e e e Enabling Grids for E-sciencE

Systems and Software
Security Session —
Writing Secure Code Not
Being a Security Specialist

Gerard FrankowsKi
Poznan Supercomputing and Networking Center

WWW.Eeu-egee.or ,
gee.org e-infrastructure E

EGEE-III INFSO-RI-222667 EGEE and gLite are registered trademarks

GCIGG

Secure coding — introduction
Why the code is insecure?
Why the developers should care?

Input data sanitization

Coding errors: examples and avoiding
Standalone applications
Web applications

Other general issues
Handling sensitive data in memory
Dangerous functions and APIs
Coding conventions and comments

Where to find more information?
Questions

Enabling Grids for E-sciencE

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 2

CIEICIC) \Why the developer should care?

Enabling Grids for E-sciencE

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 3

Cy Why the code is insecure?

Enabling Grids for E-sciencE

We are not robots, we do mistakes

Let the software be 30 000 KLOC (30 millions lines) long
Windows 2000 was of that size

According to the Carnegie Mellon University’s CyLab, 1 KLOC
(1000 lines of code) contains up to 30 software bugs

Let’'s make some further assumptions:

20 software bugs (of all kinds) in 1 KLOC -

T
e T
o ’7 "

only 5% of them are security-related -
only 1% of the latter give system access -

30 000 000 * 0.02 * 0.05 * 0.01 = 300
The attacker needs to find only 1 out of those 300...

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 4

e ee Why secure code does matter?

Enabling Grids for E-sciencE

It iIs the administrator who should take care on the
system security, isn’t it?

Appropriate server configuration

Firewall policies...

w [http:/ “ —— 22 /&

123
80
666

80

=
http://somewhere.pl?para
m=<script>alert(document.
cookie)</script>

The response must be ,defence in-depth”

We defend on every level | /ﬁ
] [http:/’< 80

http://somewhere.pl?para

m=<script>alert(document.

cookie)</script>

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009

5

CIEICIC) Are the software bugs expensive?

Enabling Grids for E-sciencE

NIST Report "The Economic Impacts of Inadequate
Infrastructure for Software Testing” (2002)
http://www.nist.gov/director/prog-ofc/report02-3.pdf

This is more general, not only security bugs
But they are bugs as well...

Table 7-5. Hours to Fix Bug based on Introduction Point

Stage Found

Coding/Unit Post-product
Stage Introduced Requirements Testing Integration Beta Testing Release
Requirements 1s2 8.8 14.8 15.0 187
Coding/unit testing NA 3.2 8.7 12.2 14.8
Integration NA NA 6.7 12.0 17.3

NA = Not applicable because cannot find a bug before it is introduced

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 6

G Again the NIST report...

Enabling Grids for E-sciencE

Average
Cost per
Bug
A —
I
I
1
1
l
1
|
X, + :
* . I
| i
" ¥
= T | : I
1 1 1
T . s ! ER !P-R!
I | | I
C-U : : :
X1 1 1 | 1
| 1 1 I I
A i L
15% | 20% | 40% | 15% | 10%I
I I I I I 1
R-D C-u I-S E-R PR
Distribution Where 100%
Bugs Are Detected

Legend:
R-D: Requirements Gathering and Analysis/Architectural Design
C-U: Coding/Unit Test
[-S: Integration and Component/RAISE System Test
E-R: Early Customer Feedback/Beta Test Programs
P-R: Post-product Release

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 7

Should the developer be
e P

a security specialist then?

Enabling Grids for E-sciencE

Obviously not!
Everyone has got his or her own job
We do not expect the developers to learn about network attacks
or exploiting

But we think we can expect the developers...

To know the basics of secure coding (including simple examples
of attacks for better understanding)

To apply secure coding practices in their favourite programming
language (or the one they have to work with...)

To create well-commented and easy-to-understand code

To apply simple tools detecting the most obvious security flaws
...and we would like to help by sharing our knowledge
and experience!

Last but not least, a ,secure coder” will be more competitive ;)

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009

8

CIEICJIC) Several spectacular software bugs

Enabling Grids for E-sciencE

Therac 25 (1980’s)
Radiation overdosing, at least 5 deaths
Research on Mars

Mars Global Surveyor (2006)
Mars Exploitation Rover (2004)
Mars Climate Orbiter (1999) — price: 125 min USD

Northeast Blackout (2003)
Price: 7-10 mid USD

Ariane 5 Explosion (1997)
Price: 500 min USD

More information:

http://computingcases.org/case_materials/therac/therac
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.htmi

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 9

But If the software
& will never be perfect...

Enabling Grids for E-sciencE

Why we should care?

Security economy!

The economic factors become more meaningful
for everyone, including hackers

Your system is in danger when

Attack cost <= Value of your data

Therefore we should make the hacker’s goal
more difficult

Better security systems
Less software errors

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 10

Distrusting input data

G The code and the application

Enabling Grids for E-sciencE

The code builds programs
(applications)
The computers are based on von Neumann

model
They store the application code and its data
In the same structure (memory) 3. von Neumann
: (1903-1957)
Therefore the program may affect its own
code
Input
A computer program accepts data, "Q
processes it and returns result (output)
It should conform to the program
specification e
The program input is the most crucial
from the security point of view
Output

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 12

CG

Enabling Grids for E-sciencE

Input data sanitization

« This is the most meaningful sentence | would likey ou

to remember today:

However, Input data may mean:

Enabling Grids for E-sciencE

Application input parameters...
The most obvious way of passing data to the program

For standalone applications: the command line parameters
For Web applications: POST/GET data

. and also other (many) data sources!
Environment variables
Configuration files
Output from the internal database (!)
Authentication data (e.g. X509 certificate DN)

The content of received network packets (including the data
returned from external services)

The data entered interactively by the user
For Web application: cookies

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 14

G | just get the filtered data...

Enabling Grids for E-sciencE

Sometimes we write an internal function,
accepting some data that already “should have
been” filtered

Our internal function may be copied to another module
that does not assure sufficient sanitization

The function may work on another OS/hardware under
different conditions

It was one of the causes of the Therac 25 incident
Someone might reuse only a part of the function, not
aware about sanitizing issues

Indeed, it makes no sense that every single
function has its own sanitization mechanism — but
at least remember the problem

NULL pointers may cause the most trouble

H,

=

i
2
I

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 15

Bugs in standalone applications

Enabling Grids for E-sciencE

CHEE An overview

Enabling Grids for E-sciencE

C/C++ applications
Buffer overflow + real example
Race condition (TOCTOU) + real example
Memory leaks + real example
Lack of verifying the return value + real example
All examples are taken from PSNC Security Team

work on gLite software or EGEE monitoring
services

Well... almost all — but the others are worth mentioning!

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 17

G Buffer overflow (1)

Enabling Grids for E-sciencE

Introduction
Beware of statically sized buffers!

The stack stores local variables (incl. buffers) next to the
return address

Copying too much data to the buffer will overwrite the
return address with an arbitrary value

Random data lead to memory protection fault

Specifically crafted data compose an exploit (a jump to the
code specified by the attacker)

Especially root and suid root applications are dangerous

There are several kinds of buffer overflows
On the stack (static buffers)
On the heap (dynamic buffers)

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 18

G Buffer overflow (2)

Enabling Grids for E-sciencE

Example 1

3899: u_signed64 fileid;

3905: char logbuf[CA_ MAXPATHLEN+8];
3907: char path[CA MAXPATHLEN+1];

3925: sprintf (logbuf, "Istat %s %s",
ue4tostr(fileid, tmpbuf, 0), path);

Explanation

The maximum length of the string generated by sprintf() is:
6+20+ 1+ CA MAXPATHLEN = CA_MAXPATHLEN + 27 bytes
The logbuf buffer is able to contain CA_ MAXPATHLEN + 8 bytes
It is possible to overwrite up to 19 bytes in memory (on the stack)

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 19

G Buffer overflow (3)

Enabling Grids for E-sciencE

Example 2

line_buf = malloc (sizeof (char)* 1024)

for (i = O; i < bufsize; i++, j++)

{
if (buffer[i] =="\n")

else

{
line_buf[j] = buffer]i];

}
}
Explanation
line_buf may store up to 1024 bytes (1023 + \0’)
bufsize denotes the length of the config file (max. 100000 bytes)
A line longer than 1024 bytes will cause heap overflow!

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 20

c Buffer overflow (4)

Enabling Grids for E-sciencE

Avoiding buffer overflows
Be extremely careful when operating on local, statically sized
buffers

Always calculate the maximum possible size of the buffer
contents
Consider dynamic allocation of the buffer (it slows the application!)

Avoid using dangerous functions like strcpy(), gets()

Sanitize the input data

Always assume that someone will craft the data, e.g. a
configuration file with lines longer than 1024 bytes

Always check if your strings are NULL-terminated

Consider explicit NULL-termination of all strings, even those that
should be handled by library functions

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 21

G Buffer overflow (5)

Enabling Grids for E-sciencE

The ,non-developer’” countermeasures
Consider using StackGuard, ProPolice, Libsafe, ...
Consider using /GS compiler option (MS)
Executable Stack Protection (PAX, ExecShield, Openwall)
MS: Data Execution Prevention (BufferShield, StackDefender)
Address Space Layout Randomization
Please remember that:
They have their limitations and/or cost
They should complement, not replace secure coding

Or maybe use another programming language?

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 22

G Race condition

Enabling Grids for E-sciencE

Introduction

Remember that the adjacent lines of source code may not be
executed just one after another
The processor time may be switched to another task
Something might happen before it is returned to our code
It happens that the operation seeming to be atomic, is not!
Take a special care when
First verifying the files and then opening them
Creating temporary files
Multiple reading the same external data, e.g. environment variables

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 23

G Race condition (2)

Enabling Grids for E-sciencE

Example

205: if (getenv(GLITE_ METADATA_SD_ENV))

206: ret= _glite_catalog_init_endpoint(ctx,
metadata_namespaces,

207: getenv(GLITE_METADATA_SD_ENV));

Explanation

If, between executing lines 205 and 207, an attacker modifies the
contents of the GLITE_METADATA_SD_ENV variable (e.g.
undefines it), glite_catalog_init_endpoint() may receive
malicious data (e.g. unexpected NULL)

The compiler should optimize the calls, but there is no guarantee

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 24

G Race condition (2)

Enabling Grids for E-sciencE

Example 2 (non-EGEE one):

If (access(strFileName, R_OK) !=0)
{

exit(1);
}
fd = open(strFileName, O_RDONLY);
/[process the fd...

Explanation
suid root applications are especially in danger

Between the calls to access() and open() the attacker has got a
chance to make a symlink named strFileName and pointing to a
sensitive system file, like /etc/passwd

He or she will be able to operate on the sensitive file

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 25

G Race condition (2)

Enabling Grids for E-sciencE

Avoiding race codintion:

char* strEnv = strdup(getenv(GLITE_ METADATA SD_ENV)) :
If (strEnv)
ret = glite_catalog_init_endpoint(ctx,
metadata_namespaces, strEnv);

[*first drop privileges!*/
FILE hFile = fopen(strFileName, “r");
if (hFile)

//[process the file strFileName...

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 26

Cy Memory / resource leaks

Enabling Grids for E-sciencE

Introduction

A memory leak occurs when a dynamically allocated memory
block is not freed

A resource leak occurs when a sort of resource (e.g. file handle)
Is allocated but not freed

In general, memory leak is a resource leak as well, but it makes
sense to distinguish this class of bugs

Leaks that occur inside loops are especially dangerous

Even tiny leaks, repeated numerously, may exhaust the system
resources

Threats
Significant loss on application and system efficiency
In extreme cases — DoS on the application and system

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 27

G Memory / resource leaks (2)

Enabling Grids for E-sciencE

Memory leak example:

394: buf = malloc (sizeof (char) * 256);

399: if (! subject _dn)

400: {

401: scas_log (0, "%s: Error: No subject DN found,
this

402: element is mandatory \ n", logstr);

403: return 1;

404: }

Explanation

If the subject_dn is NULL, the function returns without freeing buf
(256 characters)

If an attacker is able to call this function with malicious data (no
subject_dn), may consume all memory available to the process)

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 28

- Memory / resource leaks (3)

Enabling Grids for E-sciencE

* Resource leak example:

try {
InputStream inp = null;

if (loader 1= null) {

inp = loader.getResourceAsStream(VERSION_PROPERTIES FILE);
} else {
inp =
ClassLoader.getSystemResourceAsStream (VERSION_PROPERTIES_FILE);
}

props.load(new BufferedinputStream(inp));
inp.close();

m_log.info("Configuration file " + VERSION_PROPERT IES_FILE +
" loaded");

} catch (IOException e){

m_log.error("Error loading config file " +
VERSION_ PROPERTIES FILE +™: " + €);

}

&

Memory / resource leaks (4)

Enabling Grids for E-sciencE

Resource leak example — explanation
The method creates an 10 stream object (inp) for temporary use
Normally, it calls the close() method of the object

If an exception occurs before call to inp.close(), the IO stream
object will not be released

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 30

G Memory / resource leaks (5)

Enabling Grids for E-sciencE

Avoiding leaks

Free dynamically allocated resources on each return path from the
function

Use finally{...} or alike mechanism to assure that all allocated
resources are released

C/C++: do not mix malloc()/delete and new/free()

Be especially careful with the functions that return dynamically
allocated buffers or structures

Remember to free the structures as soon as they are unnecessary

Comment that appropriately to ease the live of your successors
Test the debug version for memory/resoure leaks

Own scripts / macros

Dedicated tools: BoundsChecker, Purify, Insure++, Valgrind

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 31

G Verifying return values

Enabling Grids for E-sciencE

Usually the functions return some value
Specific return values denote an error
It happens that the return values are not always verified

Especially for functions returning pointers where NULL means an
error

The problem concerns both

Library functions (malloc, strdup) — more will be said in
“Dangerous Functions” part

Custom functions implemented by the developers

Threats
Unexpected application behavior
Application crash (NULL pointer dereference)

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 32

G Verifying return values (2)

Enabling Grids for E-sciencE

Example 1

234: routem = (struct routem *)

235: malloc(maxfd * sizeof(struct routem));
236: for (i = 0;i < maxfd;++i) {

237: (routem + i)->r_where =invalid;

238: (routem +i)->r nl =1;

239: }

Explanation

If the memory allocation of routem structure fails, the line 237 will
cause an application crash

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 33

G Verifying return values (3)

Enabling Grids for E-sciencE

Example 2

402: E->AVal[ATok] = realloc(

403: E->AVal[ATok],
404. len);

405: if (E->AVal[ATok] == NULL)

406: {

407: return(FAILURE);

408: }

Explanation

realloc(), if unable to increase the E->Aval[ATok] buffer , will
return NULL but will NOT deallocate the previous one!

As NULL has just been assigned to E->Aval[ATok], it is
Impossible to deallocate the old buffer by hand

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 34

G Verifying return values (4)

Enabling Grids for E-sciencE

Recommendations

Always verify the return values of functions like malloc()/calloc()/
realloc()/strdup() (and your own) and react appropriately

Call realloc() in the way similar to the one below:

char *buffer, *temp;

int new_size,

buffer = malloc (1024);

if (buffer == NULL) exit(1);

new_size=2048;

temp = realloc(buffer, new_size);

if (temp == NULL){
free(buffer);

}

else buffer=temp;

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 35

Bugs in Web applications

CHEE An overview

Enabling Grids for E-sciencE

Web applications (PHP and Java-based)
First some threatening statistics...
XSS + real examples
SQL Injection + real examples
Remote Code Execution + real examples
Directory Traversal + real examples

All examples are taken from PSNC Security Team
work on gLite software or EGEE monitoring
services

Well... almost all — but the others are worth mentioning!

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 37

First some statistics...

Cross-Site Scripting

SSI Injection

SQL Injectien

HTTP Response 5Splitting

Information Leakage
Other

Percentage of websites vulnerable by class (Top 5)

0% B Cross-Site Scripting

B SQL Injection

B Information Leakage

B HTTP Response Splitting
B Path Traversal

B Other

26.38% 5%
15.70%

Source: http://webappsec.org (2007)

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 38

GCIG G XSS

Enabling Grids for E-sciencE

Introduction

Cross-Site Scripting is based on injection of the active (e.g.
JavaScript) code in the content of a Web page

The victim displays a Web page, therefore executing the script in the
context of his or her browser

The cause is a lack of (or insufficient) data filtering, especially
those sent via GET and POST methods

Threats
Many people think there is no much harm, but...
Information disclosure (cookies)
|dentity spoofing
Sophisticated attacks (e.g. scanning remote networks)
Remember that client-side data sanitization (althoug h
may be useful) is not enough!
The above is valid for all kinds of Web application bugs

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 39

GCIGG XSS (2)

Enabling Grids for E-sciencE

Example 1

$organization =$ GET['organization’];
$go =% GET['goT;

else if($go==15 or $go==16)

{

buttonback();

echo"<h2>History for ".$organization."!!";
}
Explanation

Passing malicious value in the URL might cause stealing cookies
or invoking malicious activities

PoC:http://.../banner.php?go=15&organization=%3Cscript%3Ealert
(document.cookie)%3C/script%3E

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 40

GCIGG

Example 2

Enabling Grids for E-sciencE

String[] cols =
m_schemaBrowser.getColumnStrings(tableName);

if (cols !=null) {

} else {

buffer.append (" table name "+ tableName +
"");
buffer.append("cannot be found in R-GMA."),

}

Explanation

The value entered by the user in the URL (tableName) is directly
attached to the final HTML code

PoC: http://<hostname>:8443/R-GMA/BrowserServlet/
getQueryForm.do?tableName=<script>alert(1)</script>

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 41

Enabling Grids for E-sciencE

Virtual Organization Membership
Service

« Example 3

The blazej VO Request to Administrators #» requesting WO mambership

REQUEST TO ADMINISTRATORS

REQUESTING VO MEMB-ERSHIP . N
LISTING REQUESTS VO User Registration Request

CONFIRMATION OF THE EMAIL ADDRESS
To access the VO resources, you must agree to the VO's
Usage Rules. Please fill out all fields in the form below and
click on the appropriate button at the bottom.

After you submit this request, you will receive an email with
instructions on how to proceed. Your request will not be
forwarded to the VO managers until you confirm that ‘f'ﬂu
have a valid email address by following those instructions.

IMPORTANT: By submitting this information you agree that it
may be distributed to and stored by WO and site
administrators. You also agree that action may be taken to
confirm the information you provide is correct, that it may be
used for the purpose of controlling access to WO resources
and that it may be used to contact you in relation to this
activity.

OM: fC=IT/CN=Tomasz

Jakis/Email=tomasz jakis@man.paznan.pl
CA: fC=IT/O=TEST CA
Ca URI:

Family 0
Mame: flakis

Givan
Mame:

Institiite: |

Phone
Numibear: 1

Email: |

commeent: i

ﬁomasz

| have read and agree o the VO's Usage Rules |
1 DO NOT agree to the VO's Usage Rules |

GCIGG XSS (5)

Enabling Grids for E-sciencE

In order to join a VO a user had to fill the shown form

The contents of the ,Family name”, ,Given name” and ,Institute”
fields were not sanitized

After an e-mail confirmation, the new user’s request appeared in
,Request Handling” menu of the administrator view

Clicking on a pending request displayed the ,Detalls of requests”
page with the contents of the field above not sanitized

Account management operations were insufficiently
protected

Access to operations via “hidden” URLs

XSS attack on the form — removing an account

Family Name:

Miga<script>document.location="/voms/blazej/we
bui/request/admin/delete.do?reqid=25";</script>

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 43

GCIGG XSS (6)

Enabling Grids for E-sciencE

Avoiding XSS
Never accept the data entered by the user without sanitization!
Especially distrust GET and HEAD variables

Be careful when building the HTML code using local database
output, environment variables, X.509 certificates content etc.
Use regular expressions and/or functions like addslashes() or
htmispecialchars() for PHP
Disallow special characters like < > ; where just text is expected
Whitelist and regular expressions are a good approach
Use a simple scanner for detecting XSS (one will be described
later)

Please note that PHP magic quotes feature is becoming
deprecated and relying on it is discouraged!

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 44

GCIGG

Avoiding XSS - examples

Enabling Grids for E-sciencE

$organization =
htmlispecialchars($ GET['organization']);

$organization = strip_tags($ GET['organization']);
$month =$ GET['month'];

if ($month =="'1") $month="January’;

elseif ($month == '2') $month="February’;

elseif ($month == '12") $month="December’;

else
[lerror...

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 45

CHEE SQL Injection

Enabling Grids for E-sciencE

Introduction
SQL Injection is based on injection of arbitrary SQL code to an
SQL query passed to the database by a Web application
An attacker uses malicious parameters and executes arbitrary query

The cause is a lack of (or insufficient) data filtering, especially
those sent via GET and POST methods

An attacker may see the database output directly or indirectly
(blind SQL Injection)
Threats

Information disclosure (database structure and contents)

Modifying the database contents

Deleting the database contents or the database itself

Remote code execution (via stored procedures, xp_cmdshell() etc.)

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 46

G SQL Injection (2)

Enabling Grids for E-sciencE

Example

$sqgl="select \"Group\" \"JobStatus\",sum(\"NumJobs\ ")
from \"getSiteVoStNumJobs\"(".($t_end-

$value).",".$t_end.",". $ GET["filterl"] ") GROUP BY
\"Group\" \"JobStatus\"order by

llecho$ sql ."< br>";
$rs = pg_query ($conn, $sql);

Explanation

The value entered by the user in the URL (filterl) is directly
attached to the database query

PoC:
http://.../gridice/test/jobs.php?filter1=11)%20group%?20by%20"Gro
up","JobStatus"%20union%20select%20NULL,NULL,NULL;--

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 47

&

Enabling Grids for E-sciencE

SQL Injection (3)

Example 2 — non-EGEE one ;)

HI, THIS 1S
WERE HAVING S0ME

\%m

YOUR SON'S SCHOOL.

(OMPUTER TROUBLE.

OH, DEAR — DID HE
BREAK SOMETHING?

IN HWHY /

S

Source: http://xkcd.com/327

EGEE-III INFSO-RI-222667

EGEE’09 Conference — Systems and Software Security S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;== 7

~(OH, YES UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEARS STUDENT RECORDS.
T HOPE YDURE HAPRY.
‘I! AND I HOFE
~~ YOUVE LEARNED
TO SANMIZE YOUR
DATARASE INPUTS.

ession, 21.09.2009

48

G SQL Injection (4)

Enabling Grids for E-sciencE

Avoiding
Basically, same as for XSS: insufficient (or a lack of) input data
sanitization is the main problem

Using built-in mechanisms like parametrized queries instead of
building query with string concatenation of user parameters

Using stored procedures

Non-developer countermeasures
Applying least privileges principle for credentials definition
Appropriate structure of database

Please remember that the data you take from the loc al
database also should be sanitized!

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 49

Cy Remote Code Execution

Enabling Grids for E-sciencE

Introduction

Sometimes Web application (e.g. PHP-based) use function
calls that execute system commands (passthru, exec, system)

You should never allow your users to define their own arbitrary
commands

The goal of the attacker is to craft the input data to be able to
Insert arbitrary system commands to be executed by the
scripting engine

“A PHP console”

The commands are usually executed with the Web server
credentials

Please do not confuse this chapter with executing arbitrary
code as a result of exploitation of e.g. a buffer overflow

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 50

G Remote Code Execution (2)

Enabling Grids for E-sciencE

Example 1

<?php
ip=$_GETT['ip
echo "Pinging host $ip"
passthru (ping -c 4 $ip);
?>

Explanation
The ip parameter is not sanitized
So why not apply a Unix shell meta-character “;"?
PoC:http://.../jobs/ping.php?ip=10.0.0.1;cat%20etc/passwd

Another (less critical) issue: why my Web server should offer
remote scanning facilities to anyone?

Ping of Death: http://.../jobs/ping.php?ip=www.nasa.gov%20-
c%209999%20-5%2065510

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 51

G Remote Code Execution (3)

Enabling Grids for E-sciencE

Example 2 (non-EGEE one, but worth mentioning)

An HPC center website

Users requesting for a computational account are required to
send their CV, the list of publications could be also presented

The uploaded files were put in the upload subdirectory with a
random name

The user was able to see his uploads on his or her account
page (by referring to them directly by URL)

The extensions of the uploads were not verified
So why not upload a simple PHP script and call it a bit later?

<?%cmd =$_GET['c';
echo passthru("$cmd"); ?>

http://.../uploads/0f938...231ab94e8.php?c=cat%20/etc/passwd

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 52

= Remote Code Execution (4)

Enabling Grids for E-sciencE

Avoiding
Analyze twice if this functionality is really necessary! Offer only
as little functionality as required

Never allow the user to define his or her own commands, only
specific parameters may be accepted

The parameters should not be just copied or concatenated

Try to use whitelisting for enumerated values and regular
expressions for other

Remember not to relay on the client-side control!
Assure that all shell meta-characters are filtered out
Use PHP escapeshellcmd function
Non-developer countermeasures

(PHP) use disable functions in the initialization file to block
functions like passthru, exec, system, shell exec (will disable
also the backtick operator ()

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 53

G Directory Traversal

Enabling Grids for E-sciencE

Introduction

Jumping out of the Web root directory, especially by providing
../ (directory up) characters in a parameter that builds a
filesystem path

Important information may be disclosed, e.g. the contents of
the system files

Usually the files are read with the Web server credentials

As usually, the causes and avoiding are associated with data
filtering

Never do something like:

$content=$_GET[“content”];

$file="content/".$content.".html";
readfile($file);
PoC.: http://...vuln.ntml?content=../../../../..]..letc/passwd %00

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 54

G Directory Traversal (2)

Enabling Grids for E-sciencE

Example
$filelD =$ REQUESTT'filelD;

[* read all of the content of the file*/
$fullcontent = file ($tmpdir . $filelD);

$fullcontent is then processed and displayed on the page
PoC.:

1. Capture the request: GET
/ldap/php/tree.php?actionID=expand&fileID=tmp/LEOO331mUA&ro
w=2&... (tmp/LEOO331mUA name chosen by the application)

2. Craft the request to GET
/ldap/php/tree.php?actioniD=expand&filelD=../../../..]..]..letc/passwd
&row=2&...

3. See the contents of the file:
http://monitoring.egee.man.poznan.pl/ldap/php/tmp/LEOO331mUA

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 55

Other general issues

G Handling sensitive data

Enabling Grids for E-sciencE

Many applications (e.g. HYDRA) have to process
sensitive data

E.g. crypto keys, initialization vectors

These data must be stored somewhere in memory
Another process may read this memory area
The sensitive data may be dumped to disk

If the developer is untidy, the data are stored in multiple (too
many) memory areas

After the data are no longer necessary, must be deleted securely
and as soon as possible

Memory disclosure attacks are not trivial, but stil I
possible

Read more e.g. at http://www.cs.utsa.edu/~shxu/dsn07.pdf

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 57

G Handling sensitive data (2)

Enabling Grids for E-sciencE

HYDRA issues reported

In general, the sensitive data were treated only as solid as other
(should be devoted more care)

Neither memset() nor custom procedures were applied to clear
the buffers before deallocation

In several cases clearing or finalization functions applied to the
sensitive data might be called a bit earlier

The keys/initialization vectors were duplicated, but not many
times and it could be justified (bin and hex form of the key)

We feel that this issue Is too rarely addressed

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 58

G Handling sensitive data (3)

Enabling Grids for E-sciencE

Avoiding the problems

Secure data deletion
memset() may be optimized by the compiler
Implement "secure memset”:

void* secure_memset(void *v, int c, size_t n)

{
volatile char *p = v;
while (n--)
*p++ = C;
return v;
}

Consider using mlock() and/or mlockall() functions
Require root privileges
Lower the program efficiency

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 59

G Handling sensitive data (4)

Enabling Grids for E-sciencE

Avoiding the problems (cont.)
Be extremely careful with realloc()
Minimize exposure

The number of duplications
The time between initialization and deletion

Use appropriate data types for storing sensitive data (should be
store in mutable locations where they may be overwritten on

demand)
e.g. in Java the char[] type should be rather used than String.

Non-developer countermeasures:

Disable core dumps e.g. via ulimit
grsecurity: set CONFIG_PAX_ _MEMORY_SANITIZE

Avoid hibernation

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 60

Cy Dangerous functions
Every programming language hast its own list of
Jnsecure” functions

C should be especially mentioned — it gives more flexibility but
with more potential errors

The dangerous functions should be used with care

Sometimes it is not possible just to avoid them, they are
necessary or helpful

During our tests in EGEE we addresed the following C
functions the most often:

strcpy/strncpy

malloc/calloc/realloc

strdup

sprintf/snprintf/vsnprintf

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 61

G Dangerous functions (2)

Enabling Grids for E-sciencE

strcpy/strncpy
strcpy should never be used (and actually is not ©)
strncpy is much better but does not repair everything
The destination buffer size should still be calculated properly

In some implementations, when the buffer will be exactly filled,
will not be NULL-terminated

Always add 1 character for the terminating NULL
Be careful with multibyte characters!

strdup

Remember that this function allocates memory that should be
freed to avoid memory leaks

If the memory allocation fails, the function returns NULL, do not
dereference this value without verifiying

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 62

G Dangerous functions (3)

Enabling Grids for E-sciencE

malloc/calloc

Memory allocation may fail, you must properly handle such
cases

Remember to free the allocated memory on all return paths

realloc

The above rules apply as well

Additionally remember that the function does not clear the old
buffer (significant for sensitive data handling)

char* newptr = malloc(NEW _SIZE);

memset(newptr, 0, NEW_SIZE);

memcpy(newptr, ptr, min(OLD_SIZE, NEW_SIZE));
secureMemset(ptr, 0, OLD_SIZE); /*not just memset() */
ptr = newptr,;

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 63

G Dangerous functions (4)

Enabling Grids for E-sciencE

sprintf/snprintf/vsnprintf

Remember, what these functions return!

The return value is NOT the number of bytes actually written to the
destination buffer

It is the number of characters that would have been written to the
destination buffer if it was large enough to contain the whole
formatted string

message body length =

vsnprintf(buf+message prefix_length,

GLEXEC_MAX_ LOG_LINE-message_prefix_length, fmt, ap) ;
Better:

Int max_len = GLEXEC_MAX LOG_LINE-

message_prefix_length;

Int len = vsnprintf(buf+message prefix_length,

max_len, fmt, ap);

message_body_length = (len > max_len ? max_len : len);

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 64

G Coding conventions

Enabling Grids for E-sciencE

Any convention that produces solid code is good ;)
Although there are ones that make the code easier to read

Comments

Function specifications
What does it do?
Input and output parameters
Caveats

Comments through the code are welcome as well

Remember that someone else may have to read and/or
modify the code

A security specialist will make more accurate opinion

It will be more difficult for another developer to make a mistake

Debian OpenSSL PRNG vulnerability (published in May 2008) was
caused by commenting a line that ,seemed” unnecessary by the
Debian developers

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 65

G Coding conventions (2)

Enabling Grids for E-sciencE

Excellent function specification (glexec)

[*]
* Check a string for the occurence of certain
characters. This is specifically for

* the checking of environment variables that make it to
a log file. The newline

* character \n' is not allowed to appear in it as it
allows reformatting the

* Intended layout of the log file and may cause a

potential exploitation.
*

* \param variable Variable to be checked
*

* \return true, if the variable is found to be sane,
false otherwise.

*
*/
int glexec_sane_variable(const char *variable)

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 66

- Coding conventions (3)

Enabling Grids for E-sciencE

» Excellent comments within the code (glexec)

I/l Check to see if the source proxy is not a link. Make
sure first to check

Il this, otherwise we'll check permissions etc. of the
link which will

/[fail for the wrong reasons.
if (S_ISLNK(stat_proxy->st_mode)) {

glexec log(GLEXEC LOG_ ERROR, "One of the input proxies
(%s) is a link and therefore rejected.\n", proxy_file);

return GLEXEC_PROXY _IS_LINK:
}

* On the other hand, avoid leaving old (commented) code
/*
xacml_resource_attribute tra;
const char *resattr[2];
*/
(EGEEIINFSORI222667 EGEE09 Conference - Systems and Software Securiy S ession, 21,09.2009 67

We need more information...

lllllllllllllllll -sciencE

e ee More Iinformation

Grids for E-sciencE

E Secure Programming for Lmu.,.

Table of Contents
1. Introduction

= A This is the beginning of the contents

2.1.1. Unix
2.1.2. Free Software Foundation

T of David A. Wheeler's "Secure

2.1.5. Comparine L inwx and Unix
2.2. Securitv Principles

IR Programming for Linux and Unix

2.4.2. Why Closine the Source Dossn't Halt Attacks

243 Why Keeping Vulnerabilities Secrat Dossn't Make Them Go Away 1
2:4.4. How OS5FS Couvnters Trojan Horsss H OWt O
245 Other Advantares

246 Bottom Line

2.5. Twpes of Secure Prosrams
2.6. Paranoia is 3 Virtve

s An excellent book, especially for the

2.5 Other Sources of Sacuritv Information

2.10. Document Conventions
3. Spmmarv of Linux and Unix Securitv Features eve O p e rS

3.1. Procssses
3.1.1. Proces: Attributes
3.1.2. POSIY Capabilities

e How many issues we were not able

3.2.1. Filesvstem Object Attributes
3.2.2. Creaticn Time Initial Values

3.2.3. Chaneine Aecess Control Attributes . I?
34 Do A Con A {0 mention
3.2.5. Filesvstem Hisrarchy -
33 Svstem VIPC
3.4, Soclcets and Network €

S We need more links...

3.7. Dvnamically Linked Libraries

Security E ions for Unix-like Svatems

4. Becoritv irements
4.1. Commeon Criteria Introduction
4.2, Securitv Envi and Objectives
4.3, Securitv Functionalitv Reguirements
4.4 EBecoritv A Measure Reguirements
3. Validate All Input
5.1. Command lin=
5.2. Environment Variables
5.2.1. Some Envi Variables ars T
5.2.2. Environment Variable Storase Format is Danserons
5.2.3. The Solvtion - Extract 2nd Erase
3.2.4. Don't Let Users 8ot Their Own Envi WVariables
3 3. Fﬂa Descriptors

lication Inputs (E iathy CGI Scripts)

.8.1. How Locales ars Selectzd
2. Locale Support Mechanisms
3. Lezal Valpes
5.8.4. Bottom Line
5.9 Character Encoding
1.§ duction to Character Encodine

2. Introduetion to UTE.B EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 69

5.3 UTF-8 Securitv lssues

Lpick

CHEE Coding security

Enabling Grids for E-sciencE

http://www.dwheeler.com/secure-programs
David A. Wheeler's book as PDF and HTML

http://www.securecoding.cert.org

A website containing many interesting information on
secure coding in general and C, C++ and Java related
Issues in detail
https://buildsecurityin.us -cert.gov/daisy/bsi -
rules

Per-function check: the Coding Rules section contains
about 100 descriptions of C and C++ functions
(including Windows APIs) with their caveats

https://edms.cern.ch/file/926685/1/EGEE_best_
practices.pdf

EGEE security best practices prepared by our team ;)

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 70

G Web application security

Enabling Grids for E-sciencE

http://www.owasp.org
Open Web Application Security Project
An exhaustive source of information, e.g.:
OWASP Code Review Project
WebGoat Project
http://phpsec.org/projects/guide
An online guidance prepared by PHP Security Consortium for
securing PHP-based applications

http://ha.ckers.org/xss.html

XSS Cheat Sheet — numerous ways to bypass sanitization (a
,2hegative” vision, check OWASP for the positive one

http://code.google.com/p/browsersec

Not quite for the developers, but a great review of browser
security by Michat "lcamtuf” Zalewski

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 71

e ee Questions or comments

Enabling Grids for E-sciencE

Thank you for your attention!

EGEE-III INFSO-RI-222667 EGEE’09 Conference — Systems and Software Security S ession, 21.09.2009 72

