
Enabling Grids for E-sciencE

Systems and Software
Security Session –

Writing Secure Code Not

EGEE-III INFSO-RI-222667

www.eu-egee.org

EGEE and gLite are registered trademarks

Being a Security Specialist

Gerard Frankowski
Poznań Supercomputing and Networking Center

Enabling Grids for E-sciencE

Agenda

• Secure coding – introduction
– Why the code is insecure?
– Why the developers should care?

• Input data sanitization
• Coding errors: examples and avoiding

– Standalone applications

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 2

– Web applications

• Other general issues
– Handling sensitive data in memory
– Dangerous functions and APIs
– Coding conventions and comments

• Where to find more information?
• Questions

Enabling Grids for E-sciencE

Why the developer should care?

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 3

Enabling Grids for E-sciencE

Why the code is insecure?

• We are not robots, we do mistakes
– Let the software be 30 000 KLOC (30 millions lines) long

� Windows 2000 was of that size

– According to the Carnegie Mellon University’s CyLab, 1 KLOC
(1000 lines of code) contains up to 30 software bugs

– Let’s make some further assumptions:

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 4

� 20 software bugs (of all kinds) in 1 KLOC

� only 5% of them are security-related

� only 1% of the latter give system access

– 30 000 000 * 0.02 * 0.05 * 0.01 = 300
– The attacker needs to find only 1 out of those 300…

Enabling Grids for E-sciencE

Why secure code does matter?

• It is the administrator who should take care on the
system security, isn’t it?
– Appropriate server configuration
– Firewall policies…

22

123

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 5

666

123

8080

http://somewhere.pl?para

m=<script>alert(document.

cookie)</script>

• The response must be „defence in-depth”
– We defend on every level

80

http://somewhere.pl?para

m=<script>alert(document.

cookie)</script>

Enabling Grids for E-sciencE

Are the software bugs expensive?

• NIST Report ”The Economic Impacts of Inadequate
Infrastructure for Software Testing” (2002)
– http://www.nist.gov/director/prog-ofc/report02-3.pdf
– This is more general, not only security bugs

� But they are bugs as well…

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 6

Enabling Grids for E-sciencE

Again the NIST report…

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 7

Enabling Grids for E-sciencE

Should the developer be
a security specialist then?

• Obviously not!
– Everyone has got his or her own job
– We do not expect the developers to learn about network attacks

or exploiting

• But we think we can expect the developers…
– To know the basics of secure coding (including simple examples

of attacks for better understanding)

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 8

of attacks for better understanding)
– To apply secure coding practices in their favourite programming

language (or the one they have to work with…)
– To create well-commented and easy-to-understand code
– To apply simple tools detecting the most obvious security flaws

• …and we would like to help by sharing our knowledge
and experience!
– Last but not least, a „secure coder” will be more competitive ;)

Enabling Grids for E-sciencE

Several spectacular software bugs

• Therac 25 (1980’s)
– Radiation overdosing, at least 5 deaths

• Research on Mars
– Mars Global Surveyor (2006)
– Mars Exploitation Rover (2004)
– Mars Climate Orbiter (1999) – price: 125 mln USD

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 9

• Northeast Blackout (2003)
– Price: 7-10 mld USD

• Ariane 5 Explosion (1997)
– Price: 500 mln USD

• More information:
– http://computingcases.org/case_materials/therac/therac
– http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html

Enabling Grids for E-sciencE

But if the software
will never be perfect…

• Why we should care?
• Security economy!

– The economic factors become more meaningful
for everyone, including hackers

– Your system is in danger when

Attack cost <= Value of your data

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 10

Attack cost <= Value of your data

– Therefore we should make the hacker’s goal
more difficult
� Better security systems

� Less software errors

Enabling Grids for E-sciencE

Distrusting input data

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 11

Enabling Grids for E-sciencE

The code and the application

• The code builds programs
(applications)
– The computers are based on von Neumann

model
– They store the application code and its data

in the same structure (memory)
– Therefore the program may affect its own

J. von Neumann
(1903-1957)

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 12

– Therefore the program may affect its own
code

• A computer program accepts data,
processes it and returns result (output)
– It should conform to the program

specification

• The program input is the most crucial
from the security point of view

Input

Output

Program

Enabling Grids for E-sciencE

Input data sanitization

• This is the most meaningful sentence I would like y ou
to remember today:

The most significant reason
of software security bugs

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 13

of software security bugs
is a lack of (or insufficient)

sanitization of the input data
passed to the program

Enabling Grids for E-sciencE

However, input data may mean:

• Application input parameters…
– The most obvious way of passing data to the program
– For standalone applications: the command line parameters
– For Web applications: POST/GET data

• … and also other (many) data sources!
– Environment variables

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 14

– Configuration files
– Output from the internal database (!)
– Authentication data (e.g. X509 certificate DN)
– The content of received network packets (including the data

returned from external services)
– The data entered interactively by the user
– For Web application: cookies
– …

Enabling Grids for E-sciencE

I just get the filtered data…

• Sometimes we write an internal function,
accepting some data that already “should have
been” filtered
– Our internal function may be copied to another module

that does not assure sufficient sanitization
– The function may work on another OS/hardware under

different conditions

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 15

different conditions
� It was one of the causes of the Therac 25 incident

– Someone might reuse only a part of the function, not
aware about sanitizing issues

• Indeed, it makes no sense that every single
function has its own sanitization mechanism – but
at least remember the problem
– NULL pointers may cause the most trouble

Enabling Grids for E-sciencE

Bugs in standalone applications

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 16

Enabling Grids for E-sciencE

An overview

• C/C++ applications
– Buffer overflow + real example
– Race condition (TOCTOU) + real example
– Memory leaks + real example
– Lack of verifying the return value + real example

• All examples are taken from PSNC Security Team
work on gLite software or EGEE monitoring

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 17

work on gLite software or EGEE monitoring
services
– Well… almost all – but the others are worth mentioning!

Enabling Grids for E-sciencE

Buffer overflow (1)

• Introduction
– Beware of statically sized buffers!
– The stack stores local variables (incl. buffers) next to the

return address
– Copying too much data to the buffer will overwrite the

return address with an arbitrary value
� Random data lead to memory protection fault

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 18

� Random data lead to memory protection fault

� Specifically crafted data compose an exploit (a jump to the
code specified by the attacker)

– Especially root and suid root applications are dangerous

• There are several kinds of buffer overflows
– On the stack (static buffers)
– On the heap (dynamic buffers)

Enabling Grids for E-sciencE

Buffer overflow (2)

• Example 1
3899: u_signed64 fileid;

3905: char logbuf[CA_MAXPATHLEN+8];

3907: char path[CA_MAXPATHLEN+1];

3925: sprintf (logbuf, "lstat %s %s",
u64tostr(fileid, tmpbuf, 0), path);

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 19

• Explanation
– The maximum length of the string generated by sprintf() is:

6 + 20 + 1 + CA_MAXPATHLEN = CA_MAXPATHLEN + 27 bytes
– The logbuf buffer is able to contain CA_MAXPATHLEN + 8 bytes
– It is possible to overwrite up to 19 bytes in memory (on the stack)

Enabling Grids for E-sciencE

Buffer overflow (3)

• Example 2
line_buf = malloc (sizeof (char) * 1024)

...

for (i = 0; i < bufsize; i++, j++)

{

if (buffer[i] == '\n')

...

else

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 20

else

{

line_buf[j] = buffer[i];

}

}

• Explanation
– line_buf may store up to 1024 bytes (1023 + ‘\0’)
– bufsize denotes the length of the config file (max. 100000 bytes)
– A line longer than 1024 bytes will cause heap overflow!

Enabling Grids for E-sciencE

Buffer overflow (4)

• Avoiding buffer overflows
– Be extremely careful when operating on local, statically sized

buffers
– Always calculate the maximum possible size of the buffer

contents
� Consider dynamic allocation of the buffer (it slows the application!)

– Avoid using dangerous functions like strcpy(), gets()

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 21

– Avoid using dangerous functions like strcpy(), gets()
– Sanitize the input data

� Always assume that someone will craft the data, e.g. a
configuration file with lines longer than 1024 bytes

– Always check if your strings are NULL-terminated
� Consider explicit NULL-termination of all strings, even those that

should be handled by library functions

Enabling Grids for E-sciencE

Buffer overflow (5)

• The „non-developer” countermeasures
– Consider using StackGuard, ProPolice, Libsafe, …
– Consider using /GS compiler option (MS)
– Executable Stack Protection (PAX, ExecShield, Openwall)
– MS: Data Execution Prevention (BufferShield, StackDefender)
– Address Space Layout Randomization

• Please remember that:

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 22

• Please remember that:
– They have their limitations and/or cost
– They should complement, not replace secure coding

• Or maybe use another programming language?

Enabling Grids for E-sciencE

Race condition

• Introduction
– Remember that the adjacent lines of source code may not be

executed just one after another
� The processor time may be switched to another task

� Something might happen before it is returned to our code

– It happens that the operation seeming to be atomic, is not!
– Take a special care when

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 23

– Take a special care when
� First verifying the files and then opening them

� Creating temporary files

� Multiple reading the same external data, e.g. environment variables

Enabling Grids for E-sciencE

Race condition (2)

• Example

205: if (getenv(GLITE_METADATA_SD_ENV))

206: ret = _glite_catalog_init_endpoint(ctx,
metadata_namespaces,

207: getenv(GLITE_METADATA_SD_ENV));

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 24

• Explanation
– If, between executing lines 205 and 207, an attacker modifies the

contents of the GLITE_METADATA_SD_ENV variable (e.g.
undefines it), _glite_catalog_init_endpoint() may receive
malicious data (e.g. unexpected NULL)

– The compiler should optimize the calls, but there is no guarantee

Enabling Grids for E-sciencE

Race condition (2)

• Example 2 (non-EGEE one):

if (access(strFileName, R_OK) != 0)

{

exit(1);

}

fd = open(strFileName, O_RDONLY);

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 25

// process the fd...

• Explanation
– suid root applications are especially in danger
– Between the calls to access() and open() the attacker has got a

chance to make a symlink named strFileName and pointing to a
sensitive system file, like /etc/passwd

– He or she will be able to operate on the sensitive file

Enabling Grids for E-sciencE

Race condition (2)

• Avoiding race codintion:

char* strEnv = strdup(getenv(GLITE_METADATA_SD_ENV)) ;

if (strEnv)

ret = _glite_catalog_init_endpoint(ctx,

metadata_namespaces, strEnv);

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 26

/*first drop privileges!*/

FILE hFile = fopen(strFileName, “r”);

if (hFile)

//process the file strFileName...

Enabling Grids for E-sciencE

Memory / resource leaks

• Introduction
– A memory leak occurs when a dynamically allocated memory

block is not freed
– A resource leak occurs when a sort of resource (e.g. file handle)

is allocated but not freed
� In general, memory leak is a resource leak as well, but it makes

sense to distinguish this class of bugs

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 27

sense to distinguish this class of bugs

– Leaks that occur inside loops are especially dangerous
� Even tiny leaks, repeated numerously, may exhaust the system

resources

• Threats
– Significant loss on application and system efficiency
– In extreme cases – DoS on the application and system

Enabling Grids for E-sciencE

Memory / resource leaks (2)

• Memory leak example:
394: buf = malloc (sizeof (char) * 256);

399: if (! subject_dn)

400: {

401: scas_log (0, "%s: Error: No subject DN found,
this

402: element is mandatory \ n", logstr);

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 28

402: element is mandatory \ n", logstr);

403: return 1;

404: }

• Explanation
– If the subject_dn is NULL, the function returns without freeing buf

(256 characters)
– If an attacker is able to call this function with malicious data (no

subject_dn), may consume all memory available to the process)

Enabling Grids for E-sciencE

Memory / resource leaks (3)

• Resource leak example:
try {

InputStream inp = null;
...

if (loader != null) {
inp = loader.getResourceAsStream(VERSION_PROPERTIES_ FILE);

} else {
inp =

ClassLoader.getSystemResourceAsStream (VERSION_PROPERTIES_FILE);

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 29

ClassLoader.getSystemResourceAsStream (VERSION_PROPERTIES_FILE);
}
props.load(new BufferedInputStream(inp));
inp.close();

m_log.info("Configuration file '" + VERSION_PROPERT IES_FILE +
"' loaded");

} catch (IOException e) {
m_log.error("Error loading config file " +

VERSION_PROPERTIES_FILE + ": " + e);
}

Enabling Grids for E-sciencE

Memory / resource leaks (4)

• Resource leak example – explanation
– The method creates an IO stream object (inp) for temporary use
– Normally, it calls the close() method of the object
– If an exception occurs before call to inp.close(), the IO stream

object will not be released

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 30

Enabling Grids for E-sciencE

Memory / resource leaks (5)

• Avoiding leaks
– Free dynamically allocated resources on each return path from the

function
– Use finally{…} or alike mechanism to assure that all allocated

resources are released
– C/C++: do not mix malloc()/delete and new/free()
– Be especially careful with the functions that return dynamically

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 31

– Be especially careful with the functions that return dynamically
allocated buffers or structures
� Remember to free the structures as soon as they are unnecessary

� Comment that appropriately to ease the live of your successors

– Test the debug version for memory/resoure leaks
� Own scripts / macros

� Dedicated tools: BoundsChecker, Purify, Insure++, Valgrind

Enabling Grids for E-sciencE

Verifying return values

• Usually the functions return some value
– Specific return values denote an error

• It happens that the return values are not always verified
– Especially for functions returning pointers where NULL means an

error

• The problem concerns both

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 32

– Library functions (malloc, strdup) – more will be said in
“Dangerous Functions” part

– Custom functions implemented by the developers

• Threats
– Unexpected application behavior
– Application crash (NULL pointer dereference)

Enabling Grids for E-sciencE

Verifying return values (2)

• Example 1

234: routem = (struct routem *)

235: malloc(maxfd * sizeof(struct routem));

236: for (i = 0;i < maxfd;++i) {

237: (routem + i)->r_where = invalid;

238: (routem + i)->r_nl = 1;

239: }

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 33

239: }

• Explanation
– If the memory allocation of routem structure fails, the line 237 will

cause an application crash

Enabling Grids for E-sciencE

Verifying return values (3)

• Example 2

402: E->AVal[ATok] = realloc(

403: E->AVal[ATok],

404: len);

405: if (E->AVal[ATok] == NULL)

406: {

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 34

407: return(FAILURE);

408: }

• Explanation
– realloc(), if unable to increase the E->Aval[ATok] buffer , will

return NULL but will NOT deallocate the previous one!
– As NULL has just been assigned to E->Aval[ATok], it is

impossible to deallocate the old buffer by hand

Enabling Grids for E-sciencE

Verifying return values (4)

• Recommendations
– Always verify the return values of functions like malloc()/calloc()/

realloc()/strdup() (and your own) and react appropriately
– Call realloc() in the way similar to the one below:

char *buffer, *temp;

int new_size;

buffer = malloc (1024);

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 35

buffer = malloc (1024);

if (buffer == NULL) exit(1);

new_size=2048;

temp = realloc(buffer, new_size);

if (temp == NULL) {

free(buffer);

...

}

else buffer=temp;

Enabling Grids for E-sciencE

Bugs in Web applications

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 36

Enabling Grids for E-sciencE

An overview

• Web applications (PHP and Java-based)
– First some threatening statistics…
– XSS + real examples
– SQL Injection + real examples
– Remote Code Execution + real examples
– Directory Traversal + real examples

• All examples are taken from PSNC Security Team

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 37

• All examples are taken from PSNC Security Team
work on gLite software or EGEE monitoring
services
– Well… almost all – but the others are worth mentioning!

Enabling Grids for E-sciencE

First some statistics…

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 38

Source: http://webappsec.org (2007)

Enabling Grids for E-sciencE

XSS

• Introduction
– Cross-Site Scripting is based on injection of the active (e.g.

JavaScript) code in the content of a Web page
� The victim displays a Web page, therefore executing the script in the

context of his or her browser

– The cause is a lack of (or insufficient) data filtering, especially
those sent via GET and POST methods

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 39

those sent via GET and POST methods
– Threats

� Many people think there is no much harm, but…

� Information disclosure (cookies)

� Identity spoofing

� Sophisticated attacks (e.g. scanning remote networks)

• Remember that client-side data sanitization (althoug h
may be useful) is not enough!
– The above is valid for all kinds of Web application bugs

Enabling Grids for E-sciencE

XSS (2)

• Example 1

$organization = $_GET['organization'];

$go = $_GET['go'];

...

else if($go==15 or $go==16)

{

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 40

buttonback();

echo"<h2>History for ".$organization."!!";

}

• Explanation
– Passing malicious value in the URL might cause stealing cookies

or invoking malicious activities
– PoC:http://.../banner.php?go=15&organization=%3Cscript%3Ealert

(document.cookie)%3C/script%3E

Enabling Grids for E-sciencE

XSS (3)

• Example 2

String[] cols =
m_schemaBrowser.getColumnStrings(tableName);

if (cols != null) {

...

} else {

buffer.append (" table name " + tableName +

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 41

buffer.append (" table name " + tableName +
"");

buffer.append("cannot be found in R-GMA.");

}

• Explanation
– The value entered by the user in the URL (tableName) is directly

attached to the final HTML code
– PoC: http://<hostname>:8443/R-GMA/BrowserServlet/

getQueryForm.do?tableName=<script>alert(1)</script>

Enabling Grids for E-sciencE

XSS (4)

• Example 3

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 42

Enabling Grids for E-sciencE

XSS (5)

• In order to join a VO a user had to fill the shown form
– The contents of the „Family name”, „Given name” and „Institute”

fields were not sanitized
– After an e-mail confirmation, the new user’s request appeared in

„Request Handling” menu of the administrator view
– Clicking on a pending request displayed the „Details of requests”

page with the contents of the field above not sanitized

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 43

page with the contents of the field above not sanitized

• Account management operations were insufficiently
protected
– Access to operations via “hidden” URLs

• XSS attack on the form – removing an account
– Family Name:

Miga<script>document.location="/voms/blazej/we
bui/request/admin/delete.do?reqid=25";</script>

Enabling Grids for E-sciencE

XSS (6)

• Avoiding XSS
– Never accept the data entered by the user without sanitization!

� Especially distrust GET and HEAD variables

– Be careful when building the HTML code using local database
output, environment variables, X.509 certificates content etc.

– Use regular expressions and/or functions like addslashes() or
htmlspecialchars() for PHP

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 44

htmlspecialchars() for PHP
� Disallow special characters like < > ; where just text is expected

� Whitelist and regular expressions are a good approach

– Use a simple scanner for detecting XSS (one will be described
later)

– Please note that PHP magic quotes feature is becoming
deprecated and relying on it is discouraged!

Enabling Grids for E-sciencE

XSS (7)

• Avoiding XSS - examples

$organization =
htmlspecialchars($_GET['organization']);

$organization = strip_tags($_GET['organization']);

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 45

$month = $_GET['month'];

if ($month == '1') $month='January';

elseif ($month == '2') $month='February';

...

elseif ($month == '12') $month='December';

else

//error...

Enabling Grids for E-sciencE

SQL Injection

• Introduction
– SQL Injection is based on injection of arbitrary SQL code to an

SQL query passed to the database by a Web application
� An attacker uses malicious parameters and executes arbitrary query

– The cause is a lack of (or insufficient) data filtering, especially
those sent via GET and POST methods

– An attacker may see the database output directly or indirectly

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 46

– An attacker may see the database output directly or indirectly
(blind SQL Injection)

– Threats
� Information disclosure (database structure and contents)

� Modifying the database contents

� Deleting the database contents or the database itself

� Remote code execution (via stored procedures, xp_cmdshell() etc.)

Enabling Grids for E-sciencE

SQL Injection (2)

• Example

$sql="select \"Group\",\"JobStatus\",sum(\"NumJobs\ ")
from \"getSiteVoStNumJobs\"(".($t_end-
$value).",".$t_end.",". $_GET["filter1"] .") GROUP BY
\"Group\",\"JobStatus\"order by
\"Group\",\"JobStatus\"";

//echo $ sql ."< br >";

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 47

//echo $ sql ."< br >";

$rs = pg_query ($conn, $sql);

• Explanation
– The value entered by the user in the URL (filter1) is directly

attached to the database query
– PoC:

http://.../gridice/test/jobs.php?filter1=11)%20group%20by%20"Gro
up","JobStatus"%20union%20select%20NULL,NULL,NULL;--

Enabling Grids for E-sciencE

SQL Injection (3)

• Example 2 – non-EGEE one ;)

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 48

Source: http://xkcd.com/327

Enabling Grids for E-sciencE

SQL Injection (4)

• Avoiding
– Basically, same as for XSS: insufficient (or a lack of) input data

sanitization is the main problem
– Using built-in mechanisms like parametrized queries instead of

building query with string concatenation of user parameters
– Using stored procedures

• Non-developer countermeasures

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 49

• Non-developer countermeasures
– Applying least privileges principle for credentials definition
– Appropriate structure of database

• Please remember that the data you take from the loc al
database also should be sanitized!

Enabling Grids for E-sciencE

Remote Code Execution

• Introduction
– Sometimes Web application (e.g. PHP-based) use function

calls that execute system commands (passthru, exec, system)
� You should never allow your users to define their own arbitrary

commands

– The goal of the attacker is to craft the input data to be able to
insert arbitrary system commands to be executed by the

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 50

insert arbitrary system commands to be executed by the
scripting engine
� “A PHP console”

� The commands are usually executed with the Web server
credentials

– Please do not confuse this chapter with executing arbitrary
code as a result of exploitation of e.g. a buffer overflow

Enabling Grids for E-sciencE

Remote Code Execution (2)

• Example 1

<?php

ip=$_GET['ip']

echo "Pinging host $ip"

passthru (ping -c 4 $ip);

?>

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 51

• Explanation
– The ip parameter is not sanitized
– So why not apply a Unix shell meta-character “;”?
– PoC:http://.../jobs/ping.php?ip=10.0.0.1;cat%20etc/passwd
– Another (less critical) issue: why my Web server should offer

remote scanning facilities to anyone?
– Ping of Death: http://.../jobs/ping.php?ip=www.nasa.gov%20-

c%209999%20-s%2065510

Enabling Grids for E-sciencE

Remote Code Execution (3)

• Example 2 (non-EGEE one, but worth mentioning)

• An HPC center website
– Users requesting for a computational account are required to

send their CV, the list of publications could be also presented
– The uploaded files were put in the upload subdirectory with a

random name
– The user was able to see his uploads on his or her account

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 52

– The user was able to see his uploads on his or her account
page (by referring to them directly by URL)

– The extensions of the uploads were not verified
– So why not upload a simple PHP script and call it a bit later?

<? $cmd = $_GET['c'];

echo passthru("$cmd"); ?>

– http://.../uploads/0f938...231ab94e8.php?c=cat%20/etc/passwd

Enabling Grids for E-sciencE

Remote Code Execution (4)

• Avoiding
– Analyze twice if this functionality is really necessary! Offer only

as little functionality as required
– Never allow the user to define his or her own commands, only

specific parameters may be accepted
– The parameters should not be just copied or concatenated

� Try to use whitelisting for enumerated values and regular

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 53

� Try to use whitelisting for enumerated values and regular
expressions for other

� Remember not to relay on the client-side control!

– Assure that all shell meta-characters are filtered out
� Use PHP escapeshellcmd function

• Non-developer countermeasures
– (PHP) use disable_functions in the initialization file to block

functions like passthru, exec, system, shell_exec (will disable
also the backtick operator (`)

Enabling Grids for E-sciencE

Directory Traversal

• Introduction
– Jumping out of the Web root directory, especially by providing

../ (directory up) characters in a parameter that builds a
filesystem path

– Important information may be disclosed, e.g. the contents of
the system files
� Usually the files are read with the Web server credentials

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 54

� Usually the files are read with the Web server credentials

– As usually, the causes and avoiding are associated with data
filtering
� Never do something like:

$content=$_GET[“content”];

...

$file="content/".$content.".html";

readfile($file);

� PoC: http://...vuln.html?content=../../../../../../etc/passwd%00

Enabling Grids for E-sciencE

Directory Traversal (2)

• Example
$fileID = $_REQUEST['fileID'];

...

/* read all of the content of the file*/

$fullcontent = file ($tmpdir . $fileID);

– $fullcontent is then processed and displayed on the page
– PoC:

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 55

– PoC:
� 1. Capture the request: GET

/ldap/php/tree.php?actionID=expand&fileID=tmp/LEOO331mUA&ro
w=2&... (tmp/LEOO331mUA name chosen by the application)

� 2. Craft the request to GET
/ldap/php/tree.php?actionID=expand&fileID=../../../../../../etc/passwd
&row=2&...

� 3. See the contents of the file:
http://monitoring.egee.man.poznan.pl/ldap/php/tmp/LEOO331mUA

Enabling Grids for E-sciencE

Other general issues

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 56

Enabling Grids for E-sciencE

Handling sensitive data

• Many applications (e.g. HYDRA) have to process
sensitive data
– E.g. crypto keys, initialization vectors

• These data must be stored somewhere in memory
– Another process may read this memory area
– The sensitive data may be dumped to disk

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 57

– If the developer is untidy, the data are stored in multiple (too
many) memory areas

– After the data are no longer necessary, must be deleted securely
and as soon as possible

• Memory disclosure attacks are not trivial, but stil l
possible
– Read more e.g. at http://www.cs.utsa.edu/~shxu/dsn07.pdf

Enabling Grids for E-sciencE

Handling sensitive data (2)

• HYDRA issues reported
– In general, the sensitive data were treated only as solid as other

(should be devoted more care)
– Neither memset() nor custom procedures were applied to clear

the buffers before deallocation
– In several cases clearing or finalization functions applied to the

sensitive data might be called a bit earlier

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 58

sensitive data might be called a bit earlier
– The keys/initialization vectors were duplicated, but not many

times and it could be justified (bin and hex form of the key)

• We feel that this issue is too rarely addressed

Enabling Grids for E-sciencE

Handling sensitive data (3)

• Avoiding the problems
– Secure data deletion

� memset() may be optimized by the compiler

� implement ”secure memset”:

void* secure_memset(void *v, int c, size_t n)

{

volatile char *p = v;

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 59

volatile char *p = v;

while (n--)

*p++ = c;

return v;

}

– Consider using mlock() and/or mlockall() functions
� Require root privileges

� Lower the program efficiency

Enabling Grids for E-sciencE

Handling sensitive data (4)

• Avoiding the problems (cont.)
– Be extremely careful with realloc()
– Minimize exposure

� The number of duplications

� The time between initialization and deletion

– Use appropriate data types for storing sensitive data (should be
store in mutable locations where they may be overwritten on

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 60

store in mutable locations where they may be overwritten on
demand)
� e.g. in Java the char[] type should be rather used than String.

– Non-developer countermeasures:
� Disable core dumps e.g. via ulimit

� grsecurity: set CONFIG_PAX_MEMORY_SANITIZE

� Avoid hibernation

Enabling Grids for E-sciencE

Dangerous functions

• Every programming language hast its own list of
„insecure” functions
– C should be especially mentioned – it gives more flexibility but

with more potential errors

• The dangerous functions should be used with care
– Sometimes it is not possible just to avoid them, they are

necessary or helpful

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 61

necessary or helpful

• During our tests in EGEE we addresed the following C
functions the most often:
– strcpy/strncpy
– malloc/calloc/realloc
– strdup
– sprintf/snprintf/vsnprintf

Enabling Grids for E-sciencE

Dangerous functions (2)

• strcpy/strncpy
– strcpy should never be used (and actually is not ☺)
– strncpy is much better but does not repair everything
– The destination buffer size should still be calculated properly
– In some implementations, when the buffer will be exactly filled,

will not be NULL-terminated
� Always add 1 character for the terminating NULL

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 62

� Always add 1 character for the terminating NULL

– Be careful with multibyte characters!

• strdup
– Remember that this function allocates memory that should be

freed to avoid memory leaks
– If the memory allocation fails, the function returns NULL, do not

dereference this value without verifiying

Enabling Grids for E-sciencE

Dangerous functions (3)

• malloc/calloc
– Memory allocation may fail, you must properly handle such

cases
– Remember to free the allocated memory on all return paths

• realloc
– The above rules apply as well
– Additionally remember that the function does not clear the old

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 63

– Additionally remember that the function does not clear the old
buffer (significant for sensitive data handling)

char* newptr = malloc(NEW_SIZE);

memset(newptr, 0, NEW_SIZE);

memcpy(newptr, ptr, min(OLD_SIZE, NEW_SIZE));

secureMemset(ptr, 0, OLD_SIZE); /*not just memset() */

ptr = newptr;

Enabling Grids for E-sciencE

Dangerous functions (4)

• sprintf/snprintf/vsnprintf
– Remember, what these functions return!

� The return value is NOT the number of bytes actually written to the
destination buffer

� It is the number of characters that would have been written to the
destination buffer if it was large enough to contain the whole
formatted string

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 64

message_body_length =
vsnprintf(buf+message_prefix_length,
GLEXEC_MAX_LOG_LINE-message_prefix_length, fmt, ap) ;

� Better:
int max_len = GLEXEC_MAX_LOG_LINE-
message_prefix_length;

int len = vsnprintf(buf+message_prefix_length,
max_len, fmt, ap);

message_body_length = (len > max_len ? max_len : len);

Enabling Grids for E-sciencE

Coding conventions

• Any convention that produces solid code is good ;)
– Although there are ones that make the code easier to read

• Comments
– Function specifications

� What does it do?

� Input and output parameters

� Caveats

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 65

� Caveats

– Comments through the code are welcome as well

• Remember that someone else may have to read and/or
modify the code
– A security specialist will make more accurate opinion
– It will be more difficult for another developer to make a mistake

� Debian OpenSSL PRNG vulnerability (published in May 2008) was
caused by commenting a line that „seemed” unnecessary by the
Debian developers

Enabling Grids for E-sciencE

Coding conventions (2)

• Excellent function specification (glexec)

/*!
* Check a string for the occurence of certain

characters. This is specifically for
* the checking of environment variables that make it to

a log file. The newline
* character '\n' is not allowed to appear in it as it

allows reformatting the

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 66

allows reformatting the
* intended layout of the log file and may cause a

potential exploitation.
*
* \param variable Variable to be checked
*
* \return true, if the variable is found to be sane,

false otherwise.
*
*/

int glexec_sane_variable(const char *variable)

Enabling Grids for E-sciencE

Coding conventions (3)

• Excellent comments within the code (glexec)
// Check to see if the source proxy is not a link. Make
sure first to check

// this, otherwise we'll check permissions etc. of the
link which will

// fail for the wrong reasons.

if (S_ISLNK(stat_proxy->st_mode)) {

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 67

glexec_log(GLEXEC_LOG_ERROR, "One of the input proxies
(%s) is a link and therefore rejected.\n", proxy_file);

return GLEXEC_PROXY_IS_LINK;

}

• On the other hand, avoid leaving old (commented) code
/*

xacml_resource_attribute_t ra;

const char *resattr[2];

*/

Enabling Grids for E-sciencE

We need more information…

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 68

Enabling Grids for E-sciencE

More information

• This is the beginning of the contents
of David A. Wheeler’s ”Secure
Programming for Linux and Unix
Howto”
– An excellent book, especially for the

developers

• How many issues we were not able

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 69

• How many issues we were not able
to mention?
– We need more links…

Enabling Grids for E-sciencE

Coding security

• http://www.dwheeler.com/secure-programs
– David A. Wheeler’s book as PDF and HTML

• http://www.securecoding.cert.org
– A website containing many interesting information on

secure coding in general and C, C++ and Java related
issues in detail

• https://buildsecurityin.us -cert.gov/daisy/bsi -

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 70

• https://buildsecurityin.us -cert.gov/daisy/bsi -
rules
– Per-function check: the Coding Rules section contains

about 100 descriptions of C and C++ functions
(including Windows APIs) with their caveats

• https://edms.cern.ch/file/926685/1/EGEE_best_
practices.pdf
– EGEE security best practices prepared by our team ;)

Enabling Grids for E-sciencE

Web application security

• http://www.owasp.org
– Open Web Application Security Project
– An exhaustive source of information, e.g.:

� OWASP Code Review Project

� WebGoat Project

• http://phpsec.org/projects/guide
– An online guidance prepared by PHP Security Consortium for

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 71

– An online guidance prepared by PHP Security Consortium for
securing PHP-based applications

• http://ha.ckers.org/xss.html
– XSS Cheat Sheet – numerous ways to bypass sanitization (a

„negative” vision, check OWASP for the positive one

• http://code.google.com/p/browsersec
– Not quite for the developers, but a great review of browser

security by Michał ”lcamtuf” Zalewski

Enabling Grids for E-sciencE

Questions or comments

EGEE-III INFSO-RI-222667 EGEE’09 Conference – Systems and Software Security S ession, 21.09.2009 72

Thank you for your attention!

