

Cherenkov Telescope Array

Dr. Giovanni Lamanna

CNRS tenured research scientist
(CTA-LAPP team leader and CTA Computing Grid project coordinator)

LAPP - Laboratoire d'Annecy-le-Vieux de Physique des Particules, Université de Savoie, CNRS/IN2P3, Annecy-le-vieux, France

for the CTA consortium

CTA in a nutshell

CTA is a new project for ground based gamma-ray astronomy planned to consist of several tens of Imaging Atmospheric Cherenkov Telescopes (IACTs).

CTA is an Astroparticle research infrastructure aimed to work as an observatory providing services making gamma-ray astronomy accessible to the entire community.

The CTA international consortium is currently committed in a Design Study phase.

ICT vision

The CTA OBSERVATORY main sub-systems:

Science Operation Center, organization of observations;

Array Operation Center, the on-site service;

Data Center, is the place for software development, data analysis, data reduction, data archiving and data dissemination to observers

Existing ICT-based infrastructures, such as **EGEE** and **GEANT**, are potential solutions to provide the CTA observatory with best use of e-infrastructures.

This possibility is studied within a dedicated sub-project of the CTA Design Study: the CTA Computing Grid (CTACG) project.

ICT vision (EGEE application)

The main issues inherent to the observatory work flow:

- Monte Carlo simulations (production and analysis)
- Data flow, data transfer and storage
- Data reduction, data analysis and open access

CTACG-VISION: application of EGEE and GEANT e-infrastructures for such issues through a dedicated global **CTA EGEE Virtual Organization**.

EGEE positive experiences to fulfill MC requirements (> 400 TB SE, > 300 CPUs CE, ..)

ICT requirements and (a possible CTACG) ICT architecture

DATA → Total data volume from CTA in the range **1** to **3 PB** per year.

- **Storage needs:** temporary storage on site (Array-Operations-Center). Permanent storage in Europe and for different classes of data and applications (e.g. calibrations, MC, Sci. Data). Ultimate products are digested scientific data files (e.g. FITS format) requiring limited storage.
- CTACG solution: Distributed storage among the EGEE-CTA-VO Work-Nodes: data-type and applications as a function of WNs capacity. FITS files are uploaded in the distributed Virtual Observatory Astrophysics data base (through the EGEE-VO framework).

- **Compute needs:** CE on site (Array-Operations-Center) for acquisition, preliminary calibration and monitoring. No particular computing needs for the off-line.
- CTACG solution: Tier1 and Tier2 LCG clusters (e.g. CCIN2P3, LAPP, CYFRONET, PIC,..) are already used in support of the EGEE-CTA-VO and suited as learned by experiences with HESS, MAGIC and the CTA-VO. The Array-Operations-Center will be one more VO-Work Nodes.

ICT requirements and (a possible CTACG) ICT architecture

- Networking: candidate sites under study to host CTA are in South of Africa, Argentina, Chile, Canary Isl., Mexico, Hawaii.. <u>The pan-European end-to-end networking is a critical issue.</u>
 The traditional approach (e.g. current IACTs H.E.S.S. and MAGIC) data transport, through magnetic tapes is not applicable to CTA (technology aged, expensive and unpractical).
 - <u>CTACG solution</u>: The (Virtual-Distributed-)Data-Center and the Array-Operations-Center (VO-Work Nodes) demand a dedicated broad band connection (> Gb/s).

 GEANT e-infrastructures should be considered in the choice of the site.

(Example: South Africa Grid (SAGrid) initiative a high-speed submarine West African Cable System (WACS) (to reach Europe) is due to come into operation between 2009 and 2011.)

(Remind: Data transfer delay acceptable. IACTs has limited duty-cycle (night).)

ICT requirements and (a possible CTACG) ICT architecture

- **Data Access:** to be guaranteed to a worldwide community and users of different level of experience with different requirements:
 - -Networking is again an issue;
 - -Concurrent applications to be managed;
 - -Secure but easy access at all levels.

- CTACG solution:

- -Pan-European **GEANT** networking and/or optimization of communication among main Work Nodes of the **EGEE-VO-CTA** is straightforward.
- A dedicated EGEE-VO-CTA Grid Operation Center minimize costs and optimize performance trough a dedicated grid-scientific gateway (e.g. the CTACG MC-dashboard) for grid jobs administration as well as all levels of data analysis (including natural interface to Virtual Observatory for data dissemination).
- The gateway is secure by means of grid certificate for VO-users, but providing grid job on demand (generic proxy to not-certified users) will be open to everybody.

Challenges and Suggestions

Technical challenges:

- network and synchronization between Array Center and (Distributed-)Data Center
- Scientific Grid-Gateway open to and serving all level of observers

• Political challenges:

- convince <u>part</u> of the community (not familiar with GRID and EC e-infrastructures initiatives as EGI and GEANT) about the validity of the solution proposed with the CTACG approach.
- Suggestions (and expected feedback from this meeting):
 - The CTACG project needs direct contacts and guide-lines from EC, EGI and GEANT to better plan its feasibility study and to find support to complete it.

CTA Current Status & Timeline

• Status:

- The EGEE-CTA-VO is active for the MC production and analysis purposes and has just started the development of the gateway ("dashboard").
- The CTACG-architecture feasibility study will last until 2011.

The CTA Observatory construction is starting in 2013 and completed in 2018; Running with partial configuration already in 2014.

	06	07	08	09	10	11	12	13
Site exploration								
Array layout								
Telescope design								
Component prototypes								
Array prototype								
Array construction								
Partial operation								