

Enabling Grids for E-sciencE

Monitoring Applications for End-user Distributed Analysis

Gerhild Maier

September 23rd 2009

www.eu-egee.org

- Monitoring distributed analysis jobs
- QAOES:
 - detecting problematic Grid components
 - 2. solving problems with an Expert System
- Outlook

EGEE-III INFSO-RI-222667

Monitoring Grid Jobs

- Reliable Grid infrastructure needed for LHC experiments' success
- Detailed and trustworthy monitoring helps improve the Grid
- Production jobs on the Grid:
 - coordinated activity by experts
 - load on sites and storage is predictable
- Analysis jobs on the Grid:
 - chaotic activity
 - behaviour not predictable

Monitoring Analysis Jobs

- challenging task
- example from CMS:
 - 100-200 users running analysis jobs every day
 - since 01/2008, 1000 distinct users submitted analysis jobs, number expected to increase with LHC start-up
- users not necessarily experienced → simple, user-friendly monitoring needed
- strong monitoring for user support groups

Dashboard Applications (1/3)

- interactive job summary
 - shows what is going on now
 - distribution of jobs by site, CE, user, submission tool, application version, dataset, etc..., exit status
 - CPU and wall clock time of jobs

Dashboard Applications (2/3)

- historical interface
 - job statistics distributed over time

Dashboard Applications (3/3)

- task monitoring (deployed for CMS)
 - provides complete information about analysis tasks
 - job status of individual jobs in the task
 - assists in detecting problems
 - provides debugging information

- QAOES = Quick Analysis Of Error Sources
- Goal:
 - detect problematic Grid components
 - find error source, not only impact
 - facilitate the problem solving
- Approach:
 - 1. Association Rule Mining (ARM) on job monitoring data
 - 2. Expert System to collect and reuse human expertise

Association Rule Mining (1/2)

- Input:
 - job monitoring data with a number N of attributes
 - attribute: job characteristics like user, site, dataset, se,...
- Goal: find dependencies between items
- Association rule:
 - A →C, where A, C sets of items
 - A = antecedent, C = consequent
 - item: attribute-value pair
- Quality of an association rule:
 - support: s% of the data include all items
 - confidence: c% of the data including the antecedent also include the consequent

Association Rule Mining (2/2)

Enabling Grids for E-sciencE

Output: list of potential problems

Show Rules

Links	Components	Error Code	Support in % /number of jobs	Confidence in %
Job Summary Add Rule	site=T2_FR_IPHC	ERROR=8020	3.425/685	80.992
Job Summary Add Rule	site= T2_US_Caltech	ERROR=8001	0.554/110	92.500
Job Summary Show Rules Hide Rules Add Rule	user=####################################	ERROR=11	0.389/78	93.976
Job Summary Add Rule	worker node=193.48.85.79	ERROR=8020	0.319/64	96.970
Job Summary Show Rules Hide Rules	user=####################################	ERROR=60302	0.270/54	100.000

Expert System (1/2)

- Use human expertise to improve problem solving on the grid
- 2 main components:
 - knowledge base: collection of human expert knowledge in the format of rules
 - 2. inference engine: matches potential problems to rules in the knowledge base
- Rule = ProblemDefinition + SolutionOption
 - ProbeImDefinition: attributes, and values (optional)
 - SolutionOption: number of steps; step = action applied to object

Expert System (2/2)

Enabling Grids for E-sciencE

Add a rule:

Problem Components

Select the attributes and attribute values (blank = not relevant) that are relevant:

Select the attributes and attribute values (blank = not relevant) that are relevant:

T2_FR_IPHC

Solution

- Rule ranking:
 - by user
 - automatically: ranking decreased over time

Outlook and Summary

- Outlook:
 - improve the inference engine
- Summary:
 - importance of monitoring for analysis users
 - failure detection using job monitoring tools
 - QAOES approach of data mining combined with expert system on top, currently applied to CMS analysis job monitoring data

 Experiment Dashboard: http://dashboard.cern.ch

- QAOES:
 http://dashb-cms-mining-devel.cern.ch/dashboard/request.py/qaoes
- Twiki: https://twiki.cern.ch/twiki//bin/view/ArdaGrid/AutomaticFaultDetection