

EGEE'09 21 September 2009 Barcelona (Spain)

e-infrastructure

AquaMaps: Mapping Biodiversity Hotspots and Assessing Impacts of Climate Change

 K.Kaschner (FAO & Albert-Ludwigs-University of Freiburg), M. Taconet (FAO), A. Ellenbroek (FAO), N. Bailly (WFC), L. Pagano (CNR)

www.d4science.eu

Outline

- Our problem
- One solution
 - & its limitations
- Towards better solution.....

Our Problem

We want to save the

world....

EGEE'09 Barcelona, 22 September 2009

AquaMaps – Biodiversity Hotspots & Climate Change

 Long-term protection of marine biodiversity

 Implementation of Ecosystems Approach to Fisheries

Who's involved?

EGEE'09 Barcelona, 22 September 2009

Our Problem, More Specifically: Limited Information about Species Occurrence

EGEE'09

Barcelona, 22 September 2009

Our Problem, More Specifically: Limited Information about Species Occurrence

800,000 occurrence records (www.gbif.org)

300,000 described marine species

> 1,000 000 potential species

.....not a lot of data / species

EGEE'09 Barcelona, 22 September 2009

So, what to do?

8

Solea Solea – Common Sole

EGEE'09 Barcelona, 22 September 2009

DescienceThe Solution:Species Distribution Modelling

- Input
 - Occurrence data & information
 - Environmental layers
- Algorithms
 - RES / AquaMaps (ecological niche model)
 - BioClim
 - Maxent....
- Predictions
 - Existing distribution (mostly annual average)
 - Temporal projections (future/historic)

d45CIENCE

www.aquamaps.org

EGEE'09

Our Solution: AquaMaps

... produce computer-generated, reproducable species range maps for (evenually) all species using available data and a transparent, easily understandable and modifiable approach, so maps can be reviewed and improved by species experts.

- → very large / global scale
- → low temporal resolution (annual average)
- \rightarrow can deal with data poor species
- \rightarrow can deal with imperfect input data

12

AquaMaps – how does it work?

- Bathymetry
- Temperature

- Sea surface temperature (SST) for pelagic species (0-200 m)
- Bottom temperature for non-pelagic species (>200 m)
- Salinity
 - Sea surface salinity for pelagic species
 - Bottom salinity for non-pelagic species
- Primary production
- Sea Ice Concentration
- Distance to land (for special cases)

→Global raster: 0.5 degree lat x lon = 180,000 cells

Barcelona, 22 September 2009

EGEE'09

d4SCIENCE

14

AquaMaps – how does it work?

Barcelona, 22 September 2009

d4science

AquaMaps – how does it work?

www.aquamaps.org

AquaMaps – Biodiversity Hotspots & Climate Change

- Validating individual species range maps
 - Kaschner et al, 2006

Validating individual species range maps

- Kaschner et al, 2006
- Testing model performance in comparison to other approaches
 - J.Ready, K.Kaschner et al, accepted

AquaMaps – how good is it?

- Validating individual species range maps
 - Kaschner et al, 2006
- Testing model performance in comparison to other approaches
 - J.Ready, K.Kaschner et al, accepted
- Validating species richness maps
 - K.Kaschner et al, in prep

ps – Biodiversity Hotspots & Climate Change

EGEE'09 Barcelona, 22 September 2009

Note: Tools with (*) display point maps.

d4science

AquaMaps – what can we do with it? Biodiversity Maps

Scombridae 45 of 57 species

EGEE'09 Barcelona, 22 September 2009

of species / cell

13	-	22
7	-	12
4	-	6
3	-	3
1	-	2

dyscience

AquaMaps – what can we do with it? **Biodiversity Maps**

Mean length

Mean trophic level

Gadidae: 23 of 25 species

EGEE'09 Barcelona, 22 September 2009

d4science

AquaMaps – what can we do with it? Biodiversity Maps

The world, all species: up to 400 billions computations

EGEE'09 Barcelona, 22 September 2009

of species / cell

· . hort ...

766	-	4021
146	-	765
29	-	145
6	-	28
1	-	5

Note: Tools with (*) display point maps.

dyscience

AquaMaps – what can we do with it? **Longitudinal Transects** 1,250 -1,000Number of species (n) 750 500 250 0+ 200 -200 EGEE'09 Barcelona, 22

EGEE'09 Barcelona, 22 September 2009

Note: Tools with (*) display point maps.

AquaMaps – what can we do with it? MPA Planning

Species selection based on:

- IUCN criteria
- Area dependence
- Resilience
- Fisheries
- Popularity

Kaschner, 2007

d4science

29

AquaMaps – what can we do with it? MPA Planning

ResNet optimization, all species: Several weeks using Supercomputers

EGEE'09 Barcelona, 22 September 2009

Note: Tools with (*) display point maps.

d4science

31

AquaMaps – what can we do with it? Modelling Impacts of Climate Change

15

25

% 100

Marine Mammals (n = 115)

Biodiversity loss [%]

Biodiversity gain [%]

EGEE'09 Barcelona, 22 September 2009

D 300

AquaMaps – Biodiversity Hotspots & Climate Change

Kaschner et al, in prep

d45CIENCE

AquaMaps – what can we do with it? Modelling Impacts of Climate Change

Relative change in species richness by latitude & different taxonomic groups

Kaschner et al, in prep 32

EGEE'09 Barcelona, 22 September 2009

d4science

Mvanma

e

33

AquaMaps – what can we do with it? Modelling Impacts of Climate Change

Local multispecies map, several climate scenarios: up to 1 billion computations

Species Count

Cristinas I.

Fisheries and Climate Change in South China Sea

- 6,188 half degree cells
- 2,540 species
- 5+3 environmental
- parameters

EGEE'09 Barcelona, 22 September 2009

Implementing an Ecosystems Approach to Fisheries

 product: harmonized and reallocated catch statistics

Requirements

- harmonization of time series data
- querying, with aggregation and reallocation rules
- combining biodiversity information with fisheries Catch time series
- spatial dimension and mapping (GIS)

Fishing activity / Catch

Fisheries

ICIS

EGEE'09 Barcelona, 22 September 2009

D4Science: Collaborative virtual laboratories (VREs) in support to science

- working environment with access to multidisciplinary data sources and chain workflow processes
- Facilitates control of data sharing and collaborative reporting
- Provides access to GRID Infrastructure, storage and computing powers to all regional fisheries bodies

This is where we're going....

Barcelona, 22 September 2009

This is where we're going....

EGEE'09 Barcelona, 22 September 2009

Thank you

EGEE'09 Barcelona, 22 September 2009

AquaMaps – Biodiversity Hotspots & Climate Change

39

Acknowledgements

- D4Science Contract n°: RI-212488
- INCOFISH Project (<u>www.incofish.org</u>) & AquaMaps (<u>www.aquamaps.org</u>)
 - Jon Ready, Eli Agbayani, Josephine Rius Barile, Kathy Kesner-Reyes, Paul D. Eastwood, Andrew B. South, Sven O. Kullander, Tony Rees, Chris Close, Reg Watson, Daniel Pauly & Rainer Froese
- 'Sea Around Us' project (<u>www.seaaroundus.org</u>)
 & Pew Charitable Trusts of Philadelphia, USA
 - Reg Watson, Andrew Trites, Daniel Pauly
- The Sloan Foundation & the FMAP Project (<u>www.fmap.ca</u>):
 - Boris Worm, Derek Tittensor, Tim Guerodette