friendly, easy-maintained application services. This architecture consists of three frameworks, each of them corresponds to certain routine works that developers need to go through while making a new application service on the grid.
GAP stands for Grid Application Platform, it’s developed by ASGC.
and it’s a java-based platform, it provides a vertical integration
 includes high-level application user interface and a variety of low-level grid job scheduling and management tools.

in our aspects

The layered GAP architecture

High-level

Re-usable
interface components

Reduce the effort of developing application services

Reduce the effort of adapting new technologies

Concentrate efforts on applications

Interfacing
computing resources

High-level
application logic

Considering the reusability, GAP does not only provide a layered architecture which has three independent frameworks to accomplish these tasks
but also keep the reusability.
these three frameworks all provide a well-defined interface to communicate each other.
The bottom of this figure is the distributed computing environments, and we have core framework to handle them.

Core framework - In core framework , we simplify USER and JOB management and the access to utility application by a set of well-defined APIs,
Such as proxy initialization, user login/logout, submit or delete your job, copy or move data, etc.
There are many kinds of computing environments, GRID is just one of them.
so, based on Core framework
Application framework - we introduce an action based approach of developing advanced applications for problem solving,
The framework sees the application as a collection of commands corresponding to certain application actions and implements an interface for adapting and executing commands.
the outcome of the approach is a collection of reusable command which can be reutilized to speedup the development of a new application service.

finally
Presentation Framework can adopt any kind of java-based presentation framework to meet user’s requirement of interface customization, in other words, the tasks you’ve done in this framework is making the user happy...

Components

• Portable application package: light-weight client-
side package for managing jobs and running
applications.

• Virtual Queuing System: high-level meta-schedule
with application specific resource matching.with application specific resource matching.

• Local System Agent: uniform interface for adapting
heterogeneous computing environments.

The architecture overview

Common
Interface to

Heterogeneous

Portable & light-
weight Client

Service Oriented
Architecture

Multi-user
Environment

Heterogeneous
Environment

Three major components (VQSClient, VQS and LSA)
User repository store some user information, such as users’ role, email, proxy...etc
VQS: There are two major componet in VQS, one is GSS, GSS is Globus security service, It’s manage users’ proxy. the other one is VQS server: It’s to do Job operation
??:user delegate proxy in MyProxy server,to provide proxy renew in GSS in VQS server, when VQS server receive proxy from VQS client, VQS will store proxy in user repository
Then if user submit Job,VQS client will use XML-RPC to send Jobs to VQS Server. if users’ Job need some files or data,VQS will use GASS and globus-url-copy to transfer data to Job repository,then server will register some job information in Job metadata database, Such us when job submit, when send to LSA.
Then LSA(Local System Agent) will ask VQS server, is there suitable jobs. if yes, LSA will send Jobs to computing resource, and monitoring job procession.
if Jobs complate, LSA will retrieve result, then send to VQS and Job workspace.
User can assign which computing resource they would like to execute their jobs. if user not assign computing resource, It’s depends on which computing resource suitable for Jobs.
so LSA need to deploy to condor header node, PBS header node and gLite UI

What is portal

• A portal is a web based application that commonly provides
personalization, single sign on, content aggregation from
different sources and hosts the presentation layer of
Information Systems”(JSR 168).

Portal page

Portlet Window

Portlet Fragment

Decorations and Controls

Portlet ???? portal server ??? �????? portlet ?????????. �????, ??? portlet ????????.

What is Grid Portal

• Grid Portals build upon the familiar Web portal model, such as
Yahoo or Amazon, to deliver the benefits of Grid computing to
virtual communities of users, providing a single access point to
Grid services and resources.

• Grid portal is a web server that provides an interface to Grid
services, allowing users to submit compute jobs, transfer files,
and query Grid information services from a standard weband query Grid information services from a standard web
browser. Figure1 shows the structure of portal. A there are four
main components of a portal, include portal page, portlet
window, portlet fragment and decorations and controls.

Job Submission Job Monitoring

Desktop

Cluster

Grid
Registration

Information
Management

e-Science Application Portal Design
BOINC

Volunteers
Desktops

Profiles

Proxy Delegation

Metadata
Management

Data Management

Storage
Element

Users

Data Warehousing

Application
Management

CA

Certificates
Management

VO
Management

Workflow
Management

Functions

• Personal Profile
• Personal Certification/VO Management
• Proxy Management
• Data Management (DPM)
• Job Management• Job Management
• Information Management
• Resource Management
• Application Management
• Workflow Management

Central Site

Log in, service
selection, parameter

definition Query

User Computing ElementsPortal Digital repositories

Sequence View of Computing Portal

Data discovery

Available data

Service triggering Send processing

Results

Selected data

Task status

Dataset Series available

JSP + JAVA

AJAX + AMGA Query AJAX + Ext JS

HTML Protocol

Visualizable User Interface

Technical Stack Overview

Distributed & Grid Computing Environments

GAP

JSR 168

GridSphere API and UI bean
Portlets and Portal

Grid Application Platform

Grid Environment

Proxy Delegation

Purpose:
Help user to create grid proxy or voms proxy and delegate it.
Advantage:
Users don’t need upload their certificate.
User can finish the processes of proxy delegation easily and securely.

Data Management

Purpose
Provide users an user friendly interface to manage their data which is storage on SE.
Advantage
Automatic or semi-automatic archived data to Data Grid.
By Grid Portal upload and download dataset (semi-automatic).
To discovery and access data, we utilized the Grid Portal integrated with Metadata Server and GAP framework.

Job Submission

Purpose
Provide users an easy way to submit different kinds of application of jobs to GRID.
Advantage
Support users define different kinds of application of jobs.
Provide users existed applications for computing.
Users can monitor job status on real time and fetch out job result via an interface.

Job Monitoring

Purpose
Provide users an job history view to manage their job.
Advantage
Users can monitor job status, fetch out result and delete job via an interface.

Desktop Grid Integation

BOINC has the advantage to let users download and compute easier. Although modern Grid is more secure, that every computational resource has to sign certificates. ASGC combine these two technologies together, so modern Grid Computing has the ability to compute in light-weight. We developed a series of toolkit so programs running on grids may have chance run on BOINC.

* Computing Portlet: upload application pacaage and data (or select from remote storage resource), this will transform executable to boinc application, and will also create a new job that will dispatch to volunteers
Note: a Computing Portlet should also have a option to submit to Grid, please reference GAP and portal design document
* Workunit Generator: This component handles application creation, package creation and split job to workunit for submission
* Shared File System: any input or output data will submit through shared storeage.
* Boinc config daemon: other than transfer to command handler, a python daemon will monitor boinc config status and reload it
* Monitoring Portlet: read from boinc database and show job progress, or can cancel it
* DB interface: This is ORM libraries that map between object and boinc db.
* Boinc DB: this is the database which attached to boinc server, all application and workunit information is in it.
* Boinc Server: Boinc Server will accept work unit request and start to dispatch to clients
* Clients(volunteer): They will request new workunit from server

Conclusions

• GAP was designed by modular approach where re-
usable and service-based components as well as
portlet frameworks were integrated.

• The result GRID computational portal provides a
customizable interface allowing scientists to use a
variety of GRID services including job submission,variety of GRID services including job submission,
job monitoring, data management, computing
pipeline, analysis, and workflow management etc.

• Volunteer computing model and desktop computing
services is consolidated for flexible computational
application purposes.

Many thanks for your attentionMany thanks for your attention

