

6th Accelerator Reliability Workshop

Day 2 – Session 05 – Infrastructures

"LHC Cryogenic Infrastructure Reliability, towards High Availability"

Laurent Delprat & Frédéric Ferrand CERN, Geneva, Switzerland

laurent.delprat@cern.ch frederic.ferrand@cern.ch

CERN

Basic functional analysis and critical failure modes

Availability definition and main downtime origins

<u>Conclusion</u> – Perspectives

LHC Cryogenic System Architecture

> circumference → ~ 27 km,
> constructed at ~ 100 m underground,
> the accelerator ring inclination is 1.4 %

LHC cryogenics: 8 x 18 kW @ 4.5 K 1800 sc magnets 24 km & 20 kW @ 1.8 K 37 000 tons @ 1.9 K 130 tons of helium inventory

LHC Cryogenics Operation Timeline

*half-cell: LHC cryogenic half-cell of 53 m housing (among others) one local beam-screen cooling loop

LHC Cryogenic System Configurations

laurent.delprat@cern.ch frederic.ferrand@cern.ch

Basic Functional Analysis

Critical Failure Modes

CRITICAL means a potential unavailability of cryogenics for LHC for **weeks or months**: breakdown of a critical equipment without alternative scenario.

MEDIUM & HIGH means that failure is likely to happen with a potential unavailability of cryogenics for LHC for hours or days.

LOW means that risk of failure is acceptable and will have no or very limited impact on LHC.

All identified failure modes shall raise this level after implementation of a mitigation plan :

- Operation Back-up Plan
- Critical spare parts
- Engineering change
- Maintenance strategy
- Detectability improvement

52 compressors for 4.5 K Refrigerators

Screw Compressors	
Technology	Volumetric compression Industrial standard adapted to helium
Dependencies	Electrical supply Water Cooling Pressurized Oil Lubrication
Considered Failures Modes & Expected Patterns	1. Bearings/mechanical breakdown
Failure Rate	Low to medium
Detection method	Off line vibration monitoring, Oil analysis
Maintenance Strategy	Preventive major overhaul 40'000h Condition Based Monitoring
Equipment Lead time	Standard 4 to 8 months
MTTR	1 to 3 months
Replacement Time	2 to 3 days

Fig. 2: The inner ring with 2 flaked areas. One flaked area is identified by the arrow. Fig. 3: Detail photo of the flaked area from Fig. 2.

52 compressors for 4.5 K Refrigerators

RISK ANALYSIS

At Point 4, 6 and 8:

- Low Pressure compressors capacities can be shared between cryoplants within margins of operation
- High Pressure compressors capacities can be shared between cryoplants but requires cyoplants configuration change and use of nitrogen pre-cooling

At Points 18 and 2:

- There is no operational margin for compression capacity
- Compressor stations cannot be interconnected

MITIGATION PLAN

- Critical spare parts:
 - 7 different types of compressors
 - 8 spares for 52 compressors in operation for LHC machine
 - 16% of the financial replacement asset value.
- Maintenance strategy includes major overhauling and vibration analysis to anticipate complete breakdown for compressors and motors

64 expansion turbines for 4.5 K Refrigerators

64 expansion turbines for 4.5 K Refrigerators

Abov		
Down to 40K	Down to 40K	
Down to 4.5K	Down to 4.5K	

RISK ANALYSIS

- **Above 80K:** operation without turbines is possible with nearly no loss in refrigeration power as it can be compensated with LN2.
- **Down to 40K:** Turbines produce cooling power for screens and most of them are critical for LHC results in a considerable loss in refrigeration power
- **Down to 4.5K:** Turbines produce cooling power for magnets, leads and cavities. Most of them are critical for LHC results in a considerable loss in refrigeration power

MITIGATION PLAN

- **Turbine automation protection** in the process
- Service contract to reduce MTTR below 4 weeks and avoid buying spare for turbines above 80K
- Critical spare parts:
 - 27 different types of turbines
 - 21 spares for 64 turbines in operation for LHC machine
 - 32% of the financial replacement asset value.

28 cold compressors for 1.8 K Pumping Units

Cryogenic Cold Compressor		
Technology	Magnetic bearings, rotating at high frequencies Confidential technology	
Dependencies	Electrical Supply Water Cooling Vacuum insulation	
Considered Failures Modes & Expected Patterns	 Breakdown caused by rotor/welding fatigue Fatigue Pattern C = 5% Time Stop or breakdown cause by electronic Wear Out Pattern B = 2% Time 	
Failure Rate		
Detectability	Clearance and diagnostic of magnetic bearing Fast landing bearings	
Maintenance Strategy	Condition Based Monitoring	
Equipment	Change and 12 to 10 magnetics	
Lead time		
Lead time MTTR	6 to 12 months	
Lead time MTTR Replacement Time	6 to 12 months 1 to 2 days	

28 cold compressors for 1.8 K Pumping Units

RISK ANALYSIS

- In current configuration 1.8K is redundant on all points with one unit in operation and the second unit in cold stand-by

MITIGATION PLAN

- Power Supply and electronic design change to improve reliability
- Predictive maintenance with mechanical clearance and bearings check to validate service intervention on time
- Critical spare parts:
 - 7 different types of Cold Compressors
 - 7 spares for 28 units in operation for LHC
 - 25% of the financial replacement asset value.

CERN

Cryogenic Conditions Definition

Set of cryogenic conditions:

- to start powering (Cryo Start CS)
- to keep the magnets powered (Cryo Maintain CM)...

... and in the end to allow for beams to circulate, and for physics production !

Example for magnet temperature

Run 2 CryoMaintain Downtime Origins

laurent.delprat@cern.ch frederic.ferrand@cern.ch

laurent.delprat@cern.ch frederic.ferrand@cern.ch

Conclusion – Perspectives

- Run 1 operation at lower than designed beam intensity gave cryogenic teams extensive experience with the complex LHC cryogenics system
- Run 2 operation with increased beam-induced heat loads allowed for maintaining high level of availability while for the first time taking into account the beam feedback
- Adapted maintenance and spare parts strategy based on equipment criticality is a key factor to maintain high availability
- Extensive follow-up of the downtime origins together with close discussions with technical services allow for proposing adequate mitigation solutions to encountered problems, thus improving hardware reliability and finally availability
- Optimization of the cryogenic performance is still ongoing, with work to collect more detailed failure data and use data-mining analysis to use early-warning signals

Thank you for your attention!

Questions?

