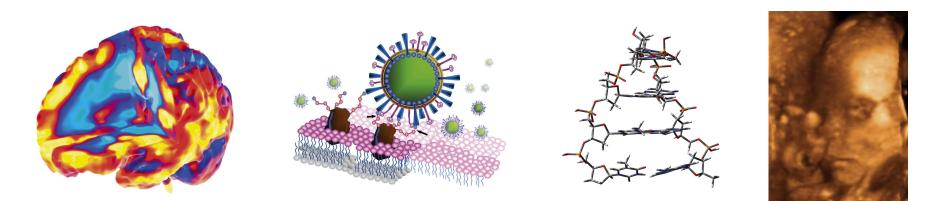


Enabling User Communities: Experience from porting applications and services in the biomedical area

Ignacio Blanquer

www.eu-egee.org



- The Biomedical community.
- The Biomed VO in EGEE.
- Problems and Needs of the Biomed Community.
- Approaches, Components and Applications.
- Successful Stories.
- Conclusions.

Many slides have been borrowed from members of the Biomed VO.

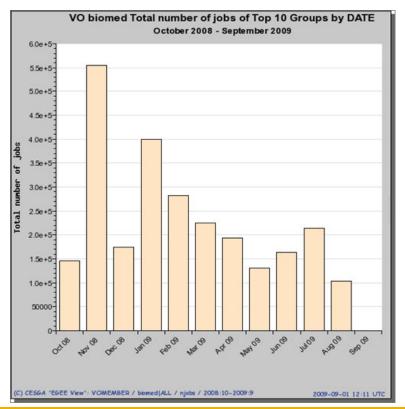
- Biomedicine integrates many different disciplines related with health, life sciences and biochemistry.
- It comprises the storage, management and processing of data related with the physiology and structure of living beings.
- So the Biomed Community is wide, heterogeneous and has many different challenges.

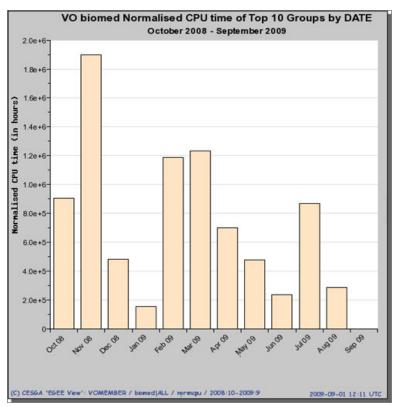
The Absolutely Incomplete EGEE-Related Biomed Community

Enabling Grids for E-sciencE

Consiglio Nazionale delle Ricerche

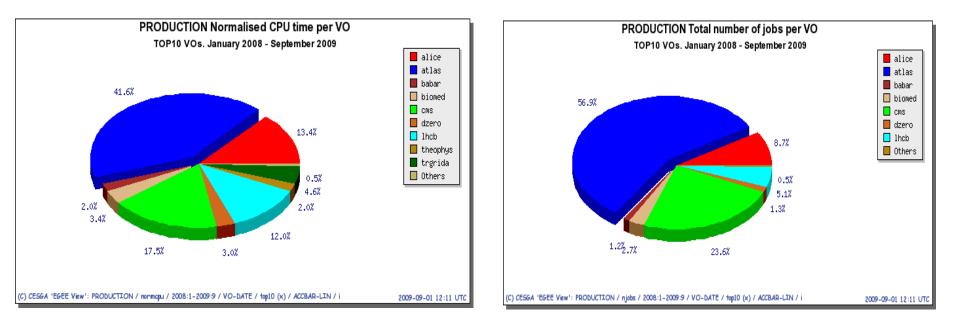
INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES





4

- **Enabling Grids for E-sciencE**
- 253 Registered users.
- Authorised for and important share of the resources available (around 25%).
- 8 Million jobs and 25 million CPU hours since the starting of the accounting.



5

 Although there is an important difference with HEP VOs, Biomed is the most active VO outside of this topic.

Enabling Grids for E-science

Problems and Needs of the Biomed Community

Grid Applications in Biomedicine

Genomics / Proteomics Biomedical Simulation - VPH Innovative Medicine Epidemiological studies Medical Imaging Clinical Trials

Theraphy Follow-on Telemedicine

6 ESFRI projects are related to biomedicine and already several ones use Grids

Biomed Communitiy Targets

Enabling Grids for E-sciencE

Medical Imaging

- Medical Imaging federation and processing.
- Oncology, Cardiology, Neurology.

Epidemiology

- Efficiency studies.
- Spreading of diseases.

Bioinformatics

- Complex processing on large Bioinformatics Databases.
- Alignment, Phylogenetics, System Biology.

Innovative Medicine

- Drug discovery.
- Resistance to treatment.
- Treatment personalisation.
- Modelling of Diseases and Organs.

Biomed ICT Needs

Enabling Grids for E-sciencE

Medical Imaging

Epidemiology

Intensive Computing, Distributed Data Management, Service Integration, Authorisation and Security

Bioinformatics

Innovative Medicine

Specific Challenges faced by biomed community

Enabling Grids for E-sciencE

Shorter Security and execution Privacy delays Personal data protection, IPRs. • Ad-hoc scheduling, short-deadline jobs. **Problem Solving** Complex Environments workflows • User Interfaces, Web • Image processing pipeline<u>s,</u> bioinformatics service processing chains. Medical **Extensive Informatics** metadata bridges anotation • Standards (DICOM, HL7, EN13606, IHE,...).

EGEE-III INFSO-RI-222667

Specific Challenges faced by biomed community

Enabling Grids for E-sciencE

Shorter Security and execution Privacy delays Personal data protection, IPRs. • Ad-hoc scheduling, short-deadline jobs. **Problem Solving** Complex Environments workflows • User Interfaces, Web • Image processing pipeline<u>s,</u> bioinformatics service processing chains. Medical **Extensive Informatics** metadata bridges anotation • Standards (DICOM, HL7, EN13606, IHE,...).

Specific Challenges faced by biomed community

Enabling Grids for E-sciencE

Shorter Security and execution Privacy delays Personal data protection, IPRs. • Ad-hoc scheduling, short-deadline jobs. **Problem Solving** Complex Environments workflows • User Interfaces, Web • Image processing pipeline<u>s,</u> bioinformatics service processing chains. Medical **Extensive Informatics** metadata bridges anotation • Standards (DICOM, HL7, EN13606, IHE,...).

EGEE-III INFSO-RI-222667

Enabling Grids for E-sciencE

Approaches, Components and Applications.

eeee)

Biomed Activity – Bottom-up Approach

Enabling Grids for E-sciencE

Deployments and Experiments

- Analysis on the accuracy of annotations on gene and protein databases.
- Effect of the mutation of specific genes on cardiology diseases.
- Modelling the spreading of infectious diseases.
- Evaluating the efficacy of radiotherapy treatments.
- Identifying biomarkers for neurodegenerative diseases.
- Selecting new components for the treatment of emerging diseases.

eee.

Biomed Activity – Bottom-up Approach

Enabling Grids for E-sciencE

Deployments and Experiments

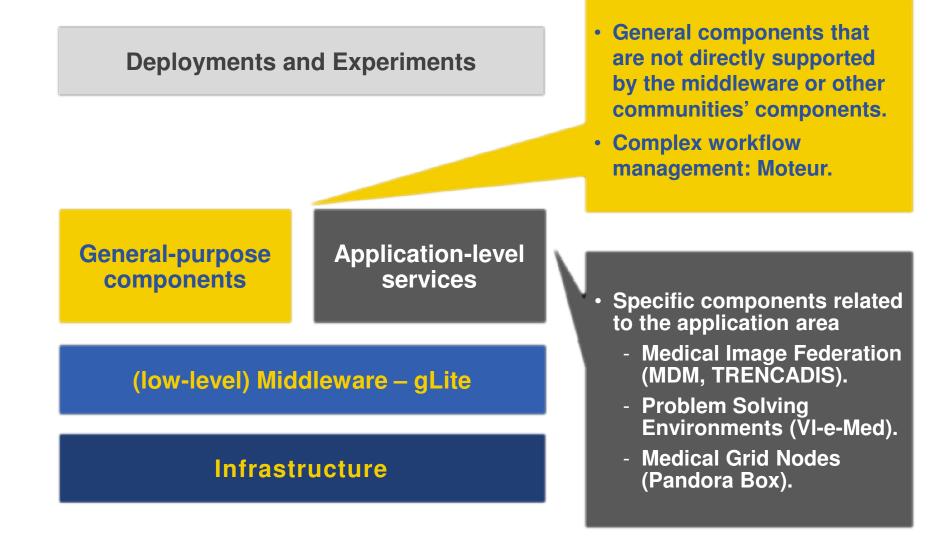
- The EGEE Grid Infrastructure.
- Availability of large computing data storage and communication resources.
- Enough resources for most of the currently interesting research challenges.

Infrastructure

Enabling Grids for E-sciencE

Deployments and Experiments

Middleware – gLite


Infrastructure

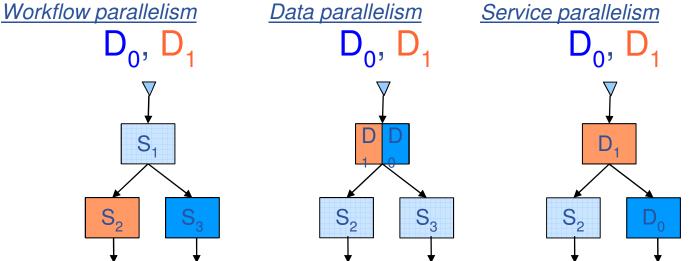
- Feedback on requirements for Enhanced security
 - ACLs for SEs and Catalogues.
 - Inclusion of 3rd party components, such as Keystores (Hydra).
- Shorter job management delays
 - Support for specific queues for Bulk Short deadline jobs.
 - Extensive interest on pilot jobs.
- Metadata storage
 - Collaborate with AMGA.

eGee

Biomed Activity – Bottom-up Approach

Enabling Grids for E-sciencE

eGee

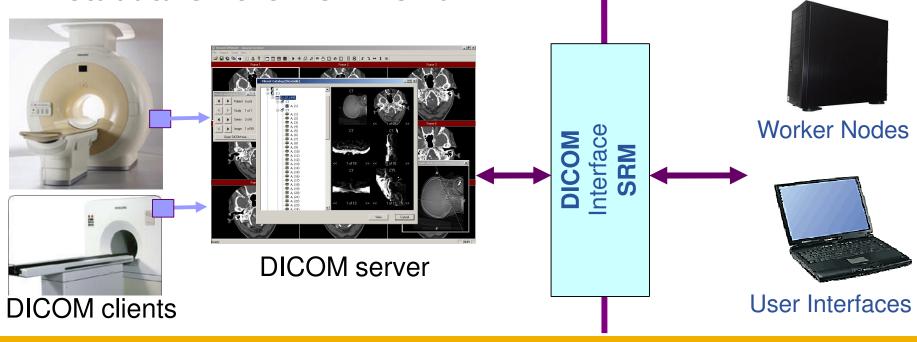


Efficient parallel execution of data flows

Enabling Grids for E-sciencE

- Submission web service.
- From workflow manager to grid execution
 - Execution engine independent from grid middleware.
 - Interfaced to different grid middlewares (gLite/LCG2, DIET, OAR...).
- Enhanced support to 3 kinds application parallelization.
- Jobs grouping strategy in sequential branches in order to reduce grid latency.

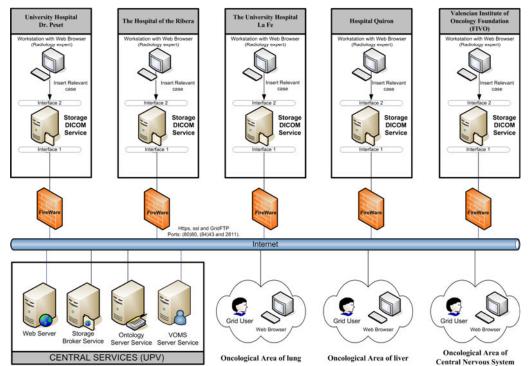
http://modalis.polytech.unice.fr/softwares/moteur/start



Medical Image Federation in Enabling Grids for EiGEE: Medical Data Manager

Objectives

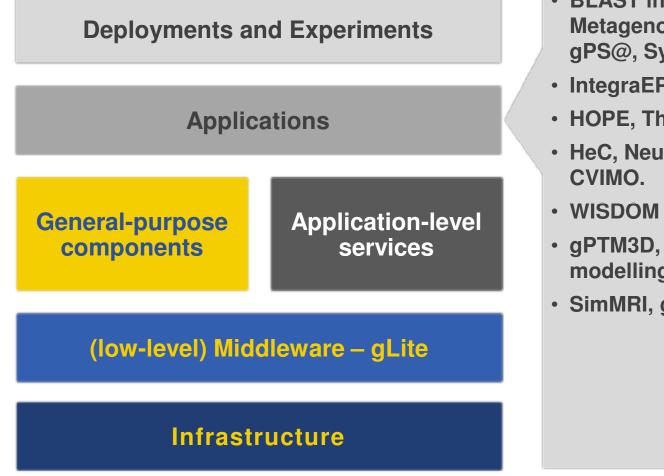
- Expose a standard grid interface (SRM) for medical image servers (DICOM).
- Use native DICOM storage format.
- Fulfill medical applications security requirements.
- Enables storing and retrieving Medical Images and metadata on the EGEE Grid.



Radiology Reports and Image Federation in EGEE: TRENCADIS

- Towards a gRid ENvironment for proCessing and shAring Dlcom objectS (TRENCADIS)
 - Software Architecture, based on the WSRF and gLite.
 - Integrates different local storages of DICOM objects from several centers.
 - Different storage resources are virtualized providing a common interface.
 - It organizes data by communities.
 - Indexing is performed locally services keep references to the storages where information relevant to each community is stored.

egee



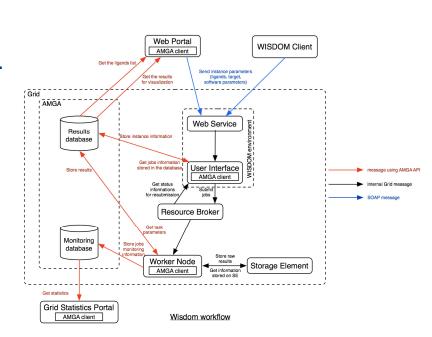
POLITÉCNI

DE VALÈNCIA

Biomed Activity – Bottom-up Approach

Enabling Grids for E-sciencE

- BLAST in Grids Metagenomics analysis, gPS@, System Biology
- IntegraEPI, Virtual City,
- HOPE, ThIS.
- HeC, Neurogrid, Neurolog,
- WISDOM Environment.
- gPTM3D, Pharmacokinetic modelling.
- SimMRI, gCamaec.

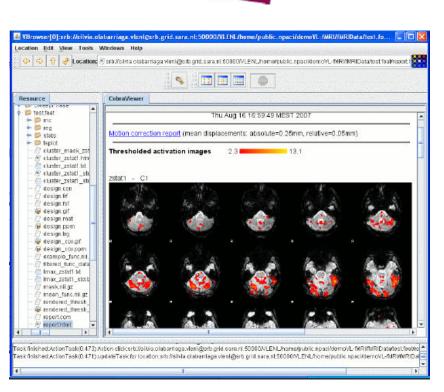

eeee

WISDOM Production Environment

- The WISDOM Production Environment aims at managing and monitoring the jobs on the EGEE Grid.
- It uses most of the EGEE Grid services.
- Automatically creates and Submit jobs, the jobs using multithreaded submission.
 - Check the status of the jobs using multithreaded check.
 - Resubmit jobs if needed.
 - Re-initialize voms proxy if needed.
 - Update instance information in AMGA.
- Developed in Java.
- Uses its own ranking with BDII and own data.
- Dynamic storage and query of data using AMGA.
- Web Service interface.

http://wisdom.eu-egee.fr/

WISDOM


- The VL-e Med project has the goal of building grid-enabled problem solving environment for medical imaging. The resulting platform is based on web services activated from a user-friendly graphical interface.
 - Front-end
 - Virtual Resource Browser.
 - Data

eGee

 SDSC SRB (Storage Resource Broker).

Enabling Grids for E-sciencE

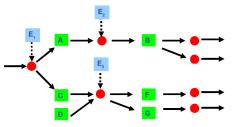
- gLite LFC.
- Workflows
 - Scufl (Taverna workbench).
 - MOTEUR.
- Job submission/monitoring
 - gLiteWMS.

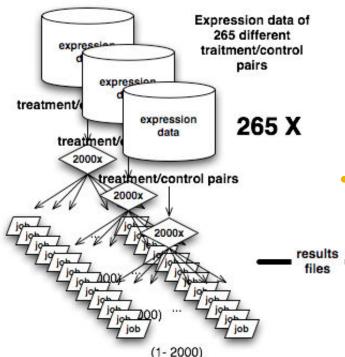
Enabling Grids for E-science

Successful Stories

EGEE'09 – Barcelona 21/9/09 25

- Publication in top-level journals in Biology and Health normally requires several years of research.
- Biomed community has really started to work using Grids in scientific production since recently
 - 658 articles in Google Schoolar (EGEE+grid+biomed).
 - 30 articles in the ISI Web of Knowledge (EGEE+grid, only JCR indexed journals in health and life sciences)
 - 2 Publications in Nature and Nature Genetics.
 - 3 in Bioinformatics.
- Patents on research results.




Systems Biology on Grid

Enabling Grids for E-sciencE

eGee

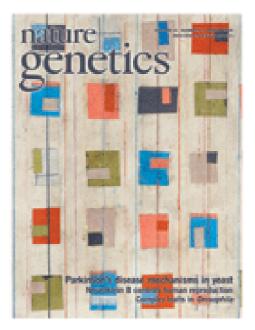
- Systems biology investigates the behaviour of complex systems of interacting components
 - experimental data on the response of cancer cell lines to 164 different smallmolecule perturbagens.
 - Monte Carlo approach with PyBIOS.
- Computation: 102 years (910,000 h)
 - ~ 97% after 17 days (acceleration 2200x)
 - Recruiting up to 4,000 CPUs with Funicolare.
 - 3,792different WNs identified.

simulations

1.590.000 files

1,590,000 result files => 1,35 TB of data

Herwig@molgen.mpg.de, Christophe.Blanchet@ibcp.fr


EXAMPLE 1 Large scale docking deployments against malaria

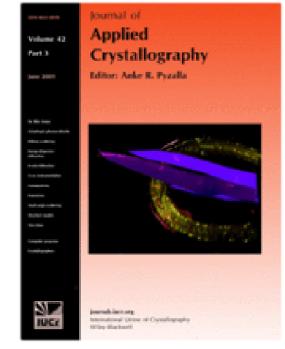
Malaria target	Biology partners	Involved in	Status
GST from Plasmodium falciparum	U. of Pretoria, South-Africa	Parasite detoxification	In vitro tests
DHFR from Plasmodium vivax	U. of Los Andes, Venezuela, U. of Modena, Italy	Parasite DNA synthesis	In vitro tests
DHFR from Plasmodium falciparum	U. of Modena, Italy	Parasite DNA synthesis	In vitro tests
Plasmepsin	SCAI Fraunhofer Chonnam Nat. Univ.	Hemoglobine degradation	Molecules patented

Genome-wide haplotype association study on risk for coronary artery disease

- Goal: study the impact of DNA mutations on human coronary diseases.
- Very CPU demanding analysis to study the impact of correlated (double, triple) DNA mutations.
- Deployment on EGEE Grid
 - 1926 CAD (Coronary Artery Diseases) patients & 2938 healthy controls.
 - 378,000 SNPs (Single Nucleon Polymorphisms = local DNA mutations).
 - 8.1 millions of combinations tested in less than 45 days (instead of more than 10 years on a single Pentium 4).
- Results published in *Nature Genetics March 2009* (D. Tregouet et al)
 - Major role of mutations on chromosome 6 was confirmed.

Nature Genetics 41, 283 - 285 (2009), David-Alexandre Trégouët, et. al.

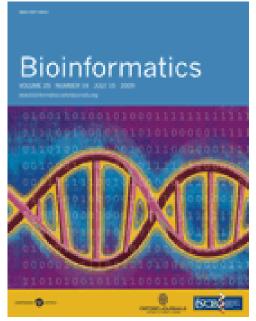
RECálculo de las estructuras 3D de


Enabling Grids for E-sciencE

The PDB data base gathers publicly available 3D protein structures

- Full of bugs.
- Goal: redo the structures by recalculating the diffraction patterns
 - PDB-files: 42.752.
 - X-ray structures: 36.124.
 - Successfully recalculated: ~36.000.
 - Improved R-free: 12.500/17000.
 - CPU time estimate 21.7 CPU years.
 - Real time estimate: 1 month on Embrace VO on EGEE.

R.P Joosten et al, Journal of Applied Cristallography, (2009) 42, 1-9



Quality of the phylogenetic annotation of bacteries

Enabling Grids for E-sciencE

- Comparative phylogenetic experiment on a soil sample with respect to different releases of the NR Gene Bank Database.
- Many of the associations of sample fragments to biological families have changed, even recently.
- The changing rate does not decreases as time goes by, being increased in many cases.
- This reveals that the complete diversity of such communities is not sufficiently well described on current data bases.

BIOINFORMATICS LETTER TO THE EDITOR Vol. 24 no. 16 2008, pages 2124-2125 doi:10.1093/bioinformatics/btn355

Genome analysis

Metagenomics reveals our incomplete knowledge of global diversity

Miguel Pignatelli^{1,2}, Gabriel Aparicio³, Ignacio Blanquer³, Vicente Hernández³, Andrés Moya^{1,2} and Javier Tamames^{1,2,*}

¹Instituto Cavanilles of Biodiversity and Evolutionary Biology, University of Valencia, Apdo 22085, 46071 Valencia, ²CIBER of Epidemiology and Public Health (CIBERESP) and ³Grid and High-performance Computing Group, ITACA, Politechnic University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain

Received on May 23, 2008; revised and accepted on July 10, 2008 Advance Access publication July 13, 2008 Associate Editor: Dmitrij Frishman

- The Biomed community is much more heterogeneous and diverse than other communities.
- Biomed Applications require services
 - Rely on services and components provided by the infrastructure as much as possible.
 - Feedback requirements to middleware developments.
- Develop application domain specific components with a general view
 - Rely on standards and components.
 - It was sometimes painful in the past when releases change heavily the components.
- Developing general components implies a hard dedication and a long-term support
- EGEE is a daily tool in bioinformatics, and innovative medicine and a consolidating tool in medical imaging
 - VPH is used to HPC facilities with great interest on Grids.