Fusion Activities at CIEMAT ICT Division

Manuel Rodríguez-Pascual on behalf of the development team

EGEE'09 Conference Barcelona, 21-25 September 2009

www.eu-egee.org

- Intro
- FAFNER2
- DKEsG: Drift Kinetic Equation solver for Grids
- GEM: Gyrofluid Electromagnetic Model
- Vashra-T

Intro (1)- CIEMAT ICT Division

Enabling Grids for E-sciencE

CIEMAT

- Spanish Public Organism for Research and Technological Development since 1951
- Computation activities from the 50s of the previous Century
 - Many scientific fields: Fusion, HEP, Environmental Sciences...
 - Many platforms: Vectorial, Cray, Altix, cc-NUMA, X86...
 - Open to any researcher (not only to the CIEMAT staff)
 - Some examples
 - Uniac Solid State UCT 1959
 - Univac machines (1110/81 by terminal) 70s
 - Cray Computers (T3E parallel arch) 90s
 - SGI Origin/Altix machines (Linux) XXI Century
 - Several x86 clusters -> In 2009, new Infiniband cluster with 1052 cores

Intro (2) - Grid activities at ICT

- Grid Research activities at ICT Division since 2005
 - Several Grid projects: EELA, EELA-2, EUFORIA, EPIKH, EGEE, RIB, Spanish e-Science Network...
- Maintaining Grid Site (TIC-CIEMAT / EELA-CIEMAT):
 - Offers >200 cores, >10TB
 - ALICE experiment, Biomed, EELA, National Grid Initiative, Ibergrid...
 - VO Fusion: >38.000 jobs successfully executed since January 2009.
- Porting applications: Biomedicine, Radiotherapy.
- Specially focused on codes for Fusion devices

FAFNER2

FAFNER2- NBI heating

- **Enabling Grids for E-sciencE**
- simulates plasma heating by Neutral Beam Injection
- Employed at TJ-II and ITER

- Monte Carlo code
- Original version
 - Modified to include TJ-II geometry
 - updated
 - Irix O.S. over MIPS
 - Parallel library: SHMEM
- MPI version
 - Linux over X86
 - Parallel library: MPI
 - Grid Enabled

FAFNER2- Solution(1)

FAFNER2- Solution (2)

- Benefits
 - portability
 - when we started working, MPI not in every site
 - scalability
 - fault tolerance
 - simpler is better
- Drawbacks
 - increased network traffic
- We are maintaining both versions, MPI and DRMAA

FAFNER2- Results (1)

Enabling Grids for E-sciencE

Local overhead

- Java DRMAA
 - **-~**0
- Post process script: lineal in time
 - output files must be uncompressed and read
 - ~2 seconds/task

Grid overhead

- Prolog: lineal in network traffic
 - input data (~34 MB) must be transfered for each task
- Epilog: lineal in network traffic
 - output data (~10 KB) must be transfered for each task
- Wrapper?

EGEE-III INFSO-RI-222667 10

FAFNER2: Results (2)

Enabling Grids for E-sciencE

scalability

- ~constant execution time: scales correctly

EGEE-III INFSO-RI-222667

FAFNER2- Results (3)

Enabling Grids for E-sciencE

 Resource Availability at fusion VO where running a job with a certain degree of parallelism is possible

EGEE-III INFSO-RI-222667 12

FAFNER2- Physical results

DKEsG

Enabling Grids for E-sciencE

DKEs: Drift Kinetic Equation solver

- neoclasical transport
- Kinetic transport: guiding centre orbits in tokamaks and stellarators
- simulates transport to estimate the energy flux to the plasma wall

Variational DKEs version

- Obtain upper and lower bounds for the neoclassical diffusion coefficients of a prescribed toroidal plasma equilibrium.
- Parametric and sequential nature
 - Can be divided in sub-tasks: suitable to grid executions

Objective: Filling a broad database with the complete [configuration - transport matrix – state]

- Bring results to Fusion Community
- Avoid performing the same simulation twice and easy re-analysis

DKEsG - Problems

Enabling Grids for E-sciencE

DKES2

DKEs:

- Requires continuously configuring and recompiling
- Calculates diffusion coefficients for only a certain number of collisionality/energy and radial electric field values.
- Manual preparation and execution of simulations.
- Manual compilation of a high number of output data files.

Diffusion

coefficients

and error

thresholds

DKES2

code and

libraries

DKEsG - Solution (1)

- DKEsG: a true distributed compatible application
 - High level implemented on DRMAA Standard
 - Low level calculations based on Var. DKES
 - All code in a nutshell
 - No software must be installed in resources.
 - Only a binary per architecture and algorithm module
 - Easy to include new modules (transport coefficients)
 - Enable integration in complex workflows at application level and databases
 - Independent GUI

DKEsG

Calculate neoclassical transport coefficients

$$L_{ij}(n,T,\phi) = L_{ij}(\upsilon,\phi) = \frac{2n}{\pi} \int_{0}^{\infty} dK \sqrt{K} e^{-K} g_{i}(K) g_{j}(K) D_{ij}(K,\upsilon,\phi)$$

- Reusing Var. DKES code
- Reduce time execution & increase precision
- Easy interaction with other Fusion applications

DKEsG-Results

Enabling Grids for E-sciencE

Calculate diffusion coefficients : ~ 450 seconds

- Xeon 3.2 GHz (2006)
- 343 Fourier modes
- 100 Legendre polynomials
- Energy and electrical field fixed

1000 executions = 5,20 days In a single Xeon processor

1000 executions = 4 hours 22 minutes
Using 55 slots distributed among EELA and local resources

DKEsG-Physical results

Enabling Grids for E-sciencE

monoenergetic coefficients as a function of collisionality for different values of the electric field performed

gGEM

- GEM: Gyrofluid Electromagnetic Model
 - studies turbulences of the core
- Usually run in High Performance Computers
 - highly coupled application
 - CPU intensive

Enabling Grids for E-sciencE

No need for external libraries

Local C++ application

- simplifies Grid submission of any number of instances
- ggem number [mpi|serial hdw tdw] ...

DRMAA

 standard API to communicate the application with a scheduler/ metascheduler

GridWay metascheduler

- job submission
- scheduling capabilities
- fault detection & recovery

suitable to be executed in standard clusters

Average execution time

gGEM- Results(2)

Enabling Grids for E-sciencE

overhead lineally scales with number of processors

 upper bound to the degree of parallelization, depending on the needs of the final user

gGEM- Physical results

Vashra-T

MINISTERIO DE CIENCIA E INNOVACIÓN

- Vashra-T allows massive Grid computations of TRUBA when it is required by ASTRA.
- TRUBA calculates Electron Bernstein Wave (EBW) heating in TJ-II
- MaRaTra is the gridified version of TRUBA
- ASTRA calculates Transport in TJ-II
- Local Machine -> Run ASTRA
 - SGI ALTIX 3700
 - 192 Itanium 64 bits
- Grid machine -> Run MaRaTra
 - Globus Toolkit 4 and GridWay 4.2
 - Access to 30 sites

GT4

GRIDIMadrid

THANK YOU

Ciemat ICT Division: L. A. Flores, R. Mayo, E. Montes, M. Rodríguez-Pascual, A. J. Rubio-Montero.

National Fusion Laboratory (LNF): F. Castejón, J. Guasp, D. López-Bruna.

IPP Garching: T. T. Ribeiro, B. Scott.

Complutense University of Madrid (UCM): J. L. Vázquez-Poletti