

Enabling Grids for E-sciencE

EGEE'09: Bio-inspired Algorithms in Grid

DIOGENES: Application Oriented Task Scheduling Using Genetic Algorithms

Presenter: Florin Pop University Politehnica of Bucharest

¹Gabriel Neagu, ²Florin Pop, ²Valentin Cristea.

¹National Research Institute in Informatic (ICI) ²University "Politehnica" of Bucharest

www.eu-egee.org

The Importance Grid Scheduling

Enabling Grids for E-science

The scheduling problem

- Allocate a group of different tasks to available resources
- NP-Complete problem
- Optimizations of approximate algorithms are required
- Dynamic (available) resource allocation

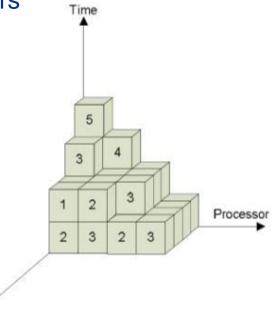
Environment: Computational and data GRID

Heterogeneous – resources with different processing capacities

Shared – resources can be used by multiple users

Objectives

- Optimize the application execution
 - Minimize the total execution time of the tasks
 - Efficient use of computing resources
- Successful completion of tasks
 - Deadline restrictions
 - Resource requirements
- Optimize the scheduling process



- Scheduling Requirements and Objectives
- Scheduling Model (DIOGENES)
 - System Anatomy
 - Functionality Aspects
- Genetic Algorithm used in DIOGENES
 - Chromosome Encoding
 - Genetic Operators
 - Fitness Function
- Experimental Results
 - Algorithm Convergence
 - Decentralization
 - Estimate Times Versus Real Execution Times
 - Comparison of Various Scheduling Methods
- Conclusions

Scheduling Requirements

Enabling Grids for E-sciencE

Real-time task scheduling

- comply with deadlines
- use monitoring information in the process of scheduling

General assumptions

- Heterogeneous environment
 - Tasks different execution times, memory required, deadlines, etc.
 - Resources different CPU power, memory, swap space, etc.
- Meta-task: a group of multiple tasks.
 - Example: A group of image processing applications operating on different images
- No multitasking
 - Each node executes a single task (in a queue) at a time (Condor, PBS work in this way).

Makespan

Time from when first operation starts to last operation finishes.

Flow times

Time when a job is ready to when the job finishes.

Deadlines

- Lateness
- Tardiness
- Unit penalty

Priority

If each job has varying importance, prioritied can also be used.

Scheduling Model

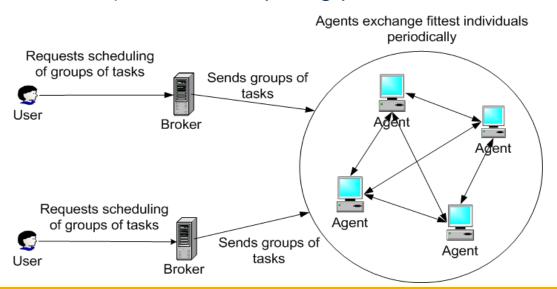
Enabling Grids for E-sciencE

Broker

- Collect user requests: the groups of tasks to be scheduled (input of the algorithm)
- Can be remote or on the same workstation with an Agent

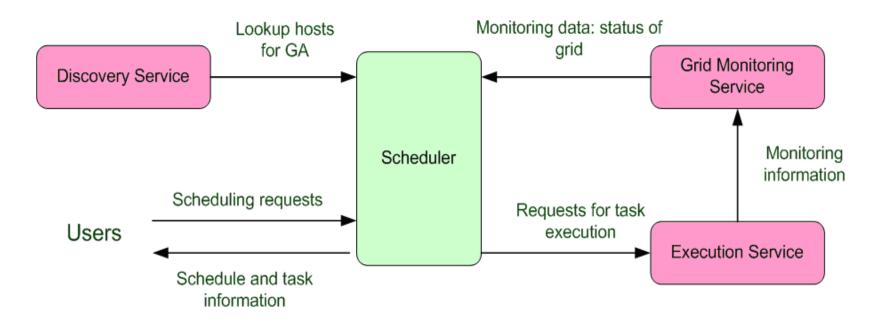
Agent

- Run the scheduling algorithm using monitoring information and the tasks from Broker
- Migration of the best current solution
- Communication strategy: synchronous (similar computing resources) and asynchronous (different computing power on resources)



System Anatomy

- Users submit requests for task allocations
- Simultaneous requests from various workstations can be submitted
- Obtain real-time information about the state of the Grid
- Incorporate the monitoring information in the algorithm used for scheduling



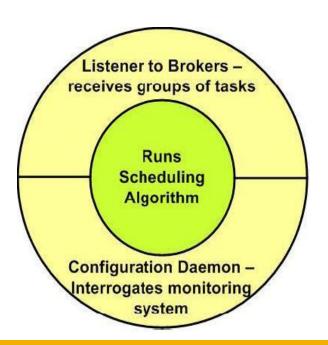
Functionality Aspects

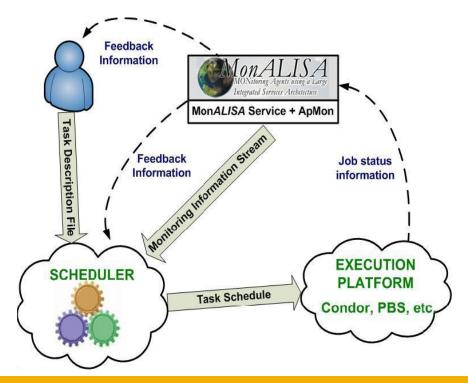
Enabling Grids for E-sciencE

- Agent's Anatomy: two-layered structure:
 - Core : runs the scheduling algorithm
 - Shell: provides information for the Core
 - the Listener to Brokers receives groups of tasks
 - the Configuration Daemon obtains up-to-date information about the state of execution resources

Input {Task Description File, Monitoring Information Stream}

Output {Task Schedule}

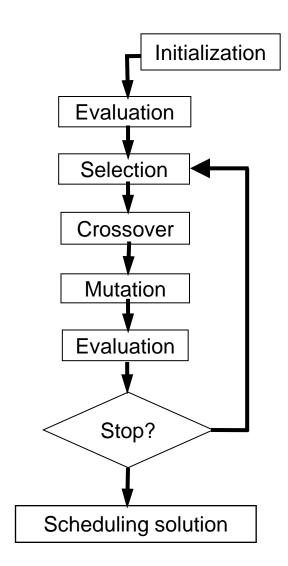




Genetic Algorithm

- Are usually applied in optimization of NP-Complete problems
- Offers a near-optimal solution for scheduling problem

Representation of a chromosome	Vector of genes
Initialization	Random mapping of tasks on the existing computational resources
Evaluation	Fitness function based
Parents selection	Roulette-wheel selection
Selection results	The offspring replace the parents in the new population
Recombination	Single-point crossover
Mutation	Assignment of a task to another processor with adaptive probability
Specialization	The crossover operation has the highest probability



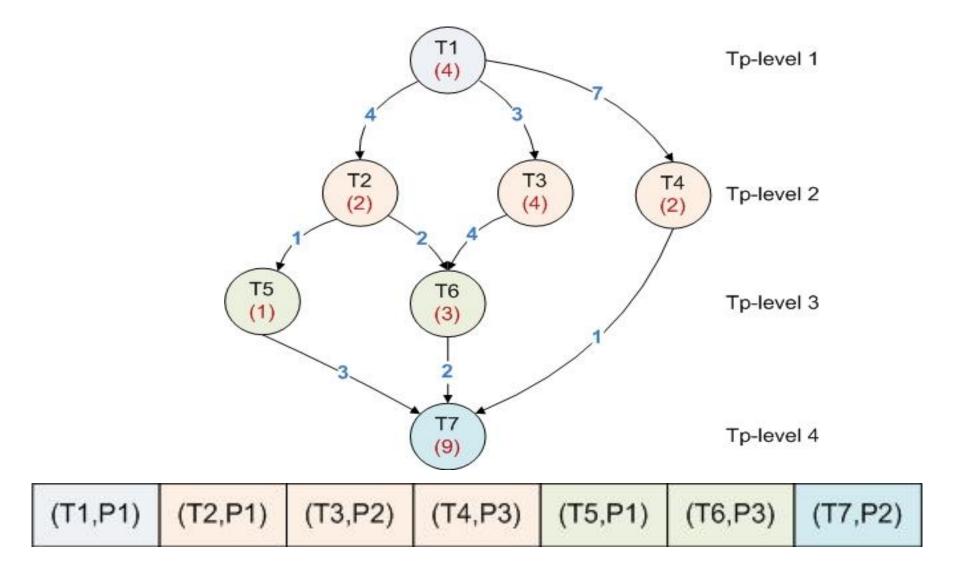
Chromosome Encoding

- Gene representation
 - tuple [Task, Processor]
- Chromosome representation (no dependencies)
 - vector of genes having a fixed length
 - illustrates a possible mapping of the tasks on the existing processors

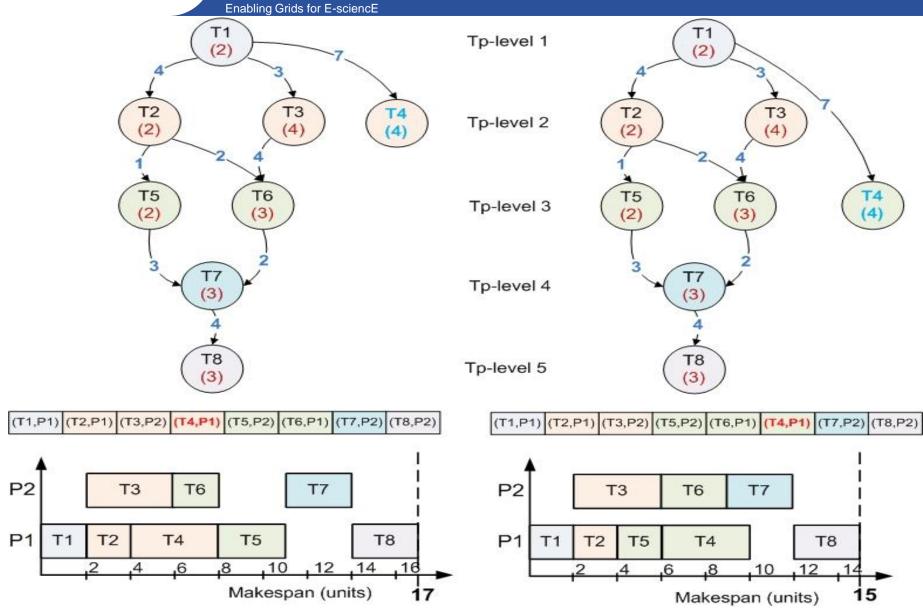
1	2	3	4	5	6	7	8
[T2,P0]	[T5,P2]	[T0, P2]	[T1, P1]	[T3, P0]	[T4, P1]	[T7, P3]	[T6, P1]

- Population representation
 - vector of fixed length representing the totality of chromosomes in a generation

Chromosome Encoding for DAG



Floating Nodes (DAG)



Genetic Operators (1)

Enabling Grids for E-sciencE

Crossover

- type: single-point crossover
- the processors are interchanged between genes in the same position of two different chromosomes

Parent 1	(1,2)	(5,4)	(4,2)	(3,3)	(6,2)	(2,3)
Parent 2	(4,1)	(6,3)	(3,2)	(1,1)	(2,4)	(5,2)
Offspring 1	(1,2)	(5,4)	(4,2)	(3,1)	(6,4)	(2,2)

Mutation

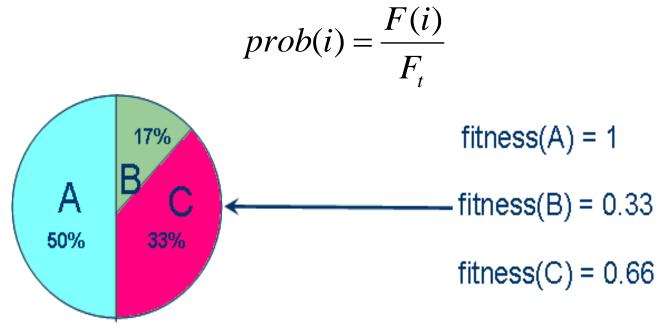
- Alter a gene = assign a task on a different processor, randomly chosen
- The search space is enlarged to the vicinity of the current population => tendency to converge to a global rather than to a local optimum
- Pursued with a certain probability (mutation rate) for each chromosome
- Adaptive mutation:
 - the mutation rate increases when the best solution for the population stagnates over a number of generations

Genetic Operators (2)

Enabling Grids for E-sciencE

Selection

 roulette-wheel selection: each chromosome is assigned a survival probability according to its fitness contribution in the total population fitness:



$$F_t = 1.00 + 0.33 + 0.66 \approx 2$$

Fitness Function (1)

Enabling Grids for E-sciencE

 The fitness function (for tasks without dependencies) applied in DIOGENES is:

$$F = \left(\frac{t_m}{t_M}\right) \times \left(\frac{1}{n} \sum_{i=1}^n \frac{t_i}{t_M}\right) \times \left(\frac{T_s}{T}\right) \qquad 0 \le F \le 1$$

where:

n - the number of processors

 t_i - the total execution time for processor i.

$$t_m - \min_{1 < i < n} \{t_i\}$$

$$t_{M} - \max_{1 < i < n} \{t_{i}\}$$

 $T_{\rm s}$ - denotes the number of tasks which satisfy deadline and computation resource requirements.

T - represents the total number of tasks in the current schedule

Fitness Function (2)

Enabling Grids for E-sciencE

$$F = \left(\frac{t_m}{t_M}\right) \times \left(\frac{1}{n} \sum_{i=1}^n \frac{t_i}{t_M}\right) \times \left(\frac{T_s}{T}\right)$$

The factor converges to 1 when t_m approaches t_M , and the schedule is perfectly balanced.

Average utilization of processors. In the ideal case, the total execution times on the processors are equal and equal to maxspan, which leads to a value of 1 for average processor utilization.

This factor acts like a contract penalty on the fitness. Its value varies reaching 1 when all the requirements are satisfied and decreases proportionally with each requirement that is not met.

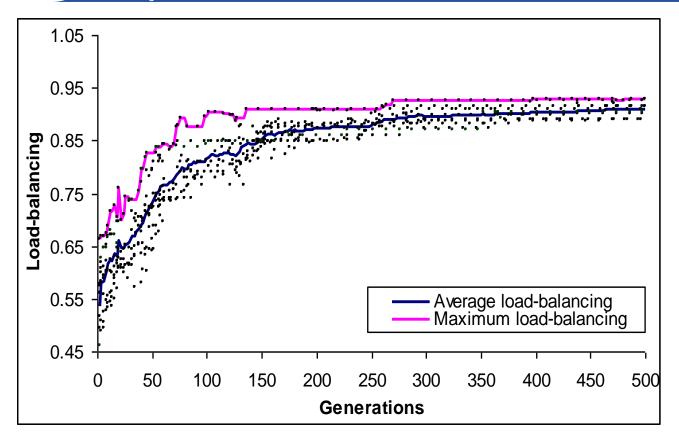
Fitness Function for DAG

$$F(ch) = \left(\frac{t_m}{t_M}\right) \times \left(\frac{1}{n} \sum_{i=0}^{n} \frac{t_i}{t_M}\right) \times \left(\frac{T_S}{T}\right) \times \left(\frac{t_M}{SL(ch)}\right)$$
Load balancing
Deadline violation
Average idle time
Schedule length

Experimental Results

- Experimental cluster configured with
 - 11 (first phase) nodes and
 - 96 (second phase) nodes
- The size of the task sets used for testing ranged
 - between 50 and 100 tasks (first phase)
 - between 50 and 10000 tasks (second phase)
- Parameters for the genetic algorithm
 - crossover rate: 0.9
 - mutation rate: 0.005
 - chromosome length: 50

Algorithm Convergence



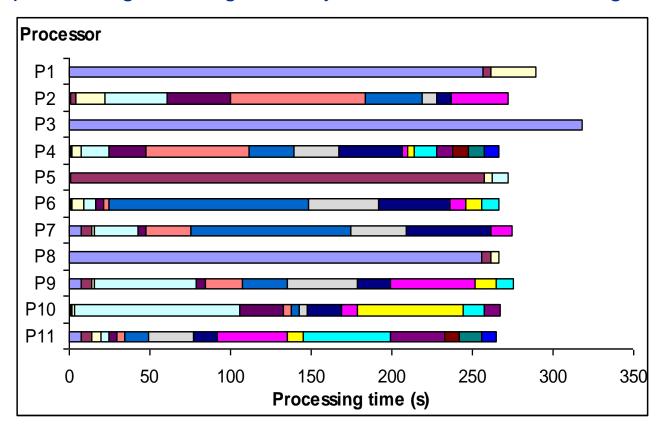
- The criterion used in convergence and algorithm stop condition is load-balancing between working nodes.
- The genetic algorithm converges after a small number of generation for various tests scenario.

Decentralization

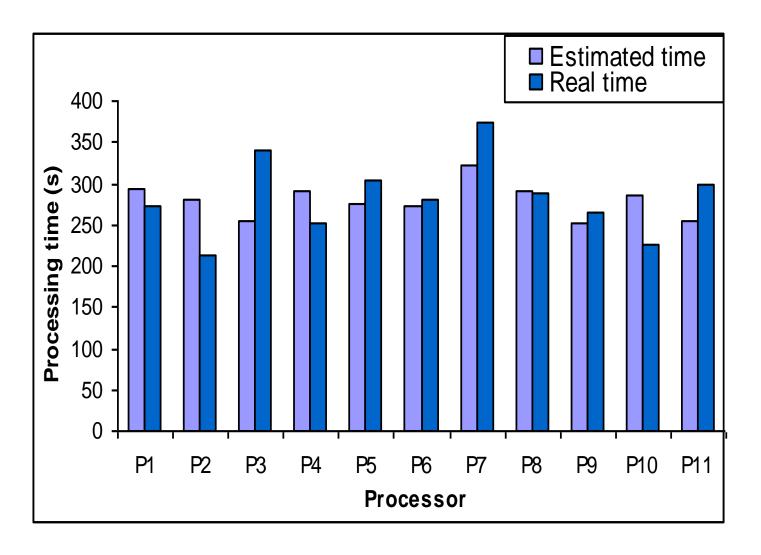
Enabling Grids for E-sciencE

Decentralized Cooperative Genetic Algorithm

- Parallel GA: multiple starting points, current best solutions exchange
- Significant improvement of the solution quality
- Total processing time, significantly reduced, Load-balancing



Estimate Times Versus Real Execution Times



$$\delta_i = \frac{t_i^r - t_i^e}{t_i^r}$$

$$\varepsilon = \sqrt{\frac{\sum_{i=1}^{n} \delta_{i}^{2}}{n}}$$

$$\varepsilon = 0.16$$

Comparison of Various Scheduling Methods

Algorithm	Load Balancing	Average Processor Utilization	Maxspan (s)
First Come First Serve	0.754	0.64	421.0
Centralized GA	0.752	0.70	388.0
Decentralized Non-Cooperative GA	0.780	0.74	369.5
Decentralized Cooperative GA	0.940	0.86	317.0

Conclusions

- Genetic scheduling algorithm for the problem of task allocation
- Improvement upon centralized genetic approaches with respect to scalability and robustness.
- Performances comparison for different scheduling strategies.
 - Decentralization and cooperation provide significantly better results of load-balancing and average processor utilization increase, as well as of total execution time minimization.
- Validation in real-time environments by utilizing existing monitoring and job execution systems. The experiments show a high level of accuracy in the results obtain
- …and, "Always searching to a better solution".

Thank you!

GridMOSI (Virtual organization based on Grid Technology for High Performance Modelling, Simualtion and Optimization) – National Romania Project

http://gridmosi.ro

http://diogenes.grid.pub.ro Distributed Optimal GENEtic algorithm for grid applications Scheduling

Feature - Evolving towards the future of science: genetic algorithms and grid computing

DIOGENES – Distributed near-Optimal Genetic Algorithm

http://www.isqtw.org/?pid=1000845

for Grid Applications Scheduling