Segmentation of EGEE Workload Measurements by Piecewise Autoregressive Model	Outline	Motivation	Background	The fitting method	Results	Conclusions
		•	nents by P	iecewise Auto		ive

Tamás Éltető

Aprentissage et Optimisation Laboratoire de Recherche en Informatique CNRS and Université Paris-Sud 11

EGEE'09 – Uniting our strengths to realise a sustainable European grid, 21. September 2009.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline	Motivation	Background	The fitting method	Results	Conclusions

2 Motivation

- Background information
- 4 The fitting method

5 Results

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

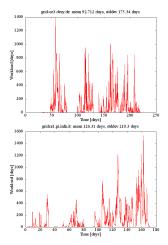
Outline	Motivation	Background	The fitting method	Results	Conclusions
Why to	segment?				

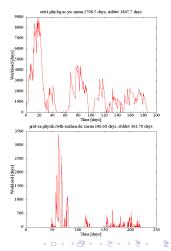
- In inductive inference, some kind of stationarity is often needed;
 - the "behaviour" of the system does not change over time.
- This is usually not true in practise: hourly/daily/weekly fluctuation, holidays, timing of projects, conferences, other events.
- Traditional methods of achieving stationarity
 - remove trends, seasonality,
 - possibly non-linear transformations (e.g. logarithm).
- Most of these methods are based on underlying expectations, earlier experiences.
- Our case: no expectations, no earlier experience.
 - Breaking the data into segments seems to be the best way to cope with possible non-stationarity.

Outline	Motivation	Background ●○○○○○	The fitting method	Results	Conclusions

The workload series of a CE

- The workload of a CE is the total unfinished running time of jobs in its system.
- 4 examples with quite different behaviours: ratios of mean vs. scale of data; long term trends; "smoothness".





୍ର୍ଚ୍

Outline	Motivation	Background ○●○○○○	The fitting method	Results	Conclusions

A few details on the measurements

- The measurement data were collected from the Real Time Monitor published by the Grid Observatory.
- Time-period of the data collection: 2008 W34 2009 W13
- 6 fields were extracted from the raw text data
 - Name of CE; Userinterface_regjob_Epoch; logmonitor_accepted_Epoch; logmonitor_running_Epoch; logmonitor_done_Epoch; Worker Node Time
- Standard text parsing tools were used in the preliminary processing (e.g. grep, sed, gawk).
- The data was cleaned in the pre-processing
 - Those jobs were kept where all the important timestamps (e.g.: accept, start, done) were available.

(ロ) (同) (三) (三) (三) (三) (○) (○)

• The present analysis contains jobs whose total running time (done - start) was less than one day.

Outline	Motivation	Background ○○●○○○	The fitting method	Results	Conclusions
The MD	L Principle				

- MDL Minimum Description Length
- Basic idea find "regularity" in the data
 - ability to compress using some assumptions,
 - the assumptions are described as statistical models.
- Several competing assumptions (models): the one giving the best compression performance is selected.

(日) (日) (日) (日) (日) (日) (日)

- Use of the MDL principle
 - hypothesis selection, model selection,
 - prediction,
 - denoising,
 - similarity analysis and clustering,
 - etc.

Outline	Motivation	Background ○○○●○○	The fitting method	Results	Conclusions
The au	toregressiv	e model			

- Popular modelling technique used for
 - prediction in statistics and signal processing,
 - capturing the correlation pattern of a time series.
- The autoregressive (AR) relation:

 $X_t = \gamma + \phi_1 X_{t-1} + \ldots + \phi_p X_{t-p} + \epsilon_t$, where

- *X_t* is the value of the random series at time *t*,
- γ represents the average level of the process,
- ϕ_k , k = 1, ..., p are the coefficients and
- ϵ_t is the noise term (e.g. Gaussian) at time *t*.

Outline	Motivation	Background ○○○○●○	The fitting method	Results	Conclusions
The Pie	ecewise AR	Model			

- The statistical models assume constant environment, but in practise this is not at all the case.
- We don't know about the nature of the change in the workload of a CE (it can be the average, variation around the average or even subtle differences in the correlation structure).
- How to find these unknown changes?
 - Break the time series into segments with different autoregressive models this is the piecewise autoregressive model.
- Flexible model selection: we can capture any of the changes mentioned above.
- Our main interests are the number and locations of the break points.

Outline	Motivation	Background ○○○○●	The fitting method	Results	Conclusions

The Piecewise AR Model - Example

• Segment 1, $0 < t \le 512$:

$$X_t = 0.9X_{t-1} + \epsilon_t$$

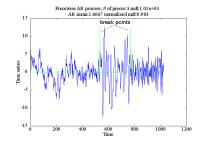
• Segment 2,
$$512 < t \le 768$$
:

$$X_t = 1.69X_{t-1} - 0.81X_{t-2} + \epsilon_t$$

• Segment 3, $768 < t \le 1024$:

$$X_t = 1.32X_{t-1} - 0.81X_{t-2} + \epsilon_t$$

• The error term ϵ_t , $0 < t \le 1024$ is independent Gaussian with mean 0 and variance 1 ($\epsilon_t \sim N(0, 1)$ i.i.d.).



イロト 不良 とくほ とくほう 二日

Outline	Motivation	Background	The fitting method	Results	Conclusions
Fitting	a piecewise	AR model			

- The work is based on the paper of Davis, R.A., Lee, T. and Rodriguez-Yam, G., *Structural Break Estimation for Nonstationary Time Series Models*, J. American Statist. Assoc. 101, 229-239, 2006.
- Given a workload series "W_t", a number of piecewise AR models F were used for the compression of "W_t"
- Two part code MDL:
 - code length for the model parameters "CL₁(F)",
 - code length for series using the model " $CL_2(W_t|F)$ ",
 - the code length estimation including the two parts is

 $CL = \log m + (m+1)\log n + \sum_{j=1}^{m+1}\log p_j + \frac{p_j+2}{2}\log n_j + \frac{n_j}{2}\log(2\pi\hat{\sigma}_j^2).$

• The piecewise AR model *F* was selected that gives the shortest code length estimate.

Outline	Motivation	Background	The fitting method	Results ●○○○	Conclusions
Segme	ntation exa	mple - worklo	bad		

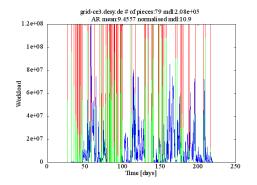
- The best fitting piecewise AR model was searched for by optimising the codelength function estimation.
- The optimisation was performed by a genetic algorithm proposed by Davis et al.
- The statistical quality of the best fitting model was analysed by several ways, for example:
 - whiteness of the residuals: Ljung-Box test and Dufour-Roy test,
 - stationarity of the AR model: Phillips-Perron test (unit root).
- Results for longer segments in the examples:

	no. of	segment	segment	smallest	unit-root	Ljung-Box
name of the CE	segment	start	end	root abs.	test	test
	-	[days]	[days]	value	(p-value)	(p-value)
grid-ce3.desy.de	33	118.6	130.0	1.0421	0.25	0.03
ce64.phy.bg.ac.yu	13	13.2	22.0	1.0443	0.40	< 0.01
gridce1.pi.infn.it	67	119.7	145.9	1.0083	0.32	< 0.01
grid-ce.physik.rwth-aachen.de	26	56.9	64.3	1.0223	0.90	0.09

Outline	Motivation	Backgroι 000000	Ind	The fitting method	Results ○●○○	Conclusions

Conclusions on the piecewise AR fit

- 79 break points
- Average AR order above 9
- Only a few long segments
- The fitted AR models were "ill conditioned".

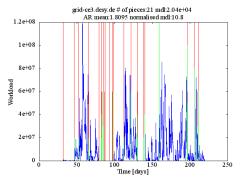


• The piecewise AR model does not seem to explain the workload series well. Main reason is, that there are local trends in the workload.

Outline	Motivation	Background	The fitting method	Results ○○●○	Conclusions

Segmentation example – workload difference

- Smoothed workload difference
- 21 break points
- Average AR order below 2
- Longer segments
- "Nice" AR fit



name of the CE	no. of segment	segment start	segment end	smallest root abs.	unit-root test	Ljung-Box test on
	_	[days]	[days]	value	(p-value)	residuals
						(p-value)
grid-ce3.desy.de	18	158.91	196.53	1.5915	< 0.01	0.05
ce64.phy.bg.ac.yu	19	109.61	160.65	2.1563	< 0.01	0.04
gridce1.pi.infn.it	17	104.86	149.31	5.5711	< 0.01	0.21
grid-ce.physik.rwth-aachen.de	27	151.39	190.16	1.1062	< 0.01	0.05

Outline	Motivation	Background	The fitting method	Results ○○○●	Conclusions
Limitati	ions of the I	method			

- Two main limitations with the current implementation:
 - The objective function is not reliable for models where the segments are usually short – longer segments are preferred.
 - The optimisation is based on a genetic algorithm. The time of convergence is highly sensitive to the length of the data set.
- Possible improvements:
 - better objective function in MDL theory, the Normalised Maximum-Likelihood codes have better properties (e.g. in consistency) than two part codes,
 - better optimisation method more efficient chromosome representation; the optimisation problem can also be highly simplified.

Outline	Motivation	Background	The fitting method	Results	Conclusions
Conclu	usions and f	uture work			

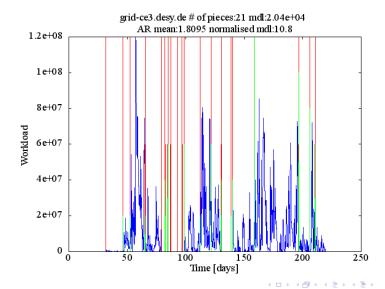
- A flexible method based on the MDL principle and piecewise AR model was applied to detect break points in EGEE workload measurements made by the Grid Observatory.
- It was shown, that the workload process contains strong local trends. However, the workload difference can be used for segmentation.
- Besides the planned improvements regarding the reliability and computational complexity of the method, other time series models (e.g. ARMA or GARCH) will be added to the method.
- Using our results, an automated software tool detecting changes and/or predicting the CE activity can be designed for the EGEE system management.

Outline	Motivation	Background	The fitting method	Results	Conclusions

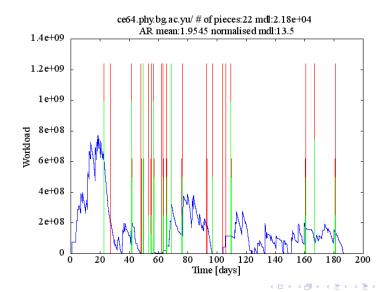
Appendix: Some measurement details

	Total	Number	10	50	100
Name of CEs	workload	of jobs	perc	entile of	workload
	[years]			orocess	[days]
grid-ce3.desy.de	151.4	551K	0	10	303
ce64.phy.bg.ac.yu	103.8	87K	16	1331	3999
gridce1.pi.infn.it	81.9	205K	0	26	408
grid-ce.physik.rwth-aachen.de	58.4	336K	0	0.20	203
ce00.hep.ph.ic.ac.uk	51.6	184K	0	2.8	150
ce.cyf-kr.edu.pl	49.1	155K	0	0.6	87
ce05-lcg.cr.cnaf.infn.it	44.7	209K	0	0	73
ce06-lcg.cr.cnaf.infn.it	44.6	217K	0	0.1	78
ce04-lcg.cr.cnaf.infn.it	42.9	132K	0	3.6	83
gridce2.pi.infn.it	38.3	125K	0	0	0

Outline	Motivation	Background	The fitting method	Results	Conclusions
Appen	dix: Worklo	ad segmenta	tion		



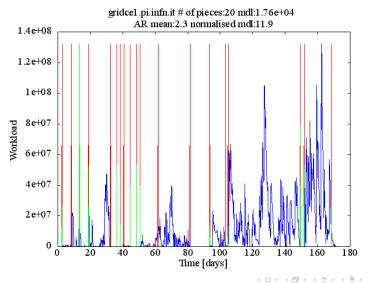
Outline	Motivation	Background	The fitting method	Results	Conclusions
Annen	div: Worklo	ad soamonta	tion		



596

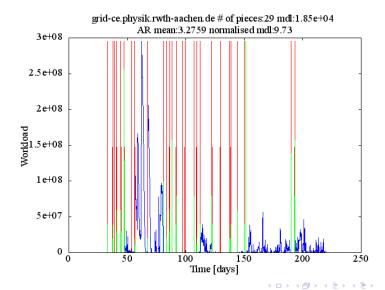
э

Outline	Motivation	Background	The fitting method	Results	Conclusions
Appen	dix: Worklo	ad segmenta	tion		



▶ ∃ • • • • •

Outline	Motivation	Background	The fitting method	Results	Conclusions
Annen	dix: Worklo	ad segmenta	tion		



JAG.

æ